In order to increase the processability and process window of the selective laser melting(SLM)-fabricated Al−Mn−Mg−Er−Zr alloy,a novel Si-modified Al−Mn−Mg−Er−Zr alloy was designed.The effect of Si alloying on the sur...In order to increase the processability and process window of the selective laser melting(SLM)-fabricated Al−Mn−Mg−Er−Zr alloy,a novel Si-modified Al−Mn−Mg−Er−Zr alloy was designed.The effect of Si alloying on the surface quality,processability,microstructure,and mechanical properties of the SLM-fabricated alloy was studied.The results showed that introducing Si into the Al−Mn−Mg−Er−Zr alloy prevented balling and keyhole formation,refined the grain size,and reduced the solidification temperature,which eliminated cracks and increased the processability and process window of the alloy.The maximum relative density of the SLM-fabricated Si/Al−Mn−Mg−Er−Zr alloy reached 99.6%.The yield strength and ultimate tensile strength of the alloy were(371±7)MPa and(518±6)MPa,respectively.These values were higher than those of the SLM-fabricated Al−Mn−Mg−Er−Zr and other Sc-free Al−Mg-based alloys.展开更多
In this paper, we investigate a method of selectively enhancing the single mode signal of a Lamb wave by using a meander-coil electromagnetic acoustic transducer (EMAT) with a new magnetic configuration. We use the ...In this paper, we investigate a method of selectively enhancing the single mode signal of a Lamb wave by using a meander-coil electromagnetic acoustic transducer (EMAT) with a new magnetic configuration. We use the Lamb antisym- metric (A0) mode and symmetric (SO) mode as an example for analysis. The analytical expression of the magnitude of the spatial Fourier transform of the Lorentz force generated by different meander coils is used to determine the optimal driving frequency for single mode generation. The numerical calculation is used to characterize the new magnetic configuration and the conventional EMAT magnet. Experimental examinations of each meander coil in combination with the conventional and new magnetic configuration show that the Lamb wave signal can be selectively enhanced by choosing the appropriate driving frequency and coil parameters through using the improved meander-coil EMAT.展开更多
The selective elimination of radioactive cesium from complicated wastewater is imperative in view of environment and human health.Montmorillonite has been accepted as one of the most promising adsorbents for cesium pu...The selective elimination of radioactive cesium from complicated wastewater is imperative in view of environment and human health.Montmorillonite has been accepted as one of the most promising adsorbents for cesium purification.However,its poor selectivity still remains a major challenge.Herein,a novel montmorillonite-sulfur composite was developed via a facile one-step solvent-free method and used for Cs^(+) removal.Owing to the fact that soft Lewis base S^(2-) ligand interacted more strongly with softer Lewis acid Cs^(+) than other cations,the capacity and selectivity towards Cs^(+) was significantly enhanced.In this case,a large capacity of 160.9 mg g^(-1) was achieved.The distribution coefficient value(~4000 mL g^(-1))was 3-times larger than that of pristine montmorillonite(~1500 mL g^(-1)).Moreover,this composite could be easily recycled and reused within five times recycling experiments.Therefore,this low-cost and facilely prepared composite are expected to be used for the selective removal of Cs^(+) from complicated wastewater containing various competing ions.展开更多
Aiming at boosting the low ultraviolet (UV)re-sponsivity induced by thenegative impact of the surface 'dead layer' in silicon-based conventional photodiode (CPD), Siphotodiodes with five different structures, ...Aiming at boosting the low ultraviolet (UV)re-sponsivity induced by thenegative impact of the surface 'dead layer' in silicon-based conventional photodiode (CPD), Siphotodiodes with five different structures, including both the novel grid structurephotodiode(GSPD)and CPD, have been manufactured using thermal diffusion process and tested. The results show thatthe UV responsivity around 365 nm of GSPD could be as high as 6 times that of CPD, while the highvisible (VIS) responsivity is sharply suppressed by the employment of grid shaped junction (GSJ) inthe GSPD, which has realized the expectation of selective UV enhancement with prospect forapplication.展开更多
A selective subband enhancement method based on biorthogonal wavelet base is proposed. This novel image enhancement method is just for those images in which the energy of target information area is relatively lower. I...A selective subband enhancement method based on biorthogonal wavelet base is proposed. This novel image enhancement method is just for those images in which the energy of target information area is relatively lower. It includes two parts: one is enhancing the low frequency subband by wavelet decomposition and the other is building a new criterion based on entropy window to image evaluation. Experimental results show that this new scheme may result in a perfect image processing.展开更多
Enhancement of uorescent radiation is of great importance for applications including biological imaging,high-sensitivity detectors,and integrated light sources.Strong electromagnetic elds can be created around metalli...Enhancement of uorescent radiation is of great importance for applications including biological imaging,high-sensitivity detectors,and integrated light sources.Strong electromagnetic elds can be created around metallic nanoparticles or in gap of nanostructures,where the local state density of radiating mode is then dramatically enhanced.While enhanced uorescent emission has been demonstrated in many metallic nanoparticles and nanoparticle pairs,simultaneous mediation of absorption and emission processes of uorescent emitters remains challenging in metallic nanostructures.Here,we investigate uorescent emission mediated by metal-dielectric-metal fishnet metasurface,in which localized surface plasmon(LSP)and magnetic plasmon polaritons(MPPs)modes are coupled with absorption and emission processes,respectively.For absorption process,coupling of the LSP mode enables spatially-selective excitation of the uorescent emitters by rotating the polarization of the pump laser beam.In addition,the polarization-dependent MPP mode enables manipulation of both polarization and wavelength of the uorescent emission by introducing a rectangular fishnet structure.All the experimental observations are further corroborated by nite-difference time-domain simulations.The structure reported here has great potential for application to color light-emitting devices and nanoscale integrated light sources.展开更多
Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmo...Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmonic nanocavities play a significant role due to their ability to confine light in an ultrasmall volume.Additionally,two-dimensional transition metal dichalcogenides(TMDCs) have a significant exciton binding energy and remain stable at ambient conditions,making them an excellent alternative for investigating light-matter interactions.As a result,strong plasmon-exciton coupling has been reported by introducing a single metallic cavity.However,single nanoparticles have lower spatial confinement of electromagnetic fields and limited tunability to match the excitonic resonance.Here,we introduce the concept of catenary-shaped optical fields induced by plasmonic metamaterial cavities to scale the strength of plasmon-exciton coupling.The demonstrated plasmon modes of metallic metamaterial cavities offer high confinement and tunability and can match with the excitons of TMDCs to exhibit a strong coupling regime by tuning either the size of the cavity gap or thickness.The calculated Rabi splitting of Au-MoSe_2 and Au-WSe_2 heterostructures strongly depends on the catenary-like field enhancement induced by the Au cavity,resulting in room-temperature Rabi splitting ranging between 77.86 and 320 me V.These plasmonic metamaterial cavities can pave the way for manipulating excitons in TMDCs and operating active nanophotonic devices at ambient temperature.展开更多
BACKGROUND This study aimed to evaluate the safety of enhanced recovery after surgery(ERAS)in elderly patients with gastric cancer(GC).AIM To evaluate the safety of ERAS in elderly patients with GC.METHODS The PubMed,...BACKGROUND This study aimed to evaluate the safety of enhanced recovery after surgery(ERAS)in elderly patients with gastric cancer(GC).AIM To evaluate the safety of ERAS in elderly patients with GC.METHODS The PubMed,EMBASE,and Cochrane Library databases were used to search for eligible studies from inception to April 1,2023.The mean difference(MD),odds ratio(OR)and 95%confidence interval(95%CI)were pooled for analysis.The quality of the included studies was evaluated using the Newcastle-Ottawa Scale scores.We used Stata(V.16.0)software for data analysis.RESULTS This study consists of six studies involving 878 elderly patients.By analyzing the clinical outcomes,we found that the ERAS group had shorter postoperative hospital stays(MD=-0.51,I2=0.00%,95%CI=-0.72 to-0.30,P=0.00);earlier times to first flatus(defecation;MD=-0.30,I²=0.00%,95%CI=-0.55 to-0.06,P=0.02);less intestinal obstruction(OR=3.24,I2=0.00%,95%CI=1.07 to 9.78,P=0.04);less nausea and vomiting(OR=4.07,I2=0.00%,95%CI=1.29 to 12.84,P=0.02);and less gastric retention(OR=5.69,I2=2.46%,95%CI=2.00 to 16.20,P=0.00).Our results showed that the conventional group had a greater mortality rate than the ERAS group(OR=0.24,I2=0.00%,95%CI=0.07 to 0.84,P=0.03).However,there was no statistically significant difference in major complications between the ERAS group and the conventional group(OR=0.67,I2=0.00%,95%CI=0.38 to 1.18,P=0.16).CONCLUSION Compared to those with conventional recovery,elderly GC patients who received the ERAS protocol after surgery had a lower risk of mortality.展开更多
Converting carbohydrates into 5-hydroxymethylfurfural(5-HMF) is an attractive and promising route for value-added utilization of agricultural and forestry biomass resource. As an important platform compound, 5-HMF pos...Converting carbohydrates into 5-hydroxymethylfurfural(5-HMF) is an attractive and promising route for value-added utilization of agricultural and forestry biomass resource. As an important platform compound, 5-HMF possesses high active furan structure with hydroxymethyl and aldehyde group for production of various bio-chemicals and materials, meanwhile, which suffer from low stability and poor yield during the industrial biorefinery process. Hence, selective production of 5-HMF with high-yield and low-cost has attracted extensive attention from scientific and industrial researchers. This review sorted and described the latest advanced research on solvent and catalyst system, as well as energy field effect for production of 5-HMF with different feedstock in detail, emphatically discussing the solvent effect and its synergistic effect with other aspects. Besides, the future prospects and challenges for production of 5-HMF from carbohydrates were also presented, which provide a profound insight into industrial 5-HMF process with economic and environmental feature.展开更多
The fructose-to-furfural transformation is facing major challenges in the selectivity and high efficiency. Herein, we have developed a simple and effective approach for the selective conversion of fructose to furfural...The fructose-to-furfural transformation is facing major challenges in the selectivity and high efficiency. Herein, we have developed a simple and effective approach for the selective conversion of fructose to furfural using Hβ zeolite modified by organic acids for dealuminization to regulate its textural and acidic properties. It was found that citric acid-dealuminized Hβ zeolite possessed high specific surface areas, wide channels and high Brønsted acid amount, which facilitated the selective conversion of fructose to furfural with a maximum yield of 76.2% at433 K for 1 h in the γ-butyrolactone(GBL)-H_(2)O system, as well as the concomitant formation of 83.0% formic acid. The^(13)C-isotope labelling experiments and the mechanism revealed that the selective cleavage of C1–C2 or C5–C6 bond on fructose was firstly occurred to form pentose or C5 intermediate by weak Brønsted acid, which was then dehydrated to furfural by strong Brønsted acid. Also this dealuminized Hβ catalyst showed the great recycling performance and was active for the conversion of glucose and mannose.展开更多
