期刊文献+
共找到6,957篇文章
< 1 2 250 >
每页显示 20 50 100
Generativity of Self-Organizing Processes and Their Correlative Description in Terms of a Formal Language of Meta-Ordinal Generative Nature, in the Light of the Maximum Ordinality Principle and the Explicit Solution to the “Three-Body Problem”
1
作者 Corrado Giannantoni 《Journal of Applied Mathematics and Physics》 2023年第10期3159-3202,共44页
The main objective of this paper is to demonstrate that the internal processes of Self-Organizing Systems represent a unique and singular process, characterized by their specific generativity. This process can be mode... The main objective of this paper is to demonstrate that the internal processes of Self-Organizing Systems represent a unique and singular process, characterized by their specific generativity. This process can be modeled using the Maximum Ordinality Principle and its associated formal language, known as the “Incipient” Differential Calculus (IDC). 展开更多
关键词 Maximum Ordinality Principle Solution to the “Three-Body Problem” Generativity of self-organizing Processes Formal Language of Ordinal Generativity Formal Language of Meta-Ordinal Generativity
下载PDF
New Structural Self-Organizing Fuzzy CMAC with Basis Functions
2
作者 何超 徐立新 +1 位作者 董宁 张宇河 《Journal of Beijing Institute of Technology》 EI CAS 2001年第3期298-305,共8页
To improve the nonlinear approximating ability of cerebellar model articulation controller(CMAC), by introducing the Gauss basis functions and the similarity measure based addressing scheme, a new kind of fuzzy CMAC... To improve the nonlinear approximating ability of cerebellar model articulation controller(CMAC), by introducing the Gauss basis functions and the similarity measure based addressing scheme, a new kind of fuzzy CMAC with Gauss basis functions(GFCMAC) was presented. Moreover, based upon the improvement of the self organizing feature map algorithm of Kohonen, the structural self organizing algorithm for GFCMAC(SOGFCMAC) was proposed. Simulation results show that adopting the Gauss basis functions and fuzzy techniques can remarkably improve the nonlinear approximating capacity of CMAC. Compared with the traditional CMAC,CMAC with general basis functions and fuzzy CMAC(FCMAC), SOGFCMAC has the obvious advantages in the aspects of the convergent speed, approximating accuracy and structural self organizing. 展开更多
关键词 CMAC FUZZY basis functions self organizing algorithm neural networks
下载PDF
APPLICATION OF FUZZY LOGIC AND SELF-ORGANIZING NETWORK TO TOOL-WEAR CLASSIFICATION
3
作者 申志刚 何宁 李亮 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第1期9-15,共7页
A tool-wear monitoring system for metal turning operations is presented based on the combinative application of fuzzy logic and unsupervised neural network. A group of self-organizing map (SOM) neural networks is es... A tool-wear monitoring system for metal turning operations is presented based on the combinative application of fuzzy logic and unsupervised neural network. A group of self-organizing map (SOM) neural networks is established based on the typical cutting condition combinations, and each of networks is corresponding to a typical cutting condition. For a specifie cutting condition, the fuzzy logic method is used to select an optimum trained SOM network. The proposed monitoring system, ealled the Fuzzy-SOM-TWC, is used to classify tool states based on the in-time measurement of force, aeoustic emission(AE), and motor eurrent signals. An approximate 98%--100% correct classification of tool-wear status is obtained by testing the system with a series data samples under freely selected cutting conditions. 展开更多
关键词 eondition monitoring fuzzy inference self organizing maps
下载PDF
A multiscale spatio-temporal framework to regionalize annual precipitation using k-means and self-organizing map technique 被引量:4
4
作者 Kiyoumars ROUSHANGAR Farhad ALIZADEH 《Journal of Mountain Science》 SCIE CSCD 2018年第7期1481-1497,共17页
Determination of homogenous precipitation-based regions is a very important task in effective management of water resources. The present study tried to propose an effective precipitation-based regionalization methodol... Determination of homogenous precipitation-based regions is a very important task in effective management of water resources. The present study tried to propose an effective precipitation-based regionalization methodology by conjugating both temporal pre-processing and spatial clustering approaches in a way to take advantage of multiscale properties of precipitation time series. Annual precipitation data of 51 years(1960-2010) for 31 rain gauges(RGs) were collected and used in proposed clustering approaches. Discreet wavelet transform(DWT) was used to capture the time-frequency attributes of the time series and multiscale regionalization was performed by using k-means and Self Organizing Maps(SOM) clustering techniques. Daubechies function(db) was selected as mother wavelet to decompose