Contrastive self‐supervised representation learning on attributed graph networks with Graph Neural Networks has attracted considerable research interest recently.However,there are still two challenges.First,most of t...Contrastive self‐supervised representation learning on attributed graph networks with Graph Neural Networks has attracted considerable research interest recently.However,there are still two challenges.First,most of the real‐word system are multiple relations,where entities are linked by different types of relations,and each relation is a view of the graph network.Second,the rich multi‐scale information(structure‐level and feature‐level)of the graph network can be seen as self‐supervised signals,which are not fully exploited.A novel contrastive self‐supervised representation learning framework on attributed multiplex graph networks with multi‐scale(named CoLM^(2)S)information is presented in this study.It mainly contains two components:intra‐relation contrast learning and interrelation contrastive learning.Specifically,the contrastive self‐supervised representation learning framework on attributed single‐layer graph networks with multi‐scale information(CoLMS)framework with the graph convolutional network as encoder to capture the intra‐relation information with multi‐scale structure‐level and feature‐level selfsupervised signals is introduced first.The structure‐level information includes the edge structure and sub‐graph structure,and the feature‐level information represents the output of different graph convolutional layer.Second,according to the consensus assumption among inter‐relations,the CoLM^(2)S framework is proposed to jointly learn various graph relations in attributed multiplex graph network to achieve global consensus node embedding.The proposed method can fully distil the graph information.Extensive experiments on unsupervised node clustering and graph visualisation tasks demonstrate the effectiveness of our methods,and it outperforms existing competitive baselines.展开更多
Without the dependence of depth ground truth,self‐supervised learning is a promising alternative to train monocular depth estimation.It builds its own supervision signal with the help of other tools,such as view synt...Without the dependence of depth ground truth,self‐supervised learning is a promising alternative to train monocular depth estimation.It builds its own supervision signal with the help of other tools,such as view synthesis and pose networks.However,more training parameters and time consumption may be involved.This paper proposes a monocular depth prediction framework that can jointly learn the depth value and pose transformation between images in an end‐to‐end manner.The depth network creatively employs an asymmetric convolution block instead of every square kernel layer to strengthen the learning ability of extracting image features when training.During infer-ence time,the asymmetric kernels are fused and converted to the original network to predict more accurate image depth,thus bringing no extra computations anymore.The network is trained and tested on the KITTI monocular dataset.The evaluated results demonstrate that the depth model outperforms some State of the Arts(SOTA)ap-proaches and can reduce the inference time of depth prediction.Additionally,the pro-posed model performs great adaptability on the Make3D dataset.展开更多
基金support by the National Natural Science Foundation of China(NSFC)under grant number 61873274.
文摘Contrastive self‐supervised representation learning on attributed graph networks with Graph Neural Networks has attracted considerable research interest recently.However,there are still two challenges.First,most of the real‐word system are multiple relations,where entities are linked by different types of relations,and each relation is a view of the graph network.Second,the rich multi‐scale information(structure‐level and feature‐level)of the graph network can be seen as self‐supervised signals,which are not fully exploited.A novel contrastive self‐supervised representation learning framework on attributed multiplex graph networks with multi‐scale(named CoLM^(2)S)information is presented in this study.It mainly contains two components:intra‐relation contrast learning and interrelation contrastive learning.Specifically,the contrastive self‐supervised representation learning framework on attributed single‐layer graph networks with multi‐scale information(CoLMS)framework with the graph convolutional network as encoder to capture the intra‐relation information with multi‐scale structure‐level and feature‐level selfsupervised signals is introduced first.The structure‐level information includes the edge structure and sub‐graph structure,and the feature‐level information represents the output of different graph convolutional layer.Second,according to the consensus assumption among inter‐relations,the CoLM^(2)S framework is proposed to jointly learn various graph relations in attributed multiplex graph network to achieve global consensus node embedding.The proposed method can fully distil the graph information.Extensive experiments on unsupervised node clustering and graph visualisation tasks demonstrate the effectiveness of our methods,and it outperforms existing competitive baselines.
基金Natural Science Foundation of Shanghai,Grant/Award Number:61922063National Key R&D Program of China,Grant/Award Number:2018YFB1305003+2 种基金Fundamental Research Funds for the Central UniversitiesShanghai Hong Kong Macao Taiwan Science and Technology Cooperation Project,Grant/Award Number:21550760900Shanghai Municipal Science and Technology Major Project,Grant/Award Number:2021SHZDZX0100。
文摘Without the dependence of depth ground truth,self‐supervised learning is a promising alternative to train monocular depth estimation.It builds its own supervision signal with the help of other tools,such as view synthesis and pose networks.However,more training parameters and time consumption may be involved.This paper proposes a monocular depth prediction framework that can jointly learn the depth value and pose transformation between images in an end‐to‐end manner.The depth network creatively employs an asymmetric convolution block instead of every square kernel layer to strengthen the learning ability of extracting image features when training.During infer-ence time,the asymmetric kernels are fused and converted to the original network to predict more accurate image depth,thus bringing no extra computations anymore.The network is trained and tested on the KITTI monocular dataset.The evaluated results demonstrate that the depth model outperforms some State of the Arts(SOTA)ap-proaches and can reduce the inference time of depth prediction.Additionally,the pro-posed model performs great adaptability on the Make3D dataset.