Selective cleavage of Csp^(2)-OCH_(3)bond in lignin without breaking other types of C-O bonds followed by N-functionalization is fascinating for on-purpose valorization of biomass.Here,a Co/Ni-based dual-atom catalyst...Selective cleavage of Csp^(2)-OCH_(3)bond in lignin without breaking other types of C-O bonds followed by N-functionalization is fascinating for on-purpose valorization of biomass.Here,a Co/Ni-based dual-atom catalyst CoNiDA@NC prepared by in-situ evaporation and acid-etching of metal species from tailor-made metal–organic frameworks was efficient for reductive upgrading of various lignin-derived phenols to cyclohexanols(88.5%–99.9%yields),which had ca.4 times higher reaction rate than the single-atom catalyst and was superior to state-of-the-art heterogeneous catalysts.The synergistic catalysis of Co/Ni dual atoms facilitated both hydrogen dissociation and hydrogenolysis steps,and could optimize adsorption configuration of lignin-derived methoxylated phenols to further favor the Csp^(2)-OCH_(3)cleavage,as elaborated by theoretical calculations.Notably,the CoNi_(DA)@NC catalyst was highly recyclable,and exhibited excellent demethoxylation performance(77.1%yield)in real lignin monomer mixtures.Via in-situ cascade conversion processes assisted by dual-atom catalysis,various high-value N-containing chemicals,including caprolactams and cyclohexylamines,could be produced from lignin.展开更多
Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a seri...Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a series of separation steps such as precipitation,extraction,and stripping to separate the individual valuable metals.In this study,we present a process for selectively leaching lithium through the synergistic effect of sulfuric and oxalic acids.Under optimal leaching conditions(leaching time of 1.5 h,leaching temperature of 70°C,liquid-solid ratio of 4 mL/g,oxalic acid ratio of 1.3,and sulfuric acid ratio of 1.3),the lithium leaching efficiency reached89.6%,and the leaching efficiencies of Ni,Co,and Mn were 12.8%,6.5%,and 21.7%.X-ray diffraction(XRD)and inductively coupled plasma optical emission spectrometer(ICP-OES)analyses showed that most of the Ni,Co,and Mn in the raw material remained as solid residue oxides and oxalates.This study offers a new approach to enriching the relevant theory for selectively recovering lithium from spent LIBs.展开更多
Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to d...Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to develop original solutions to such challenging technological problems due to their remote,sterile,rapid,and site-selective processing of materials.In this review,recent developments in relevant laser processes are summarized under two separate categories.First,transformative approaches,such as for laser-induced graphene,are introduced.In addition to design optimization and the alteration of a native substrate,the latest advances under a transformative approach now enable more complex material compositions and multilayer device configurations through the simultaneous transformation of heterogeneous precursors,or the sequential addition of functional layers coupled with other electronic elements.In addition,the more conventional laser techniques,such as ablation,sintering,and synthesis,can still be used to enhance the functionality of an entire system through the expansion of applicable materials and the adoption of new mechanisms.Later,various wearable device components developed through the corresponding laser processes are discussed,with an emphasis on chemical/physical sensors and energy devices.In addition,special attention is given to applications that use multiple laser sources or processes,which lay the foundation for the all-laser fabrication of wearable devices.展开更多
Transarterial radioembolization or selective internal radiation therapy(SIRT)has emerged as a minimally invasive approach for the treatment of tumors.This percutaneous technique involves the local,intra-arterial deliv...Transarterial radioembolization or selective internal radiation therapy(SIRT)has emerged as a minimally invasive approach for the treatment of tumors.This percutaneous technique involves the local,intra-arterial delivery of radioactive microspheres directly into the tumor.Historically employed as a palliative measure for liver malignancies,SIRT has gained traction over the past decade as a potential curative option,mirroring the increasing role of radiation segmentectomy.The latest update of the BCLC hepatocellular carcinoma guidelines recognizes SIRT as an effective treatment modality comparable to other local ablative methods,particularly well-suited for patients where surgical resection or ablation is not feasible.Radiation segmentectomy is a more selective approach,aiming to deliver high-dose radiation to one to three specific hepatic segments,while minimizing damage to surrounding healthy tissue.Future research efforts in radiation segmentectomy should prioritize optimizing radiation dosimetry and refining the technique for super-selective administration of radiospheres within the designated hepatic segments.展开更多
This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualis...This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys.展开更多
BACKGROUND Crochetage sign is a specific electrocardiographic manifestation of ostium secundum atrial septal defects(ASDs),which is associated with the severity of the left-to-right shunt.Herein,we reported a case of ...BACKGROUND Crochetage sign is a specific electrocardiographic manifestation of ostium secundum atrial septal defects(ASDs),which is associated with the severity of the left-to-right shunt.Herein,we reported a case of selective his bundle pacing(SHBP)that eliminated crochetage sign in a patient with ostium secundum ASD.CASE SUMMARY A 77-year-old man was admitted with a 2-year history of chest tightness and shortness of breath.Transthoracic echocardiography revealed an ostium secundum ASD.Twelve-lead electrocardiogram revealed atrial fibrillation with a prolonged relative risk interval,incomplete right bundle branch block,and crochetage sign.The patient was diagnosed with an ostium secundum ASD,atrial fibrillation with a second-degree atrioventricular block,and heart failure.The patient was treated with selective his bundle pacemaker implantation.After the procedure,crochetage sign disappeared during his bundle pacing on the electrocardiogram.CONCLUSION S-HBP eliminated crochetage sign on electrocardiogram.Crochetage sign may be a manifestation of a conduction system disorder.展开更多
