The Ru/Al2O3 catalysts modified with metal oxide (K20 and La2O3) were prepared v/a incipient wetness impregnation method from RuCl3.nH2O mixed with nitrate loading on Al2O3 support. The activity of catalysts was eva...The Ru/Al2O3 catalysts modified with metal oxide (K20 and La2O3) were prepared v/a incipient wetness impregnation method from RuCl3.nH2O mixed with nitrate loading on Al2O3 support. The activity of catalysts was evaluated under simulative conditions for the preferential oxidation of CO (CO-PROX) from the hydrogen-rich gas streams produced by reforming gas, and the performances of catalysts were investigated by XRD and TPR. The results showed that the activity temperature of the modified catalysts Ru-K20/Al2O3 and Ru-La2O3/Al2O3 were lowered approximately 30℃ compared with pure Ru/Al2O3, and the activity temperature range was widened. The conversion of CO on Ru-K20/Al2O3 and Ru-La2O3/Al2O3 was above 99% at 140-160℃, suitable to remove CO in a hydrogen-rich gas and the selectivity of Ru-La2O3/Al2O3 was higher than that of Ru-K2O/Al2O3in the active temperature range. Slight methanation reaction was detected at 220℃ and above.展开更多
High performance CuO-CeO2 catalysts for selective oxidation of CO in excess hydrogen were prepared by a hydrothermal method under different preparation conditions and evaluated for catalytic activities and selectiviti...High performance CuO-CeO2 catalysts for selective oxidation of CO in excess hydrogen were prepared by a hydrothermal method under different preparation conditions and evaluated for catalytic activities and selectivities. By changing the ^nCTAB/^nCe ratio and hydrothermal aging time, the catalytic activity of the CuO-CeO2 catalysts increased and the operating temperature window, in which the CO conversion was higher than 99%, was widened. XRD results showed no peaks of CuOx species and Cu-Ce-O solid solution were observed. On the other hand, Cu+ species in the CuO-CeO2 catalysts, which was associated with a strong interaction between copper oxide clusters and cerium oxide and could be favorable for improving the selective oxidation performance of CO in excess H2, were detected by H2-TPR and XPS techniques.展开更多
Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of ...Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of hydrogen sulfide(SOH_(2)S) to elemental sulfur(S) has emerged as a sustainable and environmentally friendly solution.Due to its unique properties,iron oxide has been extensively investigated as a catalyst for SOH_(2)S;however,rapid deactivation has remained a significant drawback.The causes of iron oxide-based catalysts deactivation mechanisms in SOH_(2)S,including sulfur or sulfate deposition,the transformation of iron species,sintering and excessive oxygen vacancy formation,and active site loss,are thoroughly examined in this review.By focusing on the deactivation mechanisms,this review aims to provide valuable insights into enhancing the stability and efficiency of iron-based catalysts for SOH_(2)S.展开更多
Removing hydrogen sulfide(H_(2)S)via the selective oxidation has been considered an effective way to further purify the indusial sulfurcontaining due to it can completely transform residual H_(2)S into elemental sulfu...Removing hydrogen sulfide(H_(2)S)via the selective oxidation has been considered an effective way to further purify the indusial sulfurcontaining due to it can completely transform residual H_(2)S into elemental sulfur.While N-doped porous carbon was applied to H_(2)S selective oxidation,a sustainable methodology for the synthesis of efficient and stable N-doped carbon catalysts remains a difficulty,limiting its future development in large-scale applications.Herein,we present porous,honeycomb-like N-doped carbon catalysts with large specific surface areas,high pyridinic N content,and numerous structural defects for H_(2)S selective oxidation prepared using reusable NaCl as the template.The asprepared NC-10-800 catalyst exhibits excellent catalytic performance(sulfur formation rate of 784 g_(sulfur) kg_(cat.)^(-1) h^(-1)),outstanding stability(>100 h),and excellent anti-water vapor,anti-CO_(2) and anti-oxidation properties,suggesting significant potential for practical industrial application.The characterization results and kinetic study demonstrate that the large surface areas and structural defects created by the molten salt at high temperature enhance the exposure of pyridinic N sites and thus accelerate the catalytic activity.Importantly,the water-soluble NaCl template could be easily washed from the carbon nanomaterials,and thus the downstream salt-containing wastewater could be subsequently reused for the dissolution of carbon precursors.This environment-friendly,low-cost,reusable salt-template strategy has significant implications for the development of N-doped carbon catalysts for practical applications.展开更多
In the selective oxidation of biomass-based 1,2-propanediol(PDO)with oxygen as the terminal oxidant,it is challenging to improve the lactic acid(LA)selectivity for nonnoble metal nanoparticles(NPs)due to their limited...In the selective oxidation of biomass-based 1,2-propanediol(PDO)with oxygen as the terminal oxidant,it is challenging to improve the lactic acid(LA)selectivity for nonnoble metal nanoparticles(NPs)due to their limited oxygen reduction rate and easy C-C cleavage.Given the high economic feasibility of nonnoble metals,i.e.,Cu,in this work,copper and nitrogen codoped porous carbon nanosheets encapsulating ultrafine Cu nanoparticles(Cu@Cu-N-C)were developed to realize highly selective of PDO oxidation to LA.The carbon-encapsulated ultrasmall Cu^(0)NPs in Cu@Cu-N-C have high PDO dehydrogenation activity while N-coordinated Cu(Cu-N)sites are responsible for the high oxygen reduction efficacy.Therefore,the performance of catalytic PDO conversion to LA is optimized by a proposed pathway of PDO→hydroxylacetone→lactaldehyde→LA.Specifically,the enhanced LA selectivity is 88.5%,and the PDO conversion is up to 75.1%in an O_(2)-pressurized reaction system(1.0 MPa O_(2)),superior to other Cu-based catalysts,while in a milder nonpressurized system(O_(2)flow rate of 100 mL min-1),a remarkable LA selectivity(94.2%)is obtained with 39.8%PDO conversion,2.2 times higher than that of supported Au nanoparticles(1%Au/C).Moreover,carbon encapsulation offers Cu@Cu-N-C with strong leaching resistance for better recycling.展开更多
