The 5G radio access network (RAN) architectm'e is supposed to be split into the central unit (CU) and the distributed unit (DU) in order to support more flexible transport networks and provide enhanced user exp...The 5G radio access network (RAN) architectm'e is supposed to be split into the central unit (CU) and the distributed unit (DU) in order to support more flexible transport networks and provide enhanced user experience. However, such functional split may also introduce some new technical issues. In this pa- per, we study the data fast retransmission issue introduced by this functional split in different scenarios and solutions are provided to handle this issue. With the fast data retransmis- sion mechanism proposed in this paper, the retransmitted da- ta packets could be identified and handled with high priority. In this way, the data delivery between the CU and DU in 5G RAN is assured.展开更多
In traditional wireless broadcast networks,a corrupted packet must be retransmitted even if it has been lost by only one receiver.Obviously,this is not bandwidth-efficient for the receivers that already hold the retra...In traditional wireless broadcast networks,a corrupted packet must be retransmitted even if it has been lost by only one receiver.Obviously,this is not bandwidth-efficient for the receivers that already hold the retransmitted packet.Therefore,it is important to develop a method to realise efficient broadcast transmission.Network coding is a promising technique in this scenario.However,none of the proposed schemes achieves both high transmission efficiency and low computational complexity simultaneously so far.To address this problem,a novel Efficient Opportunistic Network Coding Retransmission(EONCR)scheme is proposed in this paper.This scheme employs a new packet scheduling algorithm which uses a Packet Distribution Matrix(PDM)directly to select the coded packets.The analysis and simulation results indicate that transmission efficiency of EONCR is over 0.1,more than the schemes proposed previously in some simulation conditions,and the computational overhead is reduced substantially.Hence,it has great application prospects in wireless broadcast networks,especially energyand bandwidth-limited systems such as satellite broadcast systems and Planetary Networks(PNs).展开更多
In this paper, we propose an aware-based adaptive opportunistic retransmission control scheme for wireless multimedia Mesh networks. The proposed scheme provides maximum retransmis-sion count optimization based on env...In this paper, we propose an aware-based adaptive opportunistic retransmission control scheme for wireless multimedia Mesh networks. The proposed scheme provides maximum retransmis-sion count optimization based on environment-aware to improve packet relay probability. The scheme discriminates the types of packet loss in wireless link by means of environment information and selects the retransmission count by taking the IEEE 802.11 wireless channel characteristics into consideration. Furthermore, the maximum retransmission count of MAC is adjusted adaptively. Extensive simulations demonstrate that the proposed scheme significantly reduces packet collision probability and packet loss rate, and thus improves network throughput.展开更多
To initiate voice, image, instant messaging and general multimedia communication, the Session communication must initiate between two participants. SIP (Session initiation protocol) is an application layer control, wh...To initiate voice, image, instant messaging and general multimedia communication, the Session communication must initiate between two participants. SIP (Session initiation protocol) is an application layer control, which task is creating management, and terminating this kind of Sessions. With regard to the independence of SIP from the Transport layer protocols, the SIP messages can be transferred on a variety of Transport layer protocols such as TCP or UDP. The mechanism of Retransmission, which has been embedded in SIP, is able to compensate the missing Packet loss, if needed. The application of this mechanism is when SIP messages are transmitted on an unreliable transmission layer protocol such as UDP. This mechanism, while facing with SIP proxy with overload, causes excessive filling of proxy queue, delays the increase of other contacts and adds the amount of the proxy overload. We in this article, while using UDP, as the Transport layer protocol, by regulating the Invite Retransmission Timer appropriately (T1), have improved the SIP functionality. Therefore, by proposing an Adaptive Timer of Invite message retransmission, we have tried to improve the time of Session initiation and as a result, improving the performance. The performance of the proposed SIP, by the SIPP software in a real network environment has been implemented and evaluated and its accuracy and performance has been demonstrated.展开更多