A WTi-Al_(2)O_(3)cermet-based solar selective absorber was prepared to investigate the atomic diffusion induced spectral selectivity degeneration.The as-deposited coating exhibits superior absorptance(0.934)and low th...A WTi-Al_(2)O_(3)cermet-based solar selective absorber was prepared to investigate the atomic diffusion induced spectral selectivity degeneration.The as-deposited coating exhibits superior absorptance(0.934)and low thermal emittance(0.098),as well as excellent thermal stability with a selectivity of 0.900/0.07 even after annealing at 923 K for 400 h in Ar ambient.However,the multilayer coating failed after being subjected to annealing at 923 K for 400 h in an air environment,as indicated by a decrease in solar absorptance to 0.912 and an increase in thermal emittance to 0.634.The microstructure characterizations reveal that the annealed coating exhibits a columnar morphology along the vertical direction of the substrate.The presence of abundant grain boundaries in the multilayer coating promotes the outward diffusion of Cr and Mn atoms in the stainless-steel substrate.The Mn atoms,in particular,possess the capability to migrate towards the surface of the coating and undergo an oxidation reaction with oxygen,facilitating the formation of a thick Mn_(2)O_(3)layer.The roughness of the coating surface was significantly increased in this case,adversely affecting solar absorptance due to amplified sunlight reflection.In addition,the rocketing of thermal emittance is attributed to the destabilization of W infrared reflective layer during the annealing.These findings highlight the importance of considering the outward diffusion of Mn and Cr elements in the stainless-steel substrate when optimizing solar selective absorbers.展开更多
Multimodal lung tumor medical images can provide anatomical and functional information for the same lesion.Such as Positron Emission Computed Tomography(PET),Computed Tomography(CT),and PET-CT.How to utilize the lesio...Multimodal lung tumor medical images can provide anatomical and functional information for the same lesion.Such as Positron Emission Computed Tomography(PET),Computed Tomography(CT),and PET-CT.How to utilize the lesion anatomical and functional information effectively and improve the network segmentation performance are key questions.To solve the problem,the Saliency Feature-Guided Interactive Feature Enhancement Lung Tumor Segmentation Network(Guide-YNet)is proposed in this paper.Firstly,a double-encoder single-decoder U-Net is used as the backbone in this model,a single-coder single-decoder U-Net is used to generate the saliency guided feature using PET image and transmit it into the skip connection of the backbone,and the high sensitivity of PET images to tumors is used to guide the network to accurately locate lesions.Secondly,a Cross Scale Feature Enhancement Module(CSFEM)is designed to extract multi-scale fusion features after downsampling.Thirdly,a Cross-Layer Interactive Feature Enhancement Module(CIFEM)is designed in the encoder to enhance the spatial position information and semantic information.Finally,a Cross-Dimension Cross-Layer Feature Enhancement Module(CCFEM)is proposed in the decoder,which effectively extractsmultimodal image features through global attention and multi-dimension local attention.The proposed method is verified on the lung multimodal medical image datasets,and the results showthat theMean Intersection overUnion(MIoU),Accuracy(Acc),Dice Similarity Coefficient(Dice),Volumetric overlap error(Voe),Relative volume difference(Rvd)of the proposed method on lung lesion segmentation are 87.27%,93.08%,97.77%,95.92%,89.28%,and 88.68%,respectively.It is of great significance for computer-aided diagnosis.展开更多
Electroreduction of nitrate has been gaining wide attention in recent years owing to it's beneficial for converting nitrate into benign N_(2) from the perspective of electrocatalytic denitrification or into value-...Electroreduction of nitrate has been gaining wide attention in recent years owing to it's beneficial for converting nitrate into benign N_(2) from the perspective of electrocatalytic denitrification or into value-added ammonia from the perspective of electrocatalytic NH_(3) synthesis.By reason of the undesired formation of ammonia is dominant during electroreduction of nitrate-containing wastewater,chloride has been widely used to improve N_(2) selectivity.Nevertheless,selective electroreduction of nitrate to N2 gas in chloride-containing system poses several drawbacks.In this review,we focus on the key strategies for efficiently enhancing N_(2) selectivity of electroreduction of nitrate in chloride-free system,including optimal selection of elements,combining an active metal catalyst with another metal,manipulating the crystalline morphology and facet orientation,constructing core–shell structure catalysts,etc.Before summarizing the strategies,four possible reaction pathways of electro-reduction of nitrate to N_(2) are discussed.Overall,this review attempts to provide practical strategies for enhancing N2 selectivity without the aid of electrochlorination and highlight directions for future research for designing appropriate electrocatalyst for final electrocatalytic denitrifi-cation.展开更多
Current aqueous battery electrolytes,including conve ntional hydrogel electrolytes,exhibit unsatisfactory water retention capabilities.The sustained water loss will lead to subsequent polarization and increased intern...Current aqueous battery electrolytes,including conve ntional hydrogel electrolytes,exhibit unsatisfactory water retention capabilities.The sustained water loss will lead to subsequent polarization and increased internal resistance,ultimately resulting in battery failure.Herein,a double network(DN) orga no hydrogel electrolyte based on dimethyl sulfoxide(DMSO)/H_(2)O binary solvent was proposed.Through directionally reconstructing hydrogen bonds and reducing active H_(2)O molecules,the water retention ability and cathode/anode interfaces were synergistic enhanced.As a result,the synthesized DN organohydrogel demonstrates exceptional water retention capabilities,retaining approximately 75% of its original weight even after the exposure to air for 20 days.The Zn MnO_(2) battery delivers an outstanding specific capacity of275 mA h g^(-1) at 1 C,impressive rate performance with 85 mA h g^(-1) at 30 C,and excellent cyclic stability(95% retention after 6000 cycles at 5 C).Zn‖Zn symmetric battery can cycle more than 5000 h at 1 mA cm^(-2) and 1 mA h cm^(-2) without short circuiting.This study will encourage the further development of functional organohydrogel electrolytes for advanced energy storage devices.展开更多
基金the National Natural Science Foundation of China(Nos.51801079,52001140)the Portugal National Funds through FCT Project(No.2021.04115).