A series of Ce1-xFexO2 (x=0, 0.2, 0.4, 0.6, 0.8, 1) complex oxide catalysts were prepared using the coprecipitation method. The catalysts were characterized by means of XRD and H2-TPR. The reactions between methane ...A series of Ce1-xFexO2 (x=0, 0.2, 0.4, 0.6, 0.8, 1) complex oxide catalysts were prepared using the coprecipitation method. The catalysts were characterized by means of XRD and H2-TPR. The reactions between methane and lattice oxygen from the complex oxides were investigated. The characteristic results revealed that the combination of Ce and Fe oxide in the catalysts could lower the temperature necessary to reduce the cerium oxide. The catalytic activity for selective CH4 oxidation was strongly influenced by dropped Fe species. Adding the appropriate amount of Fe2O3 to CeO2 could promote the action between CH4 and CeO2. Dispersed Fe2O3 first returned to the original state and would then virtually form the Fe species on the catalyst, which could be considered as the active site for selective CH4 oxidation. The appearance of carbon formation was significant and the oxidation of carbon appeared to be the rate-determining step; the amounts of surface reducible oxygen species in CeO2 were also relevant to the activity. Among all the catalysts, Ce0.6Fe0.402 exhibited the best activity, which converted 94.52% of CH4 at 900 ℃.展开更多
Building a covalently connected structure with accelerated photo-induced electrons and charge-carrier separation between semiconductors could enhance the photocatalytic performance.In this work,we report a facile and ...Building a covalently connected structure with accelerated photo-induced electrons and charge-carrier separation between semiconductors could enhance the photocatalytic performance.In this work,we report a facile and novel seed growth method to coat NH2-MIL-125 MOFs with crystalline and porous covalent organic frameworks(COFs)materials and form a range of NH2-MIL-125@TAPB-PDA nanocomposites with different thicknesses of COF shell.The introduction of appropriate content of COF could not only modify the intrinsic electronic and optical properties,but also enhance the photocatalytic activity distinctly.Especially,NH2-MIL-125@TAPB-PDA-3 with COF shell thickness of around 20nm exhibited the highest yield(94.7%)of benzaldehyde which is approximately 2.5 and 15.5 times as that of parental NH2-MIL-125 and COF,respectively.The promoted photocatalytic performance of hybrid materials was mainly owing to the enhanced photo-induced charge carriers transfer between the MOF and COF through the covalent bond.In addition,a possible mechanism to elucidate the process of photocatalysis was explored.Therefore,this kind of MOF-based photocatalysts possesses great potentials in future green organic synthesis.展开更多
Because of multiple potential reaction sites and variable oxidation depths,oxidation of cyclohexene can lead to a mixture of products with different oxidation states and functional groups,such as 7-oxabicyclo[4.1.0]he...Because of multiple potential reaction sites and variable oxidation depths,oxidation of cyclohexene can lead to a mixture of products with different oxidation states and functional groups,such as 7-oxabicyclo[4.1.0]heptane,trans/cis-cyclohexane-1,2-diol,cyclohex-2-en-1-ol,cyclohex-2-en-1-one,and even adipic acid.These products are broadly and abundantly used intermediates in the chemical industry;therefore,controllable oxidation reactions for cyclohexene that can selectively afford the targeted products are synthetically valuable for applications in both the academy and industry,thus becoming the aim of synthetic and catalytic chemists in the field.Many reports on selective oxidation of cyclohexene have recently appeared in the literature because of its significance.This short review summarizes the recent advances on this subject,and the contents are mainly classified based on the chosen oxidants.We hope that this review can provide a useful guide for controllable and selective catalytic oxidation of cyclohexene for interested readers from both the academy and industry.展开更多
Cs-promoted Mo-Bi-Co-Fe-Ce-O catalyst for the selective oxidation of isobutylene to methacrolein had been studied in a fixed bed micro-reactor. The selectivity to methacrolein was significantly improved by the additio...Cs-promoted Mo-Bi-Co-Fe-Ce-O catalyst for the selective oxidation of isobutylene to methacrolein had been studied in a fixed bed micro-reactor. The selectivity to methacrolein was significantly improved by the addition of Cs, which could probably enhance the dehydrogenation ability and weaken the oxygenation ability of the catalyst based on temperature programmed reduction (TPR) analysis investigation. The kinetic studies indicated that the oxidation of isobutylene to methacrolein followed the first-order kinetic behavior.展开更多
Selective oxidation of saturated hydrocarbons with molecular oxygen has been of great interest in catalysis, and the development of highly efficient catalysts for this process is a crucial challenge. A new kind of het...Selective oxidation of saturated hydrocarbons with molecular oxygen has been of great interest in catalysis, and the development of highly efficient catalysts for this process is a crucial challenge. A new kind of heterogeneous catalyst, cobalt-doped carbon nitride polymer(g-C_3N_4),was harnessed for the selective oxidation of cyclohexane. X-ray diffraction, Fourier transform infrared spectra and high resolution transmission electron microscope revealed that Co species were highly dispersed in g-C_3N_4 matrix and the characteristic structure of polymeric g-C_3N_4 can be retained after Co-doping, although Co-doping caused the incomplete polymerization to some extent. Ultraviolet-visible, Raman and X-ray photoelectron spectroscopy further proved the successful Co doping in g-C_3N_4 matrix as the form of Co(Ⅱ)-N bonds. For the selective oxidation of cyclohexane, Co-doping can markedly promote the catalytic performance of g-C_3N_4 catalyst due to the synergistic effect of Co species and gC_3N_4 hybrid. Furthermore, the content of Co largely affected the activity of Co-doped g-C_3N_4 catalysts, among which the catalyst with 9.0 wt%Co content exhibited the highest yield(9.0%) of cyclohexanone and cyclohexanol, as well as a high stability. Meanwhile, the reaction mechanism over Co-doped g-C_3N_4 catalysts was elaborated.展开更多
Heteroatom-doped meso/micro-porous carbon materials are conventionally produced by harsh carbonization under an inert atmosphere involving specific precursors,hard/soft templates,and heteroatom-containing agents.Herei...Heteroatom-doped meso/micro-porous carbon materials are conventionally produced by harsh carbonization under an inert atmosphere involving specific precursors,hard/soft templates,and heteroatom-containing agents.Herein,we report a facile synthesis of N and O co-doped meso/micro-porous carbon(NOMC)by template-free carbonization of a small-molecule precursor in a semi-closed system.The semi-closed carbonizaiton process yields hydrophilic NOMCs with large surface area in a high yield.The porous structure as well as the elemental composition of NOMCs can be modulated by changing the holding time at a particular temperature.NOMCs as metal-free heterogeneous catalysts can selectively oxidize benzyl alcohol and its derivatives into aldehydes/ketones with>85%conversion in aqueous solution,which is much higher than that of the control sample obtained in tube furnace(21%conversion),mainly due to their high N content,high percentage of pyridinic N,and large surface area.The presence of O-containing moieties also helps to improve the hydrophilicity and dispersion ability of catalysts and thus facilitates the mass transfer process during aqueous oxidation.The NOMC catalysts also dispayed excellent activity for a wide range of substrates with a selectivity of>99%.展开更多
