Abstract The detailed kinetic model of selective non-catalytic reduction (SNCR) of nitric oxide, including so-dium species reactions, was deyeloped on the basis of recent studies on thermal DeNOx mechanism, NOxOUTme...Abstract The detailed kinetic model of selective non-catalytic reduction (SNCR) of nitric oxide, including so-dium species reactions, was deyeloped on the basis of recent studies on thermal DeNOx mechanism, NOxOUTmechanism and promotion mechanism of Na2CO3. The model was validated by comparison with several experi-mental findings, thus providing an effective tool for the primary and promoted SNCR process simulation. Experimental and simulated results show part-per-million level of sodium carbonate enhances NO removal efficiency andextend the effective SNCR temperature range in comparison with use of a nitrogen agent alone. The kinetic modeling, sensitivity and rate-of-production analysis suggest that the performance improvement can be explained as ho-mogeneous sodium species reactions producing more reactive OH radicals. The net result of sodium species reac-tions is conversion of H2O and inactive HO2 radicals into reactive OH radicals, i.e. H2O+HO2=3OH, which enhances the SNCR performance of nitrogen agents by mainly increasing the production rate of NH2 radicals. More-over, N2O and CO are eliminated diversely via the reactions Na+N20=NaO+N2, NaO+CO=Na+CO2 andNaO2+CO =NaO+CO2, in.the pro.moted SNCR process, especially in the NOxOUT process.展开更多
An experimental study of thermal de-NOx using NH3 as reductant in 02/C02 atmosphere with the effect of S02 and different additives was performed in a drop tube furnace. Results show that the optimum temperature win- d...An experimental study of thermal de-NOx using NH3 as reductant in 02/C02 atmosphere with the effect of S02 and different additives was performed in a drop tube furnace. Results show that the optimum temperature win- dow is 841-1184 ℃, and the optimum reaction temperature is about 900 ℃ with a de-NOx efficiency of 95.4%. A certain amount of S02 has an inhibiting effect on NO reduction. The effect of additives, including Na2C03, C2H5OH and FeCI3, on NO reduction by NH3 is also explored. The addition of Na2CO3 and FeCI3 is useful to widen the tem- perature window and shift the reaction to lower temperature for the efficiency is increased from 30.5% to 74.0% and 67.4% respectively at 800 ℃. Qualitatively, the modeling results using a detailed kinetic modeling mecha- nism represent well most of the process features. The effect of Na2CO3, C2H5OH and FeCI3 addition can be reproduced well by the Na2C03, C2H5OH and Fe(CO)5 sub-mechanism respectively. The reaction mechanism analysis shows that the effects of these additives on NO reduction are achieved mainly by promoting the produc- tion of OH radicals at lower temperature.展开更多
Reducing the NO_(x) emission from pelletizing process is of great importance to the green development of iron and steel industry.The flue gas temperature of preheating(PH)section during grate-kiln iron ore pelletizing...Reducing the NO_(x) emission from pelletizing process is of great importance to the green development of iron and steel industry.The flue gas temperature of preheating(PH)section during grate-kiln iron ore pelletizing process typically ranges within 850–1050℃,which meets the temperature requirements of selective non-catalytic reduction(SNCR)for NO_(x).The in-bed SNCR behavior of NO_(x) in the PH section was investigated,and the influence of relevant parameters was revealed.Results show that with the flue gas temperature rising,the denitration rate reached a peak value and then declined,where the appropriate temperature range was 950–1000℃.Increasing the NH_(3)/NO ratio(NSR)contributed to improving the denitration rate,and the appropriate NSR was 1.0.Oxygen content in the flue gas also showed an important influence on denitration rate,which reached a peak value and then dropped with the oxygen content rising.Under the condition of 18 vol.%oxygen content,the denitration reaction mainly occurred in the form of 4NO+4NH_(3)+O_(2)=4N_(2)+6H_(2)O.For restricting the competitive reaction of NH_(3) oxidation,the oxygen content in flue gas of PH section should be kept at an appropriate range.In general,the denitration rate reached about 25%in the PH section through spraying ammonia.展开更多
Nitrous oxide is not an environmentally regulated species in the U.S., but it does participate in the stratospheric ozone chemistry and contributes to the greenhouse effect. Nitrous oxide has been found to be a by-pro...Nitrous oxide is not an environmentally regulated species in the U.S., but it does participate in the stratospheric ozone chemistry and contributes to the greenhouse effect. Nitrous oxide has been found to be a by-product of the selective non-catalytic reduction process. Chemical kinetic calculations demonstrated that the formation of nitrous oxide in the urea-based selective non-catalytic reduction process is linked to the conversion of NO by cyano species released from the process parent compounds. This conversion occurs within in temperature window between 850 and 1050℃. With urea injection, nitrous oxide emissions represent up to 20 percent conversion of the NOx reduced. The amount of nitrous oxide formed depends primarily on the process temperature, the amount of chemical injected, the initial NOx level, and the carbon monoxide level in the gas stream. These observations, which were based on the chemical kinetics of the process, should be considered in designing selective non-catalytic reduction systems to minimize nitrous oxide by- product formation.展开更多