文摘In order to increase the processability and process window of the selective laser melting(SLM)-fabricated Al−Mn−Mg−Er−Zr alloy,a novel Si-modified Al−Mn−Mg−Er−Zr alloy was designed.The effect of Si alloying on the surface quality,processability,microstructure,and mechanical properties of the SLM-fabricated alloy was studied.The results showed that introducing Si into the Al−Mn−Mg−Er−Zr alloy prevented balling and keyhole formation,refined the grain size,and reduced the solidification temperature,which eliminated cracks and increased the processability and process window of the alloy.The maximum relative density of the SLM-fabricated Si/Al−Mn−Mg−Er−Zr alloy reached 99.6%.The yield strength and ultimate tensile strength of the alloy were(371±7)MPa and(518±6)MPa,respectively.These values were higher than those of the SLM-fabricated Al−Mn−Mg−Er−Zr and other Sc-free Al−Mg-based alloys.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51507171 and 51577184)
文摘In this paper, we investigate a method of selectively enhancing the single mode signal of a Lamb wave by using a meander-coil electromagnetic acoustic transducer (EMAT) with a new magnetic configuration. We use the Lamb antisym- metric (A0) mode and symmetric (SO) mode as an example for analysis. The analytical expression of the magnitude of the spatial Fourier transform of the Lorentz force generated by different meander coils is used to determine the optimal driving frequency for single mode generation. The numerical calculation is used to characterize the new magnetic configuration and the conventional EMAT magnet. Experimental examinations of each meander coil in combination with the conventional and new magnetic configuration show that the Lamb wave signal can be selectively enhanced by choosing the appropriate driving frequency and coil parameters through using the improved meander-coil EMAT.
基金partial financial supports from the National Natural Science Foundation of China(21901183 and 21773170)Innovation Project of Excellent Doctorial Dissertation of Tianjin University of Science and Technology(201909)+2 种基金National Undergraduate Innovation and Entrepreneurship Training Project(201910057101)the Major Special Project of Tibet Autonomous Region(XZ201801-GB01)the Yangtze Scholars and Innovative Research Team of the Chinese University(IRT_17R81)。
文摘The selective elimination of radioactive cesium from complicated wastewater is imperative in view of environment and human health.Montmorillonite has been accepted as one of the most promising adsorbents for cesium purification.However,its poor selectivity still remains a major challenge.Herein,a novel montmorillonite-sulfur composite was developed via a facile one-step solvent-free method and used for Cs^(+) removal.Owing to the fact that soft Lewis base S^(2-) ligand interacted more strongly with softer Lewis acid Cs^(+) than other cations,the capacity and selectivity towards Cs^(+) was significantly enhanced.In this case,a large capacity of 160.9 mg g^(-1) was achieved.The distribution coefficient value(~4000 mL g^(-1))was 3-times larger than that of pristine montmorillonite(~1500 mL g^(-1)).Moreover,this composite could be easily recycled and reused within five times recycling experiments.Therefore,this low-cost and facilely prepared composite are expected to be used for the selective removal of Cs^(+) from complicated wastewater containing various competing ions.
文摘Aiming at boosting the low ultraviolet (UV)re-sponsivity induced by thenegative impact of the surface 'dead layer' in silicon-based conventional photodiode (CPD), Siphotodiodes with five different structures, including both the novel grid structurephotodiode(GSPD)and CPD, have been manufactured using thermal diffusion process and tested. The results show thatthe UV responsivity around 365 nm of GSPD could be as high as 6 times that of CPD, while the highvisible (VIS) responsivity is sharply suppressed by the employment of grid shaped junction (GSJ) inthe GSPD, which has realized the expectation of selective UV enhancement with prospect forapplication.
基金Project (2003AA1Z2610) supported by National High Technology Research and Development Programof China
文摘A selective subband enhancement method based on biorthogonal wavelet base is proposed. This novel image enhancement method is just for those images in which the energy of target information area is relatively lower. It includes two parts: one is enhancing the low frequency subband by wavelet decomposition and the other is building a new criterion based on entropy window to image evaluation. Experimental results show that this new scheme may result in a perfect image processing.
基金supported by the National Nature Science Foundation of China(No.11674303 and No.11574293)the USTC Center for Micro and Nanoscale Research and Fabrication
文摘Enhancement of uorescent radiation is of great importance for applications including biological imaging,high-sensitivity detectors,and integrated light sources.Strong electromagnetic elds can be created around metallic nanoparticles or in gap of nanostructures,where the local state density of radiating mode is then dramatically enhanced.While enhanced uorescent emission has been demonstrated in many metallic nanoparticles and nanoparticle pairs,simultaneous mediation of absorption and emission processes of uorescent emitters remains challenging in metallic nanostructures.Here,we investigate uorescent emission mediated by metal-dielectric-metal fishnet metasurface,in which localized surface plasmon(LSP)and magnetic plasmon polaritons(MPPs)modes are coupled with absorption and emission processes,respectively.For absorption process,coupling of the LSP mode enables spatially-selective excitation of the uorescent emitters by rotating the polarization of the pump laser beam.In addition,the polarization-dependent MPP mode enables manipulation of both polarization and wavelength of the uorescent emission by introducing a rectangular fishnet structure.All the experimental observations are further corroborated by nite-difference time-domain simulations.The structure reported here has great potential for application to color light-emitting devices and nanoscale integrated light sources.