Within the framework of the 5G new radio(NR),we propose a new hybrid automatic repeat request(HARQ)scheme to improve the throughput performance.The difference between the proposed scheme and the conventional one lies ...Within the framework of the 5G new radio(NR),we propose a new hybrid automatic repeat request(HARQ)scheme to improve the throughput performance.The difference between the proposed scheme and the conventional one lies in the first retransmission,where the erroneous coded block group is interleaved and superimposed(XORed)onto a fresh coded block group.At the receiver,an iterative message-passing decoding algorithm can be employed to recover the target erroneous code block group(CBG).Only when the superposed retransmission fails,the conventional incremental redundancy(IR)or repetition redundancy(RR)retransmission is initiated.In any case,since the first retransmission is along with but has negligible effect on the fresh CBG,it costs neither transmitted power nor bandwidth.Monte-Carlo simulation results reveal that the presented HARQ schemes can achieve throughput improvements up to 10%over block fading channels and up to 50%over fast fading channels in comparison with the original 5G CBG-level HARQ scheme but without excessively increasing the implementation complexity.展开更多
In Cognitive radio ad hoc networks (CRAHNs), the secondary users (SUs) or cognitive radio nodes (CRs) are always equipped with limited energy and have a high error probability of data transmission. To address th...In Cognitive radio ad hoc networks (CRAHNs), the secondary users (SUs) or cognitive radio nodes (CRs) are always equipped with limited energy and have a high error probability of data transmission. To address this issue, we first describe the network utility under energy constraint as a max-min model, where the re-transmission strategy with network coding is employed. Additionally, the expression of retransmission probability is presented in terms of power and bit error rate (BER). Moreover, since the max-min model is non-convex in both objective and constraints, we use a normal- form game to find a near-optimal solution. The simulation results show that the proposed approach could achieve a higher network utility than the compared approaches.展开更多
As a popular distributed machine learning framework,wireless federated edge learning(FEEL)can keep original data local,while uploading model training updates to protect privacy and prevent data silos.However,since wir...As a popular distributed machine learning framework,wireless federated edge learning(FEEL)can keep original data local,while uploading model training updates to protect privacy and prevent data silos.However,since wireless channels are usually unreliable,there is no guarantee that the model updates uploaded by local devices are correct,thus greatly degrading the performance of the wireless FEEL.Conventional retransmission schemes designed for wireless systems generally aim to maximize the system throughput or minimize the packet error rate,which is not suitable for the FEEL system.A novel retransmission scheme is proposed for the FEEL system to make a tradeoff between model training accuracy and retransmission latency.In the proposed scheme,a retransmission device selection criterion is first designed based on the channel condition,the number of local data,and the importance of model updates.In addition,we design the air interface signaling under this retransmission scheme to facilitate the implementation of the proposed scheme in practical scenarios.Finally,the effectiveness of the proposed retransmission scheme is validated through simulation experiments.展开更多
A joint cooperation diversity and symbol mapping diversity (SMD) strategy is proposed for cooperative packet retransmission system with high-order modulation such as 16QAM. Substantial SER/BER (symbol error rate/bit e...A joint cooperation diversity and symbol mapping diversity (SMD) strategy is proposed for cooperative packet retransmission system with high-order modulation such as 16QAM. Substantial SER/BER (symbol error rate/bit error rate) gains result from multiple packet transmissions over independent paths and distinct bit-to-symbol mappings for each packet transmis-sion. The SER/BER performance of relay assisted retransmission system is analyzed. Simulation results show that the joint-diversity strategy can provide more BER gains than other relaying strategies (i.e., decode-and-forward and constellation rearrangement relaying strategies) when no relay makes a decision error; but if some relays make decision errors, the joint-di-versity strategy outperforms other relaying strategies only when the relays are closer to the source than to the destination.展开更多