In order to study the combustion characteristics,NOx emission and NH3 slip in a new trinal-sprayed precalciner,the simulations of combustion and aqueous urea solution based selective non-catalytic reduction(SNCR)proce...In order to study the combustion characteristics,NOx emission and NH3 slip in a new trinal-sprayed precalciner,the simulations of combustion and aqueous urea solution based selective non-catalytic reduction(SNCR)process were conducted by computational fluid dynamics in this precalciner,the effects of different injection heights,different injection flow rates and stratified injection under different flow rates on SNCR process were studied.The results showed that the flow field was symmetrically distributed in the precalciner,and the flue gas from the rotary kiln formed the recirculation region on both sides of the cone body,which increased the residence time of the solid particles.The temperature was mainly between 1100 K and 1250 K in the middle and upper column of the precalciner,which met the demand of the pulverized coal combustion and raw material decomposition.The concentration of NO at the outlet of the precalciner was 559 ppm,moreover,different injection heights and different injection flow rates had a strong influence on NOX removal efficiency and NH3 slip.The aqueous urea solution should be injected at SNCR-1 to prolong the residence time of NH3,and injection flow rate had an optimal flow rate but not the higher the better.When the injection flow rate under stratified injection was 0.019 kg/s,which could play a better optimization role on NO removal efficiency on the basic of the injection flow rate.In consideration of cost effective,a stratified injection with an injection flow rate of 0.019 kg/s and an injection height of 20 m,25 m and 30 m was suggested as a compromise of a satisfactory NOx reduction rates and reasonable NH3 slip.Under this condition,numerical simulation result showed that NOx concentration at the outlet of precalciner was 297.27 mg/Nm3 and NH3 slip was 4.67 mg/Nm3,meeting emission standard.展开更多
Pulverized coal reburning, ammonia injection and advanced reburning in a pilot scale drop tube furnace were inves- tigated. Premix of petroleum gas, air and NH3 were burned in a porous gas burner to generate the neede...Pulverized coal reburning, ammonia injection and advanced reburning in a pilot scale drop tube furnace were inves- tigated. Premix of petroleum gas, air and NH3 were burned in a porous gas burner to generate the needed flue gas. Four kinds of pulverized coal were fed as reburning fuel at constant rate of 1g/min. The coal reburning process parameters including 15%~25% reburn heat input, temperature range from 1100 °C to 1400 °C and also the carbon in fly ash, coal fineness, reburn zone stoichiometric ratio, etc. were investigated. On the condition of 25% reburn heat input, maximum of 47% NO reduction with Yanzhou coal was obtained by pure coal reburning. Optimal temperature for reburning is about 1300 °C and fuel-rich stoichiometric ratio is essential; coal fineness can slightly enhance the reburning ability. The temperature window for ammonia injection is about 700 °C^1100 °C. CO can improve the NH3 ability at lower temperature. During advanced reburning, 72.9% NO reduction was measured. To achieve more than 70% NO reduction, Selective Non-catalytic NOx Reduction (SNCR) should need NH3/NO stoichiometric ratio larger than 5, while advanced reburning only uses common dose of ammonia as in conventional SNCR technology. Mechanism study shows the oxidization of CO can improve the decomposition of H2O, which will rich the radical pools igniting the whole reactions at lower temperatures.展开更多
以某台350t/d垃圾焚烧炉为研究对象,利用CFD数值模拟方法,研究掺混不同比例半干化污泥(含水率60%)下的燃烧特性以及污染物排放特性,并对选择性非催化还原(selective non catalytic reduction,SNCR)脱硝喷枪位置进行了优化研究。结果表明...以某台350t/d垃圾焚烧炉为研究对象,利用CFD数值模拟方法,研究掺混不同比例半干化污泥(含水率60%)下的燃烧特性以及污染物排放特性,并对选择性非催化还原(selective non catalytic reduction,SNCR)脱硝喷枪位置进行了优化研究。结果表明:一烟道烟气温度与污泥掺混量成反比,氧含量与污泥掺混量成正相关,在3%~13%的污泥掺混量中,7%是比较合适的污泥掺混量,污泥掺混量低于10%时,第一烟道高温区的燃烧状态能达到二恶英控制的燃烧要求。NO_x生成量与污泥掺混量成正相关,在10%掺混量时仅采用SNCR方法焚烧炉出口烟气NO_x含量高达278.63mg/m^3,未能达到排放标准。但通过对SNCR喷枪位置进行调整,可利用烟气涡旋回流提高脱硝效率,相同氨氮比下出口烟气NO_x含量降低到245.25mg/m^3。模拟计算得出不同污泥掺混量时的温度和NO_x的变化趋势,提出适宜的污泥掺混量及SNCR喷枪布置优化方案,可为垃圾焚烧炉污泥掺混焚烧及SNCR脱硝提供参考。展开更多
基金Supported by the Natural Science Foundation of Shandong Province (No.Z2006F04) and Science and Technology Program for Environment Protection of Shandong Province (No.2006046).