the precipitation time series. Also, proper boundary extensions and decomposition level were applied. Different combinations of the approximation(A) and detail(D) coefficients were used to determine the input dataset as a basis of spatial clustering. The proposed model's efficiency in spatial clustering stage was verified using three different indexes namely, Silhouette Coefficient(SC), Dunn index and Davis Bouldin index(DB). Results approved superior performance of k-means technique in comparison to SOM. It was also deduced that DWT-based regionalization methodology showed improvements in comparison to historical-based models. Cross mutual information was used to investigate the RGs of cluster 3's homogeneousness in DWT-k-means approach. Results of non-linear correlation approach verified homogeneity of cluster 3. Verifications based on mean annual precipitation values of rain gauges in each cluster also approved the capability of multiscale approach in precipitation regionalization. 展开更多
关键词 PRECIPITATION Discrete wavelet transform (DWT) K-MEANS self organizing Map(SOM) Iran
下载PDF
Application of Self-Organizing Map for Exploration of REEs’ Deposition 被引量:2
5
作者 Mohammadali Sarparandeh Ardeshir Hezarkhani 《Open Journal of Geology》 2016年第7期571-582,共12页
Varieties of approaches and algorithms have been presented to identify the distribution of elements. Previous researches based on the type of problem, categorized their data in proper clusters or classes. This means t... Varieties of approaches and algorithms have been presented to identify the distribution of elements. Previous researches based on the type of problem, categorized their data in proper clusters or classes. This means that the process of solution could be supervised or unsupervised. In cases, where there is no idea about dependency of samples to specific groups, clustering methods (unsupervised) are applied. About geochemistry data, since various elements are involved, in addition to the complex nature of geochemical data, clustering algorithms would be useful for recognition of elements distribution. In this paper, Self-Organizing Map (SOM) algorithm, as an unsupervised method, is applied for clustering samples based on REEs contents. For this reason the Choghart Fe-REE deposit (Bafq district, central Iran), was selected as study area and dataset was a collection of 112 lithology samples that were assayed with laboratory tests such as ICP-MS and XRF analysis. In this study, input vectors include 19 features which are coordinates x, y, z and concentrations of REEs as well as the concentration of Phosphate (P<sub>2</sub>O<sub>5</sub>) since the apatite is the main source of REEs in this particular research. Four clusters were determined as an optimal number of clusters using silhouette criterion as well as k-means clustering method and SOM. Therefore, using self-organizing map, study area was subdivided in four zones. These four zones can be described as phosphate type, albitofyre type, metasomatic and phosphorus iron ore, and Iron Ore type. Phosphate type is the most prone to rare earth elements. Eventually, results were validated with laboratory analysis. 展开更多
关键词 self organizing Map (SOM) REES GEOCHEMISTRY Choghart Central Iran
下载PDF
Data-Driven Microstructure and Microhardness Design in Additive Manufacturing Using a Self-Organizing Map 被引量:7
6
作者 Zhengtao Gan Hengyang Li +5 位作者 Sarah J.Wolff Jennifer L.Bennett Gregory Hyatt Gregory J.Wagner Jian Cao Wing Kam Liu 《Engineering》 SCIE EI 2019年第4期730-735,共6页
To design microstructure and microhardness in the additive manufacturing(AM)of nickel(Ni)-based superalloys,the present work develops a novel data-driven approach that combines physics-based models,experimental measur... To design microstructure and microhardness in the additive manufacturing(AM)of nickel(Ni)-based superalloys,the present work develops a novel data-driven approach that combines physics-based models,experimental measurements,and a data-mining method.The simulation is based on a computational thermal-fluid dynamics(CtFD)model,which can obtain thermal behavior,solidification parameters such as cooling rate,and the dilution of solidified clad.Based on the computed thermal information,dendrite arm spacing and microhardness are estimated using well-tested mechanistic models.Experimental microstructure and microhardness are determined and compared with the simulated values for validation.To visualize process-structure-properties(PSPs)linkages,the simulation and experimental datasets are input to a data-mining model-a self-organizing map(SOM).The design windows of the process parameters under multiple objectives can be obtained from the visualized maps.The proposed approaches can be utilized in AM and other data-intensive processes.Data-driven linkages between process,structure,and properties have the potential to benefit online process monitoring control in order to derive an ideal microstructure and mechanical properties. 展开更多