This paper proposes an environment-aware best- retransmission count selected optimization control scheme over IEEE 802.11 multi-hop wireless networks. The proposed scheme predicts the wireless resources by using stati...This paper proposes an environment-aware best- retransmission count selected optimization control scheme over IEEE 802.11 multi-hop wireless networks. The proposed scheme predicts the wireless resources by using statistical channel state and provides maximum retransmission count optimization based on wireless channel environment state to improve the packet delivery success ratio. The media access control (MAC) layer selects the best-retransmission count by perceiving the types of packet loss in wireless link and using the wireless channel charac- teristics and environment information, and adjusts the packet for- warding adaptively aiming at improving the packet retransmission probability. Simulation results show that the best-retransmission count selected scheme achieves a higher packet successful delivery percentage and a lower packet collision probability than the corresponding traditional MAC transmission control protocols.展开更多
为解决海量机器类通信(mMTC,massive machine type communications)场景下,机器类通信设备(MTCD,machine type communication device)采用传统随机接入方案时,往往出现网络严重拥塞,导致大量MTCD无法成功接入网络问题,提出了一种基于前...为解决海量机器类通信(mMTC,massive machine type communications)场景下,机器类通信设备(MTCD,machine type communication device)采用传统随机接入方案时,往往出现网络严重拥塞,导致大量MTCD无法成功接入网络问题,提出了一种基于前导码重传辅助的动态接入类别限制(PRT-ACB,preamble retransmission access class barring)方案。利用MTCD的前导码重传次数,将每个随机接入机会(RAO,random access opportunity)中尝试发起接入的MTCD划分为高、低优先级,结合每个RAO中负载数估计模型,分别为其设定随每个RAO中的接入负载动态变化的高、低优先级限制因子和可用前导码池,使更多MTCD能在未达到最大前导码传输次数前成功接入网络。仿真结果表明,所提方案能有效提升MTCD的接入成功概率,降低MTCD接入网络所需时延。所提方案可以作为缓解海量通信设备同时接入网络造成拥塞的一种解决方案。展开更多
The increasing demand for industrial automation and intelligence has put forward higher requirements for the reliability of industrial wireless communication technology.As an international standard based on 802.11,Wir...The increasing demand for industrial automation and intelligence has put forward higher requirements for the reliability of industrial wireless communication technology.As an international standard based on 802.11,Wireless networks for Industrial Automation-Factory Automation(WIA-FA)greatly improves the reliability in factory automation scenarios by Time Division Multiple Access(TDMA).However,in ultra-dense WIA-FA networks with mobile users,the basic connection management mechanism is inefficient.Most of the handover and resource management algorithms are all based on frequency division multiplexing,not suitable for the TDMA in the WIA-FA network.Therefore,we propose Load-aware Connection Management(LACM)algorithm to adjust the linkage and balance the load of access devices to avoid blocking and improve the reliability of the system.And then we simulate the algorithm to find the optimal settings of the parameters.After comparing with other existing algorithms,the result of the simulation proves that LACM is more efficient in reliability and maintains high reliability of more than 99.8%even in the ultra-dense moving scenario with 1500 field devices.Besides,this algorithm ensures that only a few signaling exchanges are required to ensure load bal-ancing,which is no more than 5 times,and less than half of the best state-of-the-art algorithm.展开更多
文摘The 5G radio access network (RAN) architectm'e is supposed to be split into the central unit (CU) and the distributed unit (DU) in order to support more flexible transport networks and provide enhanced user experience. However, such functional split may also introduce some new technical issues. In this pa- per, we study the data fast retransmission issue introduced by this functional split in different scenarios and solutions are provided to handle this issue. With the fast data retransmis- sion mechanism proposed in this paper, the retransmitted da- ta packets could be identified and handled with high priority. In this way, the data delivery between the CU and DU in 5G RAN is assured.
基金supported in part by the National Natural Science Foundation of China under Grant No. 61032004the National High Technical Research and Development Program of China (863 Program) under Grants No. 2012AA121605,No. 2012AA01A503,No.2012AA01A510
文摘In traditional wireless broadcast networks,a corrupted packet must be retransmitted even if it has been lost by only one receiver.Obviously,this is not bandwidth-efficient for the receivers that already hold the retransmitted packet.Therefore,it is important to develop a method to realise efficient broadcast transmission.Network coding is a promising technique in this scenario.However,none of the proposed schemes achieves both high transmission efficiency and low computational complexity simultaneously so far.To address this problem,a novel Efficient Opportunistic Network Coding Retransmission(EONCR)scheme is proposed in this paper.This scheme employs a new packet scheduling algorithm which uses a Packet Distribution Matrix(PDM)directly to select the coded packets.The analysis and simulation results indicate that transmission efficiency of EONCR is over 0.1,more than the schemes proposed previously in some simulation conditions,and the computational overhead is reduced substantially.Hence,it has great application prospects in wireless broadcast networks,especially energyand bandwidth-limited systems such as satellite broadcast systems and Planetary Networks(PNs).