文摘Abstract The detailed kinetic model of selective non-catalytic reduction (SNCR) of nitric oxide, including so-dium species reactions, was deyeloped on the basis of recent studies on thermal DeNOx mechanism, NOxOUTmechanism and promotion mechanism of Na2CO3. The model was validated by comparison with several experi-mental findings, thus providing an effective tool for the primary and promoted SNCR process simulation. Experimental and simulated results show part-per-million level of sodium carbonate enhances NO removal efficiency andextend the effective SNCR temperature range in comparison with use of a nitrogen agent alone. The kinetic modeling, sensitivity and rate-of-production analysis suggest that the performance improvement can be explained as ho-mogeneous sodium species reactions producing more reactive OH radicals. The net result of sodium species reac-tions is conversion of H2O and inactive HO2 radicals into reactive OH radicals, i.e. H2O+HO2=3OH, which enhances the SNCR performance of nitrogen agents by mainly increasing the production rate of NH2 radicals. More-over, N2O and CO are eliminated diversely via the reactions Na+N20=NaO+N2, NaO+CO=Na+CO2 andNaO2+CO =NaO+CO2, in.the pro.moted SNCR process, especially in the NOxOUT process.
基金Supported by the National Natural Science Foundation of China(51206096)
文摘An experimental study of thermal de-NOx using NH3 as reductant in 02/C02 atmosphere with the effect of S02 and different additives was performed in a drop tube furnace. Results show that the optimum temperature win- dow is 841-1184 ℃, and the optimum reaction temperature is about 900 ℃ with a de-NOx efficiency of 95.4%. A certain amount of S02 has an inhibiting effect on NO reduction. The effect of additives, including Na2C03, C2H5OH and FeCI3, on NO reduction by NH3 is also explored. The addition of Na2CO3 and FeCI3 is useful to widen the tem- perature window and shift the reaction to lower temperature for the efficiency is increased from 30.5% to 74.0% and 67.4% respectively at 800 ℃. Qualitatively, the modeling results using a detailed kinetic modeling mecha- nism represent well most of the process features. The effect of Na2CO3, C2H5OH and FeCI3 addition can be reproduced well by the Na2C03, C2H5OH and Fe(CO)5 sub-mechanism respectively. The reaction mechanism analysis shows that the effects of these additives on NO reduction are achieved mainly by promoting the produc- tion of OH radicals at lower temperature.
基金This work was supported by the National Natural Science Foundation of China(51974371)Key Research and Development Program of Hunan Province(2018SK2049).
文摘Reducing the NO_(x) emission from pelletizing process is of great importance to the green development of iron and steel industry.The flue gas temperature of preheating(PH)section during grate-kiln iron ore pelletizing process typically ranges within 850–1050℃,which meets the temperature requirements of selective non-catalytic reduction(SNCR)for NO_(x).The in-bed SNCR behavior of NO_(x) in the PH section was investigated,and the influence of relevant parameters was revealed.Results show that with the flue gas temperature rising,the denitration rate reached a peak value and then declined,where the appropriate temperature range was 950–1000℃.Increasing the NH_(3)/NO ratio(NSR)contributed to improving the denitration rate,and the appropriate NSR was 1.0.Oxygen content in the flue gas also showed an important influence on denitration rate,which reached a peak value and then dropped with the oxygen content rising.Under the condition of 18 vol.%oxygen content,the denitration reaction mainly occurred in the form of 4NO+4NH_(3)+O_(2)=4N_(2)+6H_(2)O.For restricting the competitive reaction of NH_(3) oxidation,the oxygen content in flue gas of PH section should be kept at an appropriate range.In general,the denitration rate reached about 25%in the PH section through spraying ammonia.