The Cu-Zr-Ce-O catalysts prepared using the coprecipitation method exhibited better catalytic performance for CO selective oxidation. The Cu-Zr-Ce-O catalysts pretreated with different methods were studied by CO-TPR a...The Cu-Zr-Ce-O catalysts prepared using the coprecipitation method exhibited better catalytic performance for CO selective oxidation. The Cu-Zr-Ce-O catalysts pretreated with different methods were studied by CO-TPR and XPS techniques. The results showed that the Cu-Zr-Ce-O catalyst pretreated with oxygen exhibited the best catalytic performance and had the widest operating temperature window, with CO conversion above 99% from 160 to 200 ℃. The O2 pretreatment caused an enrichment of the oxygen storaged on the Cu active species and promoted the conversion of adsorbed oxygen into surface lattice oxygen. It also improved the amount of Cu+/Cu^2+ ionic pair, and then facilitated the formation of CuO active species on the catalyst for selective CO oxidation.展开更多
A series of hexagonal ZnIn2S4 samples with different morphologies have been successfully prepared via a facile solvothermal approach using different alcohol solvents with the optimum synthesis time and temperature. X-...A series of hexagonal ZnIn2S4 samples with different morphologies have been successfully prepared via a facile solvothermal approach using different alcohol solvents with the optimum synthesis time and temperature. X-ray diffraction, field emission scanning electron microscopy, UV-vis diffuse reflection spectroscopy and photoelectrochemical measurements are employed to determine the properties of the samples. It is found that the solvent has a significant influence on the morphology, optical properties and electronic nature of the samples. The photocatalytic activities of the samples have been evaluated by selective oxidation of benzyl alcohol to benzaldehyde to benzaldehyde and the degradation of methyl orange(MO) under visible light irradiation. The results reveal that the photocatalytic activities of ZnIn2S4 are closely related to the reaction solvent. The ethanol-mediated ZnIn2S4 exhibits the best photocatalytic performance toward selective oxidation of benzyl alcohol to benzaldehyde and the degradation of dye MO compared to the samples prepared in other solvents, which can be attributed to the integrative effect of the enhanced light absorption intensity and the prolonged lifetime of photogenerated carriers. In addition, a possible mechanism is proposed and discussed. It is expected that our current research could promote further interest on the synthesizing efficient ternary chalcogenides semiconducting materials for environment remediation and organic transformation.展开更多
Annealing experiments were conducted on BH steel to which 10 × 10^-6 boron was added. The annealing temperature,holding time, H2 content, and dew point were varied in the experiments in order to investigate their...Annealing experiments were conducted on BH steel to which 10 × 10^-6 boron was added. The annealing temperature,holding time, H2 content, and dew point were varied in the experiments in order to investigate their influences on the selective oxidation of boron. A higher annealing temperature and longer holding time is found to lead to a higher concentration of boron at the extreme surface, which reaches saturation after the steel sheet is held for a critical period of time that depends on the annealing temperature. The effect of H2 content on the selective oxidation of boron depends on the annealing temperature and dew point. It has almost no influence on the external oxidation of boron when the sheet is annealed at 820 ~Cin an atmosphere with a dew point of -40℃. At a dew point of - 10℃, a lower H2 content results in a lower peak value of boron in the subsurface area but deeper internal oxidation of boron. An increase in the dew point from -40℃ to - 10℃ can significantly promote internal oxidation of boron at depths of 50 - 200 nm from the surface. With the suppression of external oxidation of boron as well as manganese and silicon, a relatively clean surface with reduced and refined oxides can be achieved by increasing the dew point.展开更多
Covalent organic frameworks(COFs)with photoactive units have attracted significant interest in visible light photocatalysis and can present a metal‐free scenario for activating O_(2).As a typical photoactive unit,thi...Covalent organic frameworks(COFs)with photoactive units have attracted significant interest in visible light photocatalysis and can present a metal‐free scenario for activating O_(2).As a typical photoactive unit,thiazolo[5,4‐d]thiazole(TzTz)has rarely been added to COFs.However,circumventing the low reversibility of TzTz,it could be embedded into the building blocks beforehand,along with other bonds likeβ‐ketoenamine in forming COFs.TzTz was embedded into 1,1′‐biphenyl‐4,4′‐diamine(BD)using this approach to produce 4,4′‐(TzTz‐2,5‐diyl)dianiline(DTz).Under organobase‐modulated solvothermal conditions,combining 1,3,5‐triformylphloroglucinol(Tp)with BD and DTz resulted in the production ofβ‐ketoenamine‐linked TpBD‐COF and TpDTz‐COF.Both TpDTz‐COF and TpBD‐COF are microspheres.TpDTz‐COF possessed more adequate separation and charge migration than TpBD‐COF.This resulted in superior performance for the blue light photocatalytic selective oxidation of benzylamine with O_(2).Furthermore,with O_(2) as the main oxidant,a wealth of benzylamines could be converted into imines over TpDTz‐COF.Mechanistic investigations substantiate that oxidation of benzylamines obeys an electron transfer pathway,in which superoxide anion(O_(2)•–)is the crucial reactive oxygen species.This study highlights the superiority of TzTz‐embedded COFs in developing effective photocatalytic systems for organic transformations.展开更多
The effects of chemical composition and preparation conditions,especially calcination atmosphere and water content on the catalytic performances of MoVTeNbO mixed oxide catalyst system for the selective oxidation of p...The effects of chemical composition and preparation conditions,especially calcination atmosphere and water content on the catalytic performances of MoVTeNbO mixed oxide catalyst system for the selective oxidation of propane to acrylic acid were investigated.Among the catalysts studied,Mo_(1.0)V_(0.3)Te_(0.23)Nb_(0.12)O_(x) catalyst calcined in inert atmosphere at 600℃shows the best performance in terms of propane conversion and selectivity to acrylic acid.The results reveal that proper chemical composition, calcination atmosphere and water content affect greatly the catalysts in many ways including structure,chemical composition,which are related to their catalytic performances;and 51.0%propane conversion and 30.5%one-pass yield to acrylic acid can be achieved at the same time.展开更多