基金Supported by the National Natural Science Foundation of China (No. 60972038)the Jiangsu Province Universities Natural Science Research Key Grant Project (07KJA-51006)+1 种基金the Open Research Fund of National Mobile Communications Research Laboratory, Southeast University (N200911)Jiangsu Province Graduate In-novative Research Plan (CX09B_149Z)
文摘In this paper, we propose an aware-based adaptive opportunistic retransmission control scheme for wireless multimedia Mesh networks. The proposed scheme provides maximum retransmis-sion count optimization based on environment-aware to improve packet relay probability. The scheme discriminates the types of packet loss in wireless link by means of environment information and selects the retransmission count by taking the IEEE 802.11 wireless channel characteristics into consideration. Furthermore, the maximum retransmission count of MAC is adjusted adaptively. Extensive simulations demonstrate that the proposed scheme significantly reduces packet collision probability and packet loss rate, and thus improves network throughput.
文摘To initiate voice, image, instant messaging and general multimedia communication, the Session communication must initiate between two participants. SIP (Session initiation protocol) is an application layer control, which task is creating management, and terminating this kind of Sessions. With regard to the independence of SIP from the Transport layer protocols, the SIP messages can be transferred on a variety of Transport layer protocols such as TCP or UDP. The mechanism of Retransmission, which has been embedded in SIP, is able to compensate the missing Packet loss, if needed. The application of this mechanism is when SIP messages are transmitted on an unreliable transmission layer protocol such as UDP. This mechanism, while facing with SIP proxy with overload, causes excessive filling of proxy queue, delays the increase of other contacts and adds the amount of the proxy overload. We in this article, while using UDP, as the Transport layer protocol, by regulating the Invite Retransmission Timer appropriately (T1), have improved the SIP functionality. Therefore, by proposing an Adaptive Timer of Invite message retransmission, we have tried to improve the time of Session initiation and as a result, improving the performance. The performance of the proposed SIP, by the SIPP software in a real network environment has been implemented and evaluated and its accuracy and performance has been demonstrated.
基金supported by the National Natural Science Foundation of China(No.61971454 and No.62071498)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515011056)。
文摘Within the framework of the 5G new radio(NR),we propose a new hybrid automatic repeat request(HARQ)scheme to improve the throughput performance.The difference between the proposed scheme and the conventional one lies in the first retransmission,where the erroneous coded block group is interleaved and superimposed(XORed)onto a fresh coded block group.At the receiver,an iterative message-passing decoding algorithm can be employed to recover the target erroneous code block group(CBG).Only when the superposed retransmission fails,the conventional incremental redundancy(IR)or repetition redundancy(RR)retransmission is initiated.In any case,since the first retransmission is along with but has negligible effect on the fresh CBG,it costs neither transmitted power nor bandwidth.Monte-Carlo simulation results reveal that the presented HARQ schemes can achieve throughput improvements up to 10%over block fading channels and up to 50%over fast fading channels in comparison with the original 5G CBG-level HARQ scheme but without excessively increasing the implementation complexity.
基金This work was supported in part by the Research Fund for the Doctoral Program of Higher Education of China under Grant 20122304130002,the Natural Science Foundation in China under Grant 61370212,the Fundamental Research Fund for the Central Universities under Grant HEUCFZ1213 and HEUCF100601
文摘In Cognitive radio ad hoc networks (CRAHNs), the secondary users (SUs) or cognitive radio nodes (CRs) are always equipped with limited energy and have a high error probability of data transmission. To address this issue, we first describe the network utility under energy constraint as a max-min model, where the re-transmission strategy with network coding is employed. Additionally, the expression of retransmission probability is presented in terms of power and bit error rate (BER). Moreover, since the max-min model is non-convex in both objective and constraints, we use a normal- form game to find a near-optimal solution. The simulation results show that the proposed approach could achieve a higher network utility than the compared approaches.
文摘As a popular distributed machine learning framework,wireless federated edge learning(FEEL)can keep original data local,while uploading model training updates to protect privacy and prevent data silos.However,since wireless channels are usually unreliable,there is no guarantee that the model updates uploaded by local devices are correct,thus greatly degrading the performance of the wireless FEEL.Conventional retransmission schemes designed for wireless systems generally aim to maximize the system throughput or minimize the packet error rate,which is not suitable for the FEEL system.A novel retransmission scheme is proposed for the FEEL system to make a tradeoff between model training accuracy and retransmission latency.In the proposed scheme,a retransmission device selection criterion is first designed based on the channel condition,the number of local data,and the importance of model updates.In addition,we design the air interface signaling under this retransmission scheme to facilitate the implementation of the proposed scheme in practical scenarios.Finally,the effectiveness of the proposed retransmission scheme is validated through simulation experiments.