文摘Nitrous oxide is not an environmentally regulated species in the U.S., but it does participate in the stratospheric ozone chemistry and contributes to the greenhouse effect. Nitrous oxide has been found to be a by-product of the selective non-catalytic reduction process. Chemical kinetic calculations demonstrated that the formation of nitrous oxide in the urea-based selective non-catalytic reduction process is linked to the conversion of NO by cyano species released from the process parent compounds. This conversion occurs within in temperature window between 850 and 1050℃. With urea injection, nitrous oxide emissions represent up to 20 percent conversion of the NOx reduced. The amount of nitrous oxide formed depends primarily on the process temperature, the amount of chemical injected, the initial NOx level, and the carbon monoxide level in the gas stream. These observations, which were based on the chemical kinetics of the process, should be considered in designing selective non-catalytic reduction systems to minimize nitrous oxide by- product formation.
基金This work was supported by the general institute of building materials research of china(No.2017YFC0210801)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘In order to study the combustion characteristics,NOx emission and NH3 slip in a new trinal-sprayed precalciner,the simulations of combustion and aqueous urea solution based selective non-catalytic reduction(SNCR)process were conducted by computational fluid dynamics in this precalciner,the effects of different injection heights,different injection flow rates and stratified injection under different flow rates on SNCR process were studied.The results showed that the flow field was symmetrically distributed in the precalciner,and the flue gas from the rotary kiln formed the recirculation region on both sides of the cone body,which increased the residence time of the solid particles.The temperature was mainly between 1100 K and 1250 K in the middle and upper column of the precalciner,which met the demand of the pulverized coal combustion and raw material decomposition.The concentration of NO at the outlet of the precalciner was 559 ppm,moreover,different injection heights and different injection flow rates had a strong influence on NOX removal efficiency and NH3 slip.The aqueous urea solution should be injected at SNCR-1 to prolong the residence time of NH3,and injection flow rate had an optimal flow rate but not the higher the better.When the injection flow rate under stratified injection was 0.019 kg/s,which could play a better optimization role on NO removal efficiency on the basic of the injection flow rate.In consideration of cost effective,a stratified injection with an injection flow rate of 0.019 kg/s and an injection height of 20 m,25 m and 30 m was suggested as a compromise of a satisfactory NOx reduction rates and reasonable NH3 slip.Under this condition,numerical simulation result showed that NOx concentration at the outlet of precalciner was 297.27 mg/Nm3 and NH3 slip was 4.67 mg/Nm3,meeting emission standard.
文摘Pulverized coal reburning, ammonia injection and advanced reburning in a pilot scale drop tube furnace were inves- tigated. Premix of petroleum gas, air and NH3 were burned in a porous gas burner to generate the needed flue gas. Four kinds of pulverized coal were fed as reburning fuel at constant rate of 1g/min. The coal reburning process parameters including 15%~25% reburn heat input, temperature range from 1100 °C to 1400 °C and also the carbon in fly ash, coal fineness, reburn zone stoichiometric ratio, etc. were investigated. On the condition of 25% reburn heat input, maximum of 47% NO reduction with Yanzhou coal was obtained by pure coal reburning. Optimal temperature for reburning is about 1300 °C and fuel-rich stoichiometric ratio is essential; coal fineness can slightly enhance the reburning ability. The temperature window for ammonia injection is about 700 °C^1100 °C. CO can improve the NH3 ability at lower temperature. During advanced reburning, 72.9% NO reduction was measured. To achieve more than 70% NO reduction, Selective Non-catalytic NOx Reduction (SNCR) should need NH3/NO stoichiometric ratio larger than 5, while advanced reburning only uses common dose of ammonia as in conventional SNCR technology. Mechanism study shows the oxidization of CO can improve the decomposition of H2O, which will rich the radical pools igniting the whole reactions at lower temperatures.
文摘以某台350t/d垃圾焚烧炉为研究对象,利用CFD数值模拟方法,研究掺混不同比例半干化污泥(含水率60%)下的燃烧特性以及污染物排放特性,并对选择性非催化还原(selective non catalytic reduction,SNCR)脱硝喷枪位置进行了优化研究。结果表明:一烟道烟气温度与污泥掺混量成反比,氧含量与污泥掺混量成正相关,在3%~13%的污泥掺混量中,7%是比较合适的污泥掺混量,污泥掺混量低于10%时,第一烟道高温区的燃烧状态能达到二恶英控制的燃烧要求。NO_x生成量与污泥掺混量成正相关,在10%掺混量时仅采用SNCR方法焚烧炉出口烟气NO_x含量高达278.63mg/m^3,未能达到排放标准。但通过对SNCR喷枪位置进行调整,可利用烟气涡旋回流提高脱硝效率,相同氨氮比下出口烟气NO_x含量降低到245.25mg/m^3。模拟计算得出不同污泥掺混量时的温度和NO_x的变化趋势,提出适宜的污泥掺混量及SNCR喷枪布置优化方案,可为垃圾焚烧炉污泥掺混焚烧及SNCR脱硝提供参考。