基金supported by the Australian Research Council (DP200101353)。
文摘Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmonic nanocavities play a significant role due to their ability to confine light in an ultrasmall volume.Additionally,two-dimensional transition metal dichalcogenides(TMDCs) have a significant exciton binding energy and remain stable at ambient conditions,making them an excellent alternative for investigating light-matter interactions.As a result,strong plasmon-exciton coupling has been reported by introducing a single metallic cavity.However,single nanoparticles have lower spatial confinement of electromagnetic fields and limited tunability to match the excitonic resonance.Here,we introduce the concept of catenary-shaped optical fields induced by plasmonic metamaterial cavities to scale the strength of plasmon-exciton coupling.The demonstrated plasmon modes of metallic metamaterial cavities offer high confinement and tunability and can match with the excitons of TMDCs to exhibit a strong coupling regime by tuning either the size of the cavity gap or thickness.The calculated Rabi splitting of Au-MoSe_2 and Au-WSe_2 heterostructures strongly depends on the catenary-like field enhancement induced by the Au cavity,resulting in room-temperature Rabi splitting ranging between 77.86 and 320 me V.These plasmonic metamaterial cavities can pave the way for manipulating excitons in TMDCs and operating active nanophotonic devices at ambient temperature.
基金Supported by Chongqing Medical University Program for Youth Innovation in Future Medicine,No.W0190.
文摘BACKGROUND This study aimed to evaluate the safety of enhanced recovery after surgery(ERAS)in elderly patients with gastric cancer(GC).AIM To evaluate the safety of ERAS in elderly patients with GC.METHODS The PubMed,EMBASE,and Cochrane Library databases were used to search for eligible studies from inception to April 1,2023.The mean difference(MD),odds ratio(OR)and 95%confidence interval(95%CI)were pooled for analysis.The quality of the included studies was evaluated using the Newcastle-Ottawa Scale scores.We used Stata(V.16.0)software for data analysis.RESULTS This study consists of six studies involving 878 elderly patients.By analyzing the clinical outcomes,we found that the ERAS group had shorter postoperative hospital stays(MD=-0.51,I2=0.00%,95%CI=-0.72 to-0.30,P=0.00);earlier times to first flatus(defecation;MD=-0.30,I²=0.00%,95%CI=-0.55 to-0.06,P=0.02);less intestinal obstruction(OR=3.24,I2=0.00%,95%CI=1.07 to 9.78,P=0.04);less nausea and vomiting(OR=4.07,I2=0.00%,95%CI=1.29 to 12.84,P=0.02);and less gastric retention(OR=5.69,I2=2.46%,95%CI=2.00 to 16.20,P=0.00).Our results showed that the conventional group had a greater mortality rate than the ERAS group(OR=0.24,I2=0.00%,95%CI=0.07 to 0.84,P=0.03).However,there was no statistically significant difference in major complications between the ERAS group and the conventional group(OR=0.67,I2=0.00%,95%CI=0.38 to 1.18,P=0.16).CONCLUSION Compared to those with conventional recovery,elderly GC patients who received the ERAS protocol after surgery had a lower risk of mortality.
基金supported by the National Nature Science Foundation of China (32222058, 32001274)the Youth Talent Support Program for Science & Technology Innovation of National Forestry and Grassland (2019132603) for financial support。
文摘Converting carbohydrates into 5-hydroxymethylfurfural(5-HMF) is an attractive and promising route for value-added utilization of agricultural and forestry biomass resource. As an important platform compound, 5-HMF possesses high active furan structure with hydroxymethyl and aldehyde group for production of various bio-chemicals and materials, meanwhile, which suffer from low stability and poor yield during the industrial biorefinery process. Hence, selective production of 5-HMF with high-yield and low-cost has attracted extensive attention from scientific and industrial researchers. This review sorted and described the latest advanced research on solvent and catalyst system, as well as energy field effect for production of 5-HMF with different feedstock in detail, emphatically discussing the solvent effect and its synergistic effect with other aspects. Besides, the future prospects and challenges for production of 5-HMF from carbohydrates were also presented, which provide a profound insight into industrial 5-HMF process with economic and environmental feature.
基金supported by Program for National Natural Science Foundation of China(Nos.22178135,21978104 and 22278419)the National Key Research and Development Program of China(No.2021YFC2101601)。
文摘The fructose-to-furfural transformation is facing major challenges in the selectivity and high efficiency. Herein, we have developed a simple and effective approach for the selective conversion of fructose to furfural using Hβ zeolite modified by organic acids for dealuminization to regulate its textural and acidic properties. It was found that citric acid-dealuminized Hβ zeolite possessed high specific surface areas, wide channels and high Brønsted acid amount, which facilitated the selective conversion of fructose to furfural with a maximum yield of 76.2% at433 K for 1 h in the γ-butyrolactone(GBL)-H_(2)O system, as well as the concomitant formation of 83.0% formic acid. The^(13)C-isotope labelling experiments and the mechanism revealed that the selective cleavage of C1–C2 or C5–C6 bond on fructose was firstly occurred to form pentose or C5 intermediate by weak Brønsted acid, which was then dehydrated to furfural by strong Brønsted acid. Also this dealuminized Hβ catalyst showed the great recycling performance and was active for the conversion of glucose and mannose.
基金the National Natural Science Foundation of China(22368014)the Guizhou Provincial S&T Project(ZK[2022]011,GCC[2023]011)+2 种基金the Natural Science Foundation of Guangxi Zhuang Autonomous Region(2023JJA120098)the Guangxi Key Laboratory of Green Chemical Materials and Safety Technology,the Beibu Gulf University(2022SYSZZ02,2022ZZKT04)the Guizhou Provincial Higher Education Institution Program(Qianjiaoji[2023]082)。
文摘Selective cleavage of Csp^(2)-OCH_(3)bond in lignin without breaking other types of C-O bonds followed by N-functionalization is fascinating for on-purpose valorization of biomass.Here,a Co/Ni-based dual-atom catalyst CoNiDA@NC prepared by in-situ evaporation and acid-etching of metal species from tailor-made metal–organic frameworks was efficient for reductive upgrading of various lignin-derived phenols to cyclohexanols(88.5%–99.9%yields),which had ca.4 times higher reaction rate than the single-atom catalyst and was superior to state-of-the-art heterogeneous catalysts.The synergistic catalysis of Co/Ni dual atoms facilitated both hydrogen dissociation and hydrogenolysis steps,and could optimize adsorption configuration of lignin-derived methoxylated phenols to further favor the Csp^(2)-OCH_(3)cleavage,as elaborated by theoretical calculations.Notably,the CoNi_(DA)@NC catalyst was highly recyclable,and exhibited excellent demethoxylation performance(77.1%yield)in real lignin monomer mixtures.Via in-situ cascade conversion processes assisted by dual-atom catalysis,various high-value N-containing chemicals,including caprolactams and cyclohexylamines,could be produced from lignin.