基金the National Natural Science Foundation of China (No. 60372107)the Natural Science Fund for Higher Educa-tion of Jiangsu Province, China (No. 06KJA51001)the Natural Science Fund of the Science and Technology Department of Jiangsu Province, China (No. BK2007729)
文摘A joint cooperation diversity and symbol mapping diversity (SMD) strategy is proposed for cooperative packet retransmission system with high-order modulation such as 16QAM. Substantial SER/BER (symbol error rate/bit error rate) gains result from multiple packet transmissions over independent paths and distinct bit-to-symbol mappings for each packet transmis-sion. The SER/BER performance of relay assisted retransmission system is analyzed. Simulation results show that the joint-diversity strategy can provide more BER gains than other relaying strategies (i.e., decode-and-forward and constellation rearrangement relaying strategies) when no relay makes a decision error; but if some relays make decision errors, the joint-di-versity strategy outperforms other relaying strategies only when the relays are closer to the source than to the destination.
基金supported by the National Basic Research Program of China(2013CB329005)the National Natural Science Foundation of China(61101105+9 种基金6120116261302100)the Basic Research Program of Jiangsu Province(BK2011027BK2012434)the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(12KJB51002212KJB510020)the Postdoctoral Science Foundation of China(2013M531391)the State Grid Project(52090F135015)the Scientific Research Foundation for Nanjing University of Posts and Telecommunications(NY211006NY211007)
文摘This paper proposes an environment-aware best- retransmission count selected optimization control scheme over IEEE 802.11 multi-hop wireless networks. The proposed scheme predicts the wireless resources by using statistical channel state and provides maximum retransmission count optimization based on wireless channel environment state to improve the packet delivery success ratio. The media access control (MAC) layer selects the best-retransmission count by perceiving the types of packet loss in wireless link and using the wireless channel charac- teristics and environment information, and adjusts the packet for- warding adaptively aiming at improving the packet retransmission probability. Simulation results show that the best-retransmission count selected scheme achieves a higher packet successful delivery percentage and a lower packet collision probability than the corresponding traditional MAC transmission control protocols.
文摘为解决海量机器类通信(mMTC,massive machine type communications)场景下,机器类通信设备(MTCD,machine type communication device)采用传统随机接入方案时,往往出现网络严重拥塞,导致大量MTCD无法成功接入网络问题,提出了一种基于前导码重传辅助的动态接入类别限制(PRT-ACB,preamble retransmission access class barring)方案。利用MTCD的前导码重传次数,将每个随机接入机会(RAO,random access opportunity)中尝试发起接入的MTCD划分为高、低优先级,结合每个RAO中负载数估计模型,分别为其设定随每个RAO中的接入负载动态变化的高、低优先级限制因子和可用前导码池,使更多MTCD能在未达到最大前导码传输次数前成功接入网络。仿真结果表明,所提方案能有效提升MTCD的接入成功概率,降低MTCD接入网络所需时延。所提方案可以作为缓解海量通信设备同时接入网络造成拥塞的一种解决方案。
基金supported by NSFC project(grant No.61971359)Chongqing Municipal Key Laboratory of Institutions of Higher Education(grant No.cquptmct-202104)+1 种基金Fundamental Research Funds for the Central Universities,Sichuan Science and Technology Project(grant no.2021YFQ0053)State Key Laboratory of Rail Transit Engineering Informatization(FSDI).
文摘The increasing demand for industrial automation and intelligence has put forward higher requirements for the reliability of industrial wireless communication technology.As an international standard based on 802.11,Wireless networks for Industrial Automation-Factory Automation(WIA-FA)greatly improves the reliability in factory automation scenarios by Time Division Multiple Access(TDMA).However,in ultra-dense WIA-FA networks with mobile users,the basic connection management mechanism is inefficient.Most of the handover and resource management algorithms are all based on frequency division multiplexing,not suitable for the TDMA in the WIA-FA network.Therefore,we propose Load-aware Connection Management(LACM)algorithm to adjust the linkage and balance the load of access devices to avoid blocking and improve the reliability of the system.And then we simulate the algorithm to find the optimal settings of the parameters.After comparing with other existing algorithms,the result of the simulation proves that LACM is more efficient in reliability and maintains high reliability of more than 99.8%even in the ultra-dense moving scenario with 1500 field devices.Besides,this algorithm ensures that only a few signaling exchanges are required to ensure load bal-ancing,which is no more than 5 times,and less than half of the best state-of-the-art algorithm.