The key to improve the performance of heteroatom catalysts is to ensure the orderliness of catalysts and the good dispersion of heteroatoms.The alkalinity plays the indispensable role in synthetic process of V-MCM-41 ...The key to improve the performance of heteroatom catalysts is to ensure the orderliness of catalysts and the good dispersion of heteroatoms.The alkalinity plays the indispensable role in synthetic process of V-MCM-41 catalyst.The excessive alkalinity of synthetic system will make the MCM-41 difficult to crystallize,even to dissolve.It is easy to accumulate for heteroatomic species in the system of low alkalinity.Herein,the highly ordered VMCM-41 with high vanadic content in framework is synthesized in the condition of excessive NH3·H2 O in this paper.A series of characterization results prove the good dispersion of vanadium species,and most of vanadium gets into the framework of MCM-41 with the states of tetravalence and pentavalence.Furthermore,the modified MCM-41 by other transition metals is successful synthesized by the method of V-MCM-41 in this paper.The VMCM-41 shows well catalytic activity for the selective oxidation of benzyl alcohol,which up to 74.83%for the conversion of benzyl alcohol and 96.20%for selectivity of benzaldehyde when initial V/Si=0.10.The paper provides the possibility for industrial application of V-MCM-41 in the oxidation of benzyl alcohol for benzaldehyde.Besides,the work provides a significant idea for the synthesis of modified MCM-41 by well-dispersed transition metals.展开更多
The interactions of oxygen with pre-reduced silver catalysts as well as theircatalytic properties for CO selective oxidation in H_2 after oxygen pre-treatment are studied inthis paper. It is found that the pretreatmen...The interactions of oxygen with pre-reduced silver catalysts as well as theircatalytic properties for CO selective oxidation in H_2 after oxygen pre-treatment are studied inthis paper. It is found that the pretreatment exerts a strong influence on the activity andselectivity of the silver catalyst. A drop in activity and selectivity is observed after treating apre-reduced catalyst with oxygen at low temperatures, whereas a converse result is obtained after anoxidizing treatment at high temperatures (T ≥ 350℃). O_2-TPD results show that surface oxygenspecies adsorbs on silver surface after the oxygen treatment at low temperatures. However,penetration of oxygen into the silver is enhanced by a high temperature treatment, meanwhile thesurface oxygen species disappear. No other silver species except metallic silver are observed on allthe catalysts by XRD, and the size of silver particle is not changed after the treatment withoxygen at low temperatures. The surface oxygen species formed by oxygen treatment can also beremoved by hydrogen reduction. The strongly-adsorbed surface oxygen species prohibit the adsorptionand diffusion of oxygen species in reaction gas on the surface of silver catalyst, causing thedecrease in CO oxidation activity, in other words, it is important to obtain a clean silver surfacefor increasing the catalyst activity in CO removal from H_2-rich feed gas. The differences inactivity and selectivity due to the oxygen pretreatment at different temperatures are discussed interms of the changes in the surface/subsurface oxygen species of the silver particles.展开更多
Mixed oxide catalyst Cs0.1Fe2Co6BiMnMo12Ox was prepared by the coprecipitation method. Selective oxidation of isobutene was carried out in a fixed-bed reactor over Cs0.1Fe2Co6BiMnMo12Ox. The results showed that the ca...Mixed oxide catalyst Cs0.1Fe2Co6BiMnMo12Ox was prepared by the coprecipitation method. Selective oxidation of isobutene was carried out in a fixed-bed reactor over Cs0.1Fe2Co6BiMnMo12Ox. The results showed that the catalyst had high catalytic activity. Under the optimum reaction conditions (n(i-C4=):n(O2)=1:2-1:4, space velocity=180 h-1, T=360℃), the yields of methacrolein and methacrylic acid can reach 80% and 8%, respectively. The total yield of liquid products (methacrolein, methacrylic acid and acetic acid) can reach about 90%.展开更多
In this paper, 2,3,5-trimethyl-1,4-benzoquinone(TMBQ) was synthesized through the direct oxidation of1,2,4-trimethylbenzene(pseudocumene, TMB) in the HCOOH–H2O2 system. The influence ofthree active species was st...In this paper, 2,3,5-trimethyl-1,4-benzoquinone(TMBQ) was synthesized through the direct oxidation of1,2,4-trimethylbenzene(pseudocumene, TMB) in the HCOOH–H2O2 system. The influence ofthree active species was studied, including performic acid(PFA) generated in formic acid, peracetic acid(PAA) generated in acetic acid, and trifluoroperacetic(TFPA) acid generated in trifluoroacetic acid. The effects ofsulfuric acid and sodium formate addition were investigated, the overoxidation ofTMB was discussed, and the main reason for the decreasing selectivity was revealed. The oxidation ofTMB can be controlled and improved through adjusting the reaction temperature, mole ratio ofoxidant to substrate, and reactant concentration. The TMBQ yield of28% was achieved with a TMB concentration of0.2 mol/L, H2O2/TMB mole ratio of6:1, and reaction temperature 37 ℃. The selectivity of72% was obtained with a TMB concentration of0.2 mol/L, H2O2/TMB mole ratio of5:1, and reaction temperature of27 ℃. The reaction mechanisms were proposed and discussed based on the gas chromatography–flame ionization detection(GC–FID) and gas chromatography–mass spectrometer(GC–MS) results.展开更多
基金the National Natural Science Foundation of China(20576023)the Guangdong Province Natural Science Foundation (06025660)
文摘The Ru/Al2O3 catalysts modified with metal oxide (K20 and La2O3) were prepared v/a incipient wetness impregnation method from RuCl3.nH2O mixed with nitrate loading on Al2O3 support. The activity of catalysts was evaluated under simulative conditions for the preferential oxidation of CO (CO-PROX) from the hydrogen-rich gas streams produced by reforming gas, and the performances of catalysts were investigated by XRD and TPR. The results showed that the activity temperature of the modified catalysts Ru-K20/Al2O3 and Ru-La2O3/Al2O3 were lowered approximately 30℃ compared with pure Ru/Al2O3, and the activity temperature range was widened. The conversion of CO on Ru-K20/Al2O3 and Ru-La2O3/Al2O3 was above 99% at 140-160℃, suitable to remove CO in a hydrogen-rich gas and the selectivity of Ru-La2O3/Al2O3 was higher than that of Ru-K2O/Al2O3in the active temperature range. Slight methanation reaction was detected at 220℃ and above.