关键词 Additive manufacturing Data science MULTIPHYSICS modeling self-organizing map MICROSTRUCTURE MICROHARDNESS NI-BASED SUPERALLOY
下载PDF
Gossip-Based Topology Management Protocol for Self-Organizing Overlays 被引量:2
7
作者 陈铙 胡瑞敏 朱永琼 《China Communications》 SCIE CSCD 2011年第5期38-46,共9页
Gossip-based protocols have attracted more and more attention because of their simplicity and reliability.They can be applied to large-scale overlays for solving problems such as topology management,information dissem... Gossip-based protocols have attracted more and more attention because of their simplicity and reliability.They can be applied to large-scale overlays for solving problems such as topology management,information dissemination,and aggregation.However,previous works sample nodes by their indegrees,without considering the differences in capability among nodes,and result in losing global load balancing.This paper proposes a load balancing gossip protocol for self-organizing overlays-LBTMP(Load-Balancing Topology Management Protocol),which takes into account the differences in capability among nodes and real loads.The novel protocol takes remainder service ability as the determinant for node selection metric,making light loading nodes from local neighbor view as returned samples preferentially.In the meantime,LBTMP selects light loading nodes preferentially for topology information exchange,which can diffuse light loading nodes over the whole overlay more quickly.Simulations show that returned sample node selection is biased to light loading nodes in a global view,and the overlay tends to load balancing. 展开更多
关键词 self-organizing overlay gossip mechanism topology management load balancing
下载PDF
CLUSTERING PROPERTIES OF FUZZY KOHONEN'S SELF-ORGANIZING FEATURE MAPS 被引量:3
8
作者 彭磊 胡征 《Journal of Electronics(China)》 1995年第2期124-133,共10页
A new clustering algorithm called fuzzy self-organizing feature maps is introduced. It can process not only the exact digital inputs, but also the inexact or fuzzy non-digital inputs, such as natural language inputs. ... A new clustering algorithm called fuzzy self-organizing feature maps is introduced. It can process not only the exact digital inputs, but also the inexact or fuzzy non-digital inputs, such as natural language inputs. Simulation results show that the new algorithm is superior to original Kohonen’s algorithm in clustering performance and learning rate. 展开更多
关键词 self-organizing feature MAPS FUZZY sets MEMBERSHIP measure FUZZINESS mea-sure
下载PDF
Patterns of upper layer circulation variability in the South China Sea from satellite altimetry using the self-organizing map 被引量:6
9
作者 WEISBERG Robert H 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2008年第z1期129-144,共16页
Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal... Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal and inter-annual variations of the SCS surface circulation are identified through the evolution of the characteristic circulation patterns.The annual cycle of the SCS general circulation patterns is described as a change between two opposite basin-scale SW-NE oriented gyres embedded with eddies: low sea surface height anomaly (SSHA) (cyclonic) in winter and high SSHA (anticyclonic) in summer half year. The transition starts from July—August (January—February) with a high (low) SSHA tongue east of Vietnam around 12°~14° N, which develops into a big anticyclonic (cyclonic) gyre while moving eastward to the deep basin. During the transitions, a dipole structure, cyclonic (anticyclonic) in the north and anticyclonic (cyclonic) in the south, may be formed southeast off Vietnam with a strong zonal jet around 10°~12° N. The seasonal variation is modulated by the interannual variations. Besides the strong 1997/1998 event in response to the peak Pacific El Nio in 1997, the overall SCS sea level is found to have a significant rise during 1999~2001, however, in summer 2004 the overall SCS sea level is lower and the basin-wide anticyclonic gyre becomes weaker than the other years. 展开更多
关键词 circulation patterns self-organizing map satellite altimetry annual cycle inter-annual variation South China Sea
下载PDF
Feature Extraction of Kernel Regress Reconstruction for Fault Diagnosis Based on Self-organizing Manifold Learning 被引量:3
10
作者 CHEN Xiaoguang LIANG Lin +1 位作者 XU Guanghua LIU Dan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期1041-1049,共9页
