In this paper,we propose an Unsupervised Nonlinear Adaptive Manifold Learning method(UNAML)that considers both global and local information.In this approach,we apply unlabeled training samples to study nonlinear manif...In this paper,we propose an Unsupervised Nonlinear Adaptive Manifold Learning method(UNAML)that considers both global and local information.In this approach,we apply unlabeled training samples to study nonlinear manifold features,while considering global pairwise distances and maintaining local topology structure.Our method aims at minimizing global pairwise data distance errors as well as local structural errors.In order to enable our UNAML to be more efficient and to extract manifold features from the external source of new data,we add a feature approximate error that can be used to learn a linear extractor.Also,we add a feature approximate error that can be used to learn a linear extractor.In addition,we use a method of adaptive neighbor selection to calculate local structural errors.This paper uses the kernel matrix method to optimize the original algorithm.Our algorithm proves to be more effective when compared with the experimental results of other feature extraction methods on real face-data sets and object data sets.展开更多
This study focuses on the problem of multitarget tracking.To address the existing problems of current tracking algorithms,as manifested by the time consumption of subgroup separation and the uneven group size of unman...This study focuses on the problem of multitarget tracking.To address the existing problems of current tracking algorithms,as manifested by the time consumption of subgroup separation and the uneven group size of unmanned aerial vehicles(UAVs)for target tracking,a multitarget tracking control algorithm under local information selection interaction is proposed.First,on the basis of location,number,and perceived target information of neighboring UAVs,a temporary leader selection strategy is designed to realize the local follow-up movement of UAVs when the UAVs cannot fully perceive the target.Second,in combination with the basic rules of cluster movement and target information perception factors,distributed control equations are designed to achieve a rapid gathering of UAVs and consistent tracking of multiple targets.Lastly,the simulation experiments are conducted in two-and three-dimensional spaces.Under a certain number of UAVs,clustering speed of the proposed algorithm is less than 3 s,and the equal probability of the UAV subgroup size after group separation is over 78%.展开更多
基金supported in part by the National Natural Science Foundation of China(Nos.61373093,61402310,61672364,and 61672365)the National Key Research and Development Program of China(No.2018YFA0701701)。
文摘In this paper,we propose an Unsupervised Nonlinear Adaptive Manifold Learning method(UNAML)that considers both global and local information.In this approach,we apply unlabeled training samples to study nonlinear manifold features,while considering global pairwise distances and maintaining local topology structure.Our method aims at minimizing global pairwise data distance errors as well as local structural errors.In order to enable our UNAML to be more efficient and to extract manifold features from the external source of new data,we add a feature approximate error that can be used to learn a linear extractor.Also,we add a feature approximate error that can be used to learn a linear extractor.In addition,we use a method of adaptive neighbor selection to calculate local structural errors.This paper uses the kernel matrix method to optimize the original algorithm.Our algorithm proves to be more effective when compared with the experimental results of other feature extraction methods on real face-data sets and object data sets.
文摘This study focuses on the problem of multitarget tracking.To address the existing problems of current tracking algorithms,as manifested by the time consumption of subgroup separation and the uneven group size of unmanned aerial vehicles(UAVs)for target tracking,a multitarget tracking control algorithm under local information selection interaction is proposed.First,on the basis of location,number,and perceived target information of neighboring UAVs,a temporary leader selection strategy is designed to realize the local follow-up movement of UAVs when the UAVs cannot fully perceive the target.Second,in combination with the basic rules of cluster movement and target information perception factors,distributed control equations are designed to achieve a rapid gathering of UAVs and consistent tracking of multiple targets.Lastly,the simulation experiments are conducted in two-and three-dimensional spaces.Under a certain number of UAVs,clustering speed of the proposed algorithm is less than 3 s,and the equal probability of the UAV subgroup size after group separation is over 78%.