基金supported by the Ministry of Science and Technology of China (No.2004 CB 719504)
文摘High performance CuO-CeO2 catalysts for selective oxidation of CO in excess hydrogen were prepared by a hydrothermal method under different preparation conditions and evaluated for catalytic activities and selectivities. By changing the ^nCTAB/^nCe ratio and hydrothermal aging time, the catalytic activity of the CuO-CeO2 catalysts increased and the operating temperature window, in which the CO conversion was higher than 99%, was widened. XRD results showed no peaks of CuOx species and Cu-Ce-O solid solution were observed. On the other hand, Cu+ species in the CuO-CeO2 catalysts, which was associated with a strong interaction between copper oxide clusters and cerium oxide and could be favorable for improving the selective oxidation performance of CO in excess H2, were detected by H2-TPR and XPS techniques.
基金supported by Thailand Science Research and Innovation Fund Chulalongkorn University,Thailand(IND66210014)。
文摘Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of hydrogen sulfide(SOH_(2)S) to elemental sulfur(S) has emerged as a sustainable and environmentally friendly solution.Due to its unique properties,iron oxide has been extensively investigated as a catalyst for SOH_(2)S;however,rapid deactivation has remained a significant drawback.The causes of iron oxide-based catalysts deactivation mechanisms in SOH_(2)S,including sulfur or sulfate deposition,the transformation of iron species,sintering and excessive oxygen vacancy formation,and active site loss,are thoroughly examined in this review.By focusing on the deactivation mechanisms,this review aims to provide valuable insights into enhancing the stability and efficiency of iron-based catalysts for SOH_(2)S.
基金financially supported by the National Key R&D Program of China(No.2022YFC3701900)National Natural Science Foundation of China(Nos.21606243)+1 种基金LiaoNing Revitalization Talents Program(XLYC1907053)Dalian National Laboratory for Clean Energy(DNL202021).
文摘Removing hydrogen sulfide(H_(2)S)via the selective oxidation has been considered an effective way to further purify the indusial sulfurcontaining due to it can completely transform residual H_(2)S into elemental sulfur.While N-doped porous carbon was applied to H_(2)S selective oxidation,a sustainable methodology for the synthesis of efficient and stable N-doped carbon catalysts remains a difficulty,limiting its future development in large-scale applications.Herein,we present porous,honeycomb-like N-doped carbon catalysts with large specific surface areas,high pyridinic N content,and numerous structural defects for H_(2)S selective oxidation prepared using reusable NaCl as the template.The asprepared NC-10-800 catalyst exhibits excellent catalytic performance(sulfur formation rate of 784 g_(sulfur) kg_(cat.)^(-1) h^(-1)),outstanding stability(>100 h),and excellent anti-water vapor,anti-CO_(2) and anti-oxidation properties,suggesting significant potential for practical industrial application.The characterization results and kinetic study demonstrate that the large surface areas and structural defects created by the molten salt at high temperature enhance the exposure of pyridinic N sites and thus accelerate the catalytic activity.Importantly,the water-soluble NaCl template could be easily washed from the carbon nanomaterials,and thus the downstream salt-containing wastewater could be subsequently reused for the dissolution of carbon precursors.This environment-friendly,low-cost,reusable salt-template strategy has significant implications for the development of N-doped carbon catalysts for practical applications.
基金supported by the National Natural Science Foundation of China(32371407,82160421)the Natural Science Foundation of Jiangsu Province(BK20211322)。
文摘In the selective oxidation of biomass-based 1,2-propanediol(PDO)with oxygen as the terminal oxidant,it is challenging to improve the lactic acid(LA)selectivity for nonnoble metal nanoparticles(NPs)due to their limited oxygen reduction rate and easy C-C cleavage.Given the high economic feasibility of nonnoble metals,i.e.,Cu,in this work,copper and nitrogen codoped porous carbon nanosheets encapsulating ultrafine Cu nanoparticles(Cu@Cu-N-C)were developed to realize highly selective of PDO oxidation to LA.The carbon-encapsulated ultrasmall Cu^(0)NPs in Cu@Cu-N-C have high PDO dehydrogenation activity while N-coordinated Cu(Cu-N)sites are responsible for the high oxygen reduction efficacy.Therefore,the performance of catalytic PDO conversion to LA is optimized by a proposed pathway of PDO→hydroxylacetone→lactaldehyde→LA.Specifically,the enhanced LA selectivity is 88.5%,and the PDO conversion is up to 75.1%in an O_(2)-pressurized reaction system(1.0 MPa O_(2)),superior to other Cu-based catalysts,while in a milder nonpressurized system(O_(2)flow rate of 100 mL min-1),a remarkable LA selectivity(94.2%)is obtained with 39.8%PDO conversion,2.2 times higher than that of supported Au nanoparticles(1%Au/C).Moreover,carbon encapsulation offers Cu@Cu-N-C with strong leaching resistance for better recycling.