基金financially supported by the Young Scientists Fund of the National Natural Science Foundation of China(Nos.52104395 and 52304365)the Science and Technology Planning Project of Guangzhou,China(Nos.202102021080 and 2024A04J10006)+1 种基金the National Key R&D Program of China(No.2021YFC2902605)the Natural Science Foundation of Guangdong Province,China(Nos.2023A1515030145 and 2023A1515011847)。
文摘Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a series of separation steps such as precipitation,extraction,and stripping to separate the individual valuable metals.In this study,we present a process for selectively leaching lithium through the synergistic effect of sulfuric and oxalic acids.Under optimal leaching conditions(leaching time of 1.5 h,leaching temperature of 70°C,liquid-solid ratio of 4 mL/g,oxalic acid ratio of 1.3,and sulfuric acid ratio of 1.3),the lithium leaching efficiency reached89.6%,and the leaching efficiencies of Ni,Co,and Mn were 12.8%,6.5%,and 21.7%.X-ray diffraction(XRD)and inductively coupled plasma optical emission spectrometer(ICP-OES)analyses showed that most of the Ni,Co,and Mn in the raw material remained as solid residue oxides and oxalates.This study offers a new approach to enriching the relevant theory for selectively recovering lithium from spent LIBs.
基金supported by the Basic Research Program through the National Research Foundation of Korea(NRF)(Nos.2022R1C1C1006593,2022R1A4A3031263,and RS-2023-00271166)the National Science Foundation(Nos.2054098 and 2213693)+1 种基金the National Natural Science Foundation of China(No.52105593)Zhejiang Provincial Natural Science Foundation of China(No.LDQ24E050001).EH acknowledges a fellowship from the Hyundai Motor Chung Mong-Koo Foundation.
文摘Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to develop original solutions to such challenging technological problems due to their remote,sterile,rapid,and site-selective processing of materials.In this review,recent developments in relevant laser processes are summarized under two separate categories.First,transformative approaches,such as for laser-induced graphene,are introduced.In addition to design optimization and the alteration of a native substrate,the latest advances under a transformative approach now enable more complex material compositions and multilayer device configurations through the simultaneous transformation of heterogeneous precursors,or the sequential addition of functional layers coupled with other electronic elements.In addition,the more conventional laser techniques,such as ablation,sintering,and synthesis,can still be used to enhance the functionality of an entire system through the expansion of applicable materials and the adoption of new mechanisms.Later,various wearable device components developed through the corresponding laser processes are discussed,with an emphasis on chemical/physical sensors and energy devices.In addition,special attention is given to applications that use multiple laser sources or processes,which lay the foundation for the all-laser fabrication of wearable devices.
文摘Transarterial radioembolization or selective internal radiation therapy(SIRT)has emerged as a minimally invasive approach for the treatment of tumors.This percutaneous technique involves the local,intra-arterial delivery of radioactive microspheres directly into the tumor.Historically employed as a palliative measure for liver malignancies,SIRT has gained traction over the past decade as a potential curative option,mirroring the increasing role of radiation segmentectomy.The latest update of the BCLC hepatocellular carcinoma guidelines recognizes SIRT as an effective treatment modality comparable to other local ablative methods,particularly well-suited for patients where surgical resection or ablation is not feasible.Radiation segmentectomy is a more selective approach,aiming to deliver high-dose radiation to one to three specific hepatic segments,while minimizing damage to surrounding healthy tissue.Future research efforts in radiation segmentectomy should prioritize optimizing radiation dosimetry and refining the technique for super-selective administration of radiospheres within the designated hepatic segments.
基金supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region(152131/18E).
文摘This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys.
文摘BACKGROUND Crochetage sign is a specific electrocardiographic manifestation of ostium secundum atrial septal defects(ASDs),which is associated with the severity of the left-to-right shunt.Herein,we reported a case of selective his bundle pacing(SHBP)that eliminated crochetage sign in a patient with ostium secundum ASD.CASE SUMMARY A 77-year-old man was admitted with a 2-year history of chest tightness and shortness of breath.Transthoracic echocardiography revealed an ostium secundum ASD.Twelve-lead electrocardiogram revealed atrial fibrillation with a prolonged relative risk interval,incomplete right bundle branch block,and crochetage sign.The patient was diagnosed with an ostium secundum ASD,atrial fibrillation with a second-degree atrioventricular block,and heart failure.The patient was treated with selective his bundle pacemaker implantation.After the procedure,crochetage sign disappeared during his bundle pacing on the electrocardiogram.CONCLUSION S-HBP eliminated crochetage sign on electrocardiogram.Crochetage sign may be a manifestation of a conduction system disorder.