基金the National Natural Science Foundation of China (50574046)National Natural Science Foundation of Major Research Projects (90610035)+1 种基金Natural Science Foundation of Yunnan Province (2004E0058Q)High School Doctoral Subject Special Science and Re- search Foundation of Ministry of Education (20040674005)
文摘A series of Ce1-xFexO2 (x=0, 0.2, 0.4, 0.6, 0.8, 1) complex oxide catalysts were prepared using the coprecipitation method. The catalysts were characterized by means of XRD and H2-TPR. The reactions between methane and lattice oxygen from the complex oxides were investigated. The characteristic results revealed that the combination of Ce and Fe oxide in the catalysts could lower the temperature necessary to reduce the cerium oxide. The catalytic activity for selective CH4 oxidation was strongly influenced by dropped Fe species. Adding the appropriate amount of Fe2O3 to CeO2 could promote the action between CH4 and CeO2. Dispersed Fe2O3 first returned to the original state and would then virtually form the Fe species on the catalyst, which could be considered as the active site for selective CH4 oxidation. The appearance of carbon formation was significant and the oxidation of carbon appeared to be the rate-determining step; the amounts of surface reducible oxygen species in CeO2 were also relevant to the activity. Among all the catalysts, Ce0.6Fe0.402 exhibited the best activity, which converted 94.52% of CH4 at 900 ℃.
基金the National Key Research and Development Program of China(No.2016YFB0701100)the National Natural Science Foundation of China(Nos.51802015 and 51890893)Fundamental Research Funds for the Central Universities(FRFTP-16-028A1)。
文摘Building a covalently connected structure with accelerated photo-induced electrons and charge-carrier separation between semiconductors could enhance the photocatalytic performance.In this work,we report a facile and novel seed growth method to coat NH2-MIL-125 MOFs with crystalline and porous covalent organic frameworks(COFs)materials and form a range of NH2-MIL-125@TAPB-PDA nanocomposites with different thicknesses of COF shell.The introduction of appropriate content of COF could not only modify the intrinsic electronic and optical properties,but also enhance the photocatalytic activity distinctly.Especially,NH2-MIL-125@TAPB-PDA-3 with COF shell thickness of around 20nm exhibited the highest yield(94.7%)of benzaldehyde which is approximately 2.5 and 15.5 times as that of parental NH2-MIL-125 and COF,respectively.The promoted photocatalytic performance of hybrid materials was mainly owing to the enhanced photo-induced charge carriers transfer between the MOF and COF through the covalent bond.In addition,a possible mechanism to elucidate the process of photocatalysis was explored.Therefore,this kind of MOF-based photocatalysts possesses great potentials in future green organic synthesis.
文摘Because of multiple potential reaction sites and variable oxidation depths,oxidation of cyclohexene can lead to a mixture of products with different oxidation states and functional groups,such as 7-oxabicyclo[4.1.0]heptane,trans/cis-cyclohexane-1,2-diol,cyclohex-2-en-1-ol,cyclohex-2-en-1-one,and even adipic acid.These products are broadly and abundantly used intermediates in the chemical industry;therefore,controllable oxidation reactions for cyclohexene that can selectively afford the targeted products are synthetically valuable for applications in both the academy and industry,thus becoming the aim of synthetic and catalytic chemists in the field.Many reports on selective oxidation of cyclohexene have recently appeared in the literature because of its significance.This short review summarizes the recent advances on this subject,and the contents are mainly classified based on the chosen oxidants.We hope that this review can provide a useful guide for controllable and selective catalytic oxidation of cyclohexene for interested readers from both the academy and industry.
基金国家自然科学基金,国家高技术研究发展计划(863计划),the Open Foundation of State Key Laboratory of Heavy Oil Processing
文摘Cs-promoted Mo-Bi-Co-Fe-Ce-O catalyst for the selective oxidation of isobutylene to methacrolein had been studied in a fixed bed micro-reactor. The selectivity to methacrolein was significantly improved by the addition of Cs, which could probably enhance the dehydrogenation ability and weaken the oxygenation ability of the catalyst based on temperature programmed reduction (TPR) analysis investigation. The kinetic studies indicated that the oxidation of isobutylene to methacrolein followed the first-order kinetic behavior.
基金supported financially by the National Natural Science Foundation of China (91545103,21103048)
文摘Selective oxidation of saturated hydrocarbons with molecular oxygen has been of great interest in catalysis, and the development of highly efficient catalysts for this process is a crucial challenge. A new kind of heterogeneous catalyst, cobalt-doped carbon nitride polymer(g-C_3N_4),was harnessed for the selective oxidation of cyclohexane. X-ray diffraction, Fourier transform infrared spectra and high resolution transmission electron microscope revealed that Co species were highly dispersed in g-C_3N_4 matrix and the characteristic structure of polymeric g-C_3N_4 can be retained after Co-doping, although Co-doping caused the incomplete polymerization to some extent. Ultraviolet-visible, Raman and X-ray photoelectron spectroscopy further proved the successful Co doping in g-C_3N_4 matrix as the form of Co(Ⅱ)-N bonds. For the selective oxidation of cyclohexane, Co-doping can markedly promote the catalytic performance of g-C_3N_4 catalyst due to the synergistic effect of Co species and gC_3N_4 hybrid. Furthermore, the content of Co largely affected the activity of Co-doped g-C_3N_4 catalysts, among which the catalyst with 9.0 wt%Co content exhibited the highest yield(9.0%) of cyclohexanone and cyclohexanol, as well as a high stability. Meanwhile, the reaction mechanism over Co-doped g-C_3N_4 catalysts was elaborated.
基金supported by National Natural Science Foundation of China(Grant No.51772089 and 21872046)the Youth 1000 Talent Program of China+3 种基金the Outstanding Youth Scientist Foundation of Hunan Province(Grant No.2018JJ1009)the Natural Science Foundation of Hunan Province(Grant No.2020JJ4174)Provincial Science and Technology Innovation Platform and Talent Plan-Changsha,Zhuzhou and Xiangtan High-level Talents Accumulation Project(Grant No.2017XK2023)Research and Development Plan of Key Areas in Hunan Province(Grant No.2019GK2235)
文摘Heteroatom-doped meso/micro-porous carbon materials are conventionally produced by harsh carbonization under an inert atmosphere involving specific precursors,hard/soft templates,and heteroatom-containing agents.Herein,we report a facile synthesis of N and O co-doped meso/micro-porous carbon(NOMC)by template-free carbonization of a small-molecule precursor in a semi-closed system.The semi-closed carbonizaiton process yields hydrophilic NOMCs with large surface area in a high yield.The porous structure as well as the elemental composition of NOMCs can be modulated by changing the holding time at a particular temperature.NOMCs as metal-free heterogeneous catalysts can selectively oxidize benzyl alcohol and its derivatives into aldehydes/ketones with>85%conversion in aqueous solution,which is much higher than that of the control sample obtained in tube furnace(21%conversion),mainly due to their high N content,high percentage of pyridinic N,and large surface area.The presence of O-containing moieties also helps to improve the hydrophilicity and dispersion ability of catalysts and thus facilitates the mass transfer process during aqueous oxidation.The NOMC catalysts also dispayed excellent activity for a wide range of substrates with a selectivity of>99%.
基金supported by the National Nature Science Foundation of China (Project No.20576023)the Natural Science Foundation of Guangdong Province (Project No.06025660).
文摘The Cu-Zr-Ce-O catalysts prepared using the coprecipitation method exhibited better catalytic performance for CO selective oxidation. The Cu-Zr-Ce-O catalysts pretreated with different methods were studied by CO-TPR and XPS techniques. The results showed that the Cu-Zr-Ce-O catalyst pretreated with oxygen exhibited the best catalytic performance and had the widest operating temperature window, with CO conversion above 99% from 160 to 200 ℃. The O2 pretreatment caused an enrichment of the oxygen storaged on the Cu active species and promoted the conversion of adsorbed oxygen into surface lattice oxygen. It also improved the amount of Cu+/Cu^2+ ionic pair, and then facilitated the formation of CuO active species on the catalyst for selective CO oxidation.
基金financially supported by the Key Projects of Youth Natural Fund in Fujian Universities,China(JZ160414)
文摘A series of hexagonal ZnIn2S4 samples with different morphologies have been successfully prepared via a facile solvothermal approach using different alcohol solvents with the optimum synthesis time and temperature. X-ray diffraction, field emission scanning electron microscopy, UV-vis diffuse reflection spectroscopy and photoelectrochemical measurements are employed to determine the properties of the samples. It is found that the solvent has a significant influence on the morphology, optical properties and electronic nature of the samples. The photocatalytic activities of the samples have been evaluated by selective oxidation of benzyl alcohol to benzaldehyde to benzaldehyde and the degradation of methyl orange(MO) under visible light irradiation. The results reveal that the photocatalytic activities of ZnIn2S4 are closely related to the reaction solvent. The ethanol-mediated ZnIn2S4 exhibits the best photocatalytic performance toward selective oxidation of benzyl alcohol to benzaldehyde and the degradation of dye MO compared to the samples prepared in other solvents, which can be attributed to the integrative effect of the enhanced light absorption intensity and the prolonged lifetime of photogenerated carriers. In addition, a possible mechanism is proposed and discussed. It is expected that our current research could promote further interest on the synthesizing efficient ternary chalcogenides semiconducting materials for environment remediation and organic transformation.
文摘Annealing experiments were conducted on BH steel to which 10 × 10^-6 boron was added. The annealing temperature,holding time, H2 content, and dew point were varied in the experiments in order to investigate their influences on the selective oxidation of boron. A higher annealing temperature and longer holding time is found to lead to a higher concentration of boron at the extreme surface, which reaches saturation after the steel sheet is held for a critical period of time that depends on the annealing temperature. The effect of H2 content on the selective oxidation of boron depends on the annealing temperature and dew point. It has almost no influence on the external oxidation of boron when the sheet is annealed at 820 ~Cin an atmosphere with a dew point of -40℃. At a dew point of - 10℃, a lower H2 content results in a lower peak value of boron in the subsurface area but deeper internal oxidation of boron. An increase in the dew point from -40℃ to - 10℃ can significantly promote internal oxidation of boron at depths of 50 - 200 nm from the surface. With the suppression of external oxidation of boron as well as manganese and silicon, a relatively clean surface with reduced and refined oxides can be achieved by increasing the dew point.
文摘Covalent organic frameworks(COFs)with photoactive units have attracted significant interest in visible light photocatalysis and can present a metal‐free scenario for activating O_(2).As a typical photoactive unit,thiazolo[5,4‐d]thiazole(TzTz)has rarely been added to COFs.However,circumventing the low reversibility of TzTz,it could be embedded into the building blocks beforehand,along with other bonds likeβ‐ketoenamine in forming COFs.TzTz was embedded into 1,1′‐biphenyl‐4,4′‐diamine(BD)using this approach to produce 4,4′‐(TzTz‐2,5‐diyl)dianiline(DTz).Under organobase‐modulated solvothermal conditions,combining 1,3,5‐triformylphloroglucinol(Tp)with BD and DTz resulted in the production ofβ‐ketoenamine‐linked TpBD‐COF and TpDTz‐COF.Both TpDTz‐COF and TpBD‐COF are microspheres.TpDTz‐COF possessed more adequate separation and charge migration than TpBD‐COF.This resulted in superior performance for the blue light photocatalytic selective oxidation of benzylamine with O_(2).Furthermore,with O_(2) as the main oxidant,a wealth of benzylamines could be converted into imines over TpDTz‐COF.Mechanistic investigations substantiate that oxidation of benzylamines obeys an electron transfer pathway,in which superoxide anion(O_(2)•–)is the crucial reactive oxygen species.This study highlights the superiority of TzTz‐embedded COFs in developing effective photocatalytic systems for organic transformations.