基金Funded by the Natural Science Foundation of Shanxi Province of China(Nos.202303021221177 and 202103021224063)the National Natural Science Foundation of China(No.52002159)。
文摘A WTi-Al_(2)O_(3)cermet-based solar selective absorber was prepared to investigate the atomic diffusion induced spectral selectivity degeneration.The as-deposited coating exhibits superior absorptance(0.934)and low thermal emittance(0.098),as well as excellent thermal stability with a selectivity of 0.900/0.07 even after annealing at 923 K for 400 h in Ar ambient.However,the multilayer coating failed after being subjected to annealing at 923 K for 400 h in an air environment,as indicated by a decrease in solar absorptance to 0.912 and an increase in thermal emittance to 0.634.The microstructure characterizations reveal that the annealed coating exhibits a columnar morphology along the vertical direction of the substrate.The presence of abundant grain boundaries in the multilayer coating promotes the outward diffusion of Cr and Mn atoms in the stainless-steel substrate.The Mn atoms,in particular,possess the capability to migrate towards the surface of the coating and undergo an oxidation reaction with oxygen,facilitating the formation of a thick Mn_(2)O_(3)layer.The roughness of the coating surface was significantly increased in this case,adversely affecting solar absorptance due to amplified sunlight reflection.In addition,the rocketing of thermal emittance is attributed to the destabilization of W infrared reflective layer during the annealing.These findings highlight the importance of considering the outward diffusion of Mn and Cr elements in the stainless-steel substrate when optimizing solar selective absorbers.
基金supported in part by the National Natural Science Foundation of China(Grant No.62062003)Natural Science Foundation of Ningxia(Grant No.2023AAC03293).
文摘Multimodal lung tumor medical images can provide anatomical and functional information for the same lesion.Such as Positron Emission Computed Tomography(PET),Computed Tomography(CT),and PET-CT.How to utilize the lesion anatomical and functional information effectively and improve the network segmentation performance are key questions.To solve the problem,the Saliency Feature-Guided Interactive Feature Enhancement Lung Tumor Segmentation Network(Guide-YNet)is proposed in this paper.Firstly,a double-encoder single-decoder U-Net is used as the backbone in this model,a single-coder single-decoder U-Net is used to generate the saliency guided feature using PET image and transmit it into the skip connection of the backbone,and the high sensitivity of PET images to tumors is used to guide the network to accurately locate lesions.Secondly,a Cross Scale Feature Enhancement Module(CSFEM)is designed to extract multi-scale fusion features after downsampling.Thirdly,a Cross-Layer Interactive Feature Enhancement Module(CIFEM)is designed in the encoder to enhance the spatial position information and semantic information.Finally,a Cross-Dimension Cross-Layer Feature Enhancement Module(CCFEM)is proposed in the decoder,which effectively extractsmultimodal image features through global attention and multi-dimension local attention.The proposed method is verified on the lung multimodal medical image datasets,and the results showthat theMean Intersection overUnion(MIoU),Accuracy(Acc),Dice Similarity Coefficient(Dice),Volumetric overlap error(Voe),Relative volume difference(Rvd)of the proposed method on lung lesion segmentation are 87.27%,93.08%,97.77%,95.92%,89.28%,and 88.68%,respectively.It is of great significance for computer-aided diagnosis.
基金supported by State Key Laboratory of Water Resource Protection and Utilization in Coal Mining(No.GJNY-18-73.17).
文摘Electroreduction of nitrate has been gaining wide attention in recent years owing to it's beneficial for converting nitrate into benign N_(2) from the perspective of electrocatalytic denitrification or into value-added ammonia from the perspective of electrocatalytic NH_(3) synthesis.By reason of the undesired formation of ammonia is dominant during electroreduction of nitrate-containing wastewater,chloride has been widely used to improve N_(2) selectivity.Nevertheless,selective electroreduction of nitrate to N2 gas in chloride-containing system poses several drawbacks.In this review,we focus on the key strategies for efficiently enhancing N_(2) selectivity of electroreduction of nitrate in chloride-free system,including optimal selection of elements,combining an active metal catalyst with another metal,manipulating the crystalline morphology and facet orientation,constructing core–shell structure catalysts,etc.Before summarizing the strategies,four possible reaction pathways of electro-reduction of nitrate to N_(2) are discussed.Overall,this review attempts to provide practical strategies for enhancing N2 selectivity without the aid of electrochlorination and highlight directions for future research for designing appropriate electrocatalyst for final electrocatalytic denitrifi-cation.
基金Joint Funds of the National Natural Science Foundation of China (U22A20140)University of Jinan Disciplinary Cross-Convergence Construction Project 2023 (XKJC-202309, XKJC-202307)+4 种基金Jinan City-School Integration Development Strategy Project (JNSX2023015)Independent Cultivation Program of Innovation Team of Ji’nan City (202333042)Youth Innovation Group Plan of Shandong Province (2022KJ095)Shenzhen Stable Support Plan Program for Higher Education Institutions Research Program (20220816131408001)Shenzhen Science and Technology Program (JCYJ20230807091802006)。
文摘Current aqueous battery electrolytes,including conve ntional hydrogel electrolytes,exhibit unsatisfactory water retention capabilities.The sustained water loss will lead to subsequent polarization and increased internal resistance,ultimately resulting in battery failure.Herein,a double network(DN) orga no hydrogel electrolyte based on dimethyl sulfoxide(DMSO)/H_(2)O binary solvent was proposed.Through directionally reconstructing hydrogen bonds and reducing active H_(2)O molecules,the water retention ability and cathode/anode interfaces were synergistic enhanced.As a result,the synthesized DN organohydrogel demonstrates exceptional water retention capabilities,retaining approximately 75% of its original weight even after the exposure to air for 20 days.The Zn MnO_(2) battery delivers an outstanding specific capacity of275 mA h g^(-1) at 1 C,impressive rate performance with 85 mA h g^(-1) at 30 C,and excellent cyclic stability(95% retention after 6000 cycles at 5 C).Zn‖Zn symmetric battery can cycle more than 5000 h at 1 mA cm^(-2) and 1 mA h cm^(-2) without short circuiting.This study will encourage the further development of functional organohydrogel electrolytes for advanced energy storage devices.