文摘The effects of chemical composition and preparation conditions,especially calcination atmosphere and water content on the catalytic performances of MoVTeNbO mixed oxide catalyst system for the selective oxidation of propane to acrylic acid were investigated.Among the catalysts studied,Mo_(1.0)V_(0.3)Te_(0.23)Nb_(0.12)O_(x) catalyst calcined in inert atmosphere at 600℃shows the best performance in terms of propane conversion and selectivity to acrylic acid.The results reveal that proper chemical composition, calcination atmosphere and water content affect greatly the catalysts in many ways including structure,chemical composition,which are related to their catalytic performances;and 51.0%propane conversion and 30.5%one-pass yield to acrylic acid can be achieved at the same time.
基金partially supported by the National Natural Science Foundation of China(Grant Nos.21601026,21771030)Fundamental Research Funds for the Central Universities(DUT16RC(4)10,DUT18RC(6)008)。
文摘The key to improve the performance of heteroatom catalysts is to ensure the orderliness of catalysts and the good dispersion of heteroatoms.The alkalinity plays the indispensable role in synthetic process of V-MCM-41 catalyst.The excessive alkalinity of synthetic system will make the MCM-41 difficult to crystallize,even to dissolve.It is easy to accumulate for heteroatomic species in the system of low alkalinity.Herein,the highly ordered VMCM-41 with high vanadic content in framework is synthesized in the condition of excessive NH3·H2 O in this paper.A series of characterization results prove the good dispersion of vanadium species,and most of vanadium gets into the framework of MCM-41 with the states of tetravalence and pentavalence.Furthermore,the modified MCM-41 by other transition metals is successful synthesized by the method of V-MCM-41 in this paper.The VMCM-41 shows well catalytic activity for the selective oxidation of benzyl alcohol,which up to 74.83%for the conversion of benzyl alcohol and 96.20%for selectivity of benzaldehyde when initial V/Si=0.10.The paper provides the possibility for industrial application of V-MCM-41 in the oxidation of benzyl alcohol for benzaldehyde.Besides,the work provides a significant idea for the synthesis of modified MCM-41 by well-dispersed transition metals.
文摘The interactions of oxygen with pre-reduced silver catalysts as well as theircatalytic properties for CO selective oxidation in H_2 after oxygen pre-treatment are studied inthis paper. It is found that the pretreatment exerts a strong influence on the activity andselectivity of the silver catalyst. A drop in activity and selectivity is observed after treating apre-reduced catalyst with oxygen at low temperatures, whereas a converse result is obtained after anoxidizing treatment at high temperatures (T ≥ 350℃). O_2-TPD results show that surface oxygenspecies adsorbs on silver surface after the oxygen treatment at low temperatures. However,penetration of oxygen into the silver is enhanced by a high temperature treatment, meanwhile thesurface oxygen species disappear. No other silver species except metallic silver are observed on allthe catalysts by XRD, and the size of silver particle is not changed after the treatment withoxygen at low temperatures. The surface oxygen species formed by oxygen treatment can also beremoved by hydrogen reduction. The strongly-adsorbed surface oxygen species prohibit the adsorptionand diffusion of oxygen species in reaction gas on the surface of silver catalyst, causing thedecrease in CO oxidation activity, in other words, it is important to obtain a clean silver surfacefor increasing the catalyst activity in CO removal from H_2-rich feed gas. The differences inactivity and selectivity due to the oxygen pretreatment at different temperatures are discussed interms of the changes in the surface/subsurface oxygen species of the silver particles.
基金Foundation item: Supported by Scientific Research Fund of Hunan Provincial Education Department (02C463 and 03C515)Hunan Provincial Natural Science Foundation of China (04JJ6003).
文摘Mixed oxide catalyst Cs0.1Fe2Co6BiMnMo12Ox was prepared by the coprecipitation method. Selective oxidation of isobutene was carried out in a fixed-bed reactor over Cs0.1Fe2Co6BiMnMo12Ox. The results showed that the catalyst had high catalytic activity. Under the optimum reaction conditions (n(i-C4=):n(O2)=1:2-1:4, space velocity=180 h-1, T=360℃), the yields of methacrolein and methacrylic acid can reach 80% and 8%, respectively. The total yield of liquid products (methacrolein, methacrylic acid and acetic acid) can reach about 90%.
基金supported by the National Basic Research Program of China ("973" Program) (No. 2012CB720302)the Program for Changjiang Scholars and Innovative Research Teams in Universities (No. IRT0936)
文摘In this paper, 2,3,5-trimethyl-1,4-benzoquinone(TMBQ) was synthesized through the direct oxidation of1,2,4-trimethylbenzene(pseudocumene, TMB) in the HCOOH–H2O2 system. The influence ofthree active species was studied, including performic acid(PFA) generated in formic acid, peracetic acid(PAA) generated in acetic acid, and trifluoroperacetic(TFPA) acid generated in trifluoroacetic acid. The effects ofsulfuric acid and sodium formate addition were investigated, the overoxidation ofTMB was discussed, and the main reason for the decreasing selectivity was revealed. The oxidation ofTMB can be controlled and improved through adjusting the reaction temperature, mole ratio ofoxidant to substrate, and reactant concentration. The TMBQ yield of28% was achieved with a TMB concentration of0.2 mol/L, H2O2/TMB mole ratio of6:1, and reaction temperature 37 ℃. The selectivity of72% was obtained with a TMB concentration of0.2 mol/L, H2O2/TMB mole ratio of5:1, and reaction temperature of27 ℃. The reaction mechanisms were proposed and discussed based on the gas chromatography–flame ionization detection(GC–FID) and gas chromatography–mass spectrometer(GC–MS) results.