The feature space extracted from vibration signals with various faults is often nonlinear and of high dimension.Currently,nonlinear dimensionality reduction methods are available for extracting low-dimensional embeddi... The feature space extracted from vibration signals with various faults is often nonlinear and of high dimension.Currently,nonlinear dimensionality reduction methods are available for extracting low-dimensional embeddings,such as manifold learning.However,these methods are all based on manual intervention,which have some shortages in stability,and suppressing the disturbance noise.To extract features automatically,a manifold learning method with self-organization mapping is introduced for the first time.Under the non-uniform sample distribution reconstructed by the phase space,the expectation maximization(EM) iteration algorithm is used to divide the local neighborhoods adaptively without manual intervention.After that,the local tangent space alignment(LTSA) algorithm is adopted to compress the high-dimensional phase space into a more truthful low-dimensional representation.Finally,the signal is reconstructed by the kernel regression.Several typical states include the Lorenz system,engine fault with piston pin defect,and bearing fault with outer-race defect are analyzed.Compared with the LTSA and continuous wavelet transform,the results show that the background noise can be fully restrained and the entire periodic repetition of impact components is well separated and identified.A new way to automatically and precisely extract the impulsive components from mechanical signals is proposed. 展开更多
关键词 feature extraction manifold learning self-organize mapping kernel regression local tangent space alignment
下载PDF
Biologically inspired self-organizing networks 被引量:2
11
作者 Naoki WAKAMIYA Kenji LEIBNITZ Masayuki MURATA 《智能系统学报》 2009年第4期369-375,共7页
Information networks are becoming more and more complex to accommodate a continuously increasing amount of traffic and networked devices,as well as having to cope with a growing diversity of operating environments and... Information networks are becoming more and more complex to accommodate a continuously increasing amount of traffic and networked devices,as well as having to cope with a growing diversity of operating environments and applications. Therefore,it is foreseeable that future information networks will frequently face unexpected problems,some of which could lead to the complete collapse of a network. To tackle this problem,recent attempts have been made to design novel network architectures which achieve a high level of scalability,adaptability,and robustness by taking inspiration from self-organizing biological systems. The objective of this paper is to discuss biologically inspired networking technologies. 展开更多
关键词 人工智能 人工神经网络 自动推理 专家系统
下载PDF
Parametrization of Survival Measures, Part I: Consequences of Self-Organizing 被引量:2
12
作者 Oliver Szasz Andras Szasz 《International Journal of Clinical Medicine》 2020年第5期316-347,共32页
Lifetime analyses frequently apply a parametric functional description from measured data of the Kaplan-Meier non-parametric estimate (KM) of the survival probability. The cumulative Weibull distribution function (WF)... Lifetime analyses frequently apply a parametric functional description from measured data of the Kaplan-Meier non-parametric estimate (KM) of the survival probability. The cumulative Weibull distribution function (WF) is the primary choice to parametrize the KM. but some others (e.g. Gompertz, logistic functions) are also widely applied. We show that the cumulative two-parametric Weibull function meets all requirements. The Weibull function is the consequence of the general self-organizing behavior of the survival, and consequently shows self-similar death-rate as a function of the time. The ontogenic universality as well as the universality of tumor-growth fits to WF. WF parametrization needs two independent parameters, which could be obtained from the median and mean values of KM estimate, which makes an easy parametric approximation of the KM plot. The entropy of the distribution and the other entropy descriptions are supporting the parametrization validity well. The goal is to find the most appropriate mining of the inherent information in KM-plots. The two-parameter WF fits to the non-parametric KM survival curve in a real study of 1180 cancer patients offering satisfactory description of the clinical results. Two of the 3 characteristic parameters of the KM plot (namely the points of median, mean or inflection) are enough to reconstruct the parametric fit, which gives support of the comparison of survival curves of different patient’s groups. 展开更多
关键词 self-organizing self-SIMILARITY Avrami-Function Weibull-Distribution Survival-Time ALLOMETRY Entropy Bioscaling
下载PDF
Waterlogging risk assessment based on self-organizing map(SOM)artificial neural networks:a case study of an urban storm in Beijing 被引量:2
13
作者 LAI Wen-li WANG Hong-rui +2 位作者 WANG Cheng ZHANG Jie ZHAO Yong 《Journal of Mountain Science》 SCIE CSCD 2017年第5期898-905,共8页
Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annu... Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annuallyinthe urban area of Beijing, the capital of China. Based on a selforganizing map(SOM) artificial neural network(ANN), a graded waterlogging risk assessment was conducted on 56 low-lying points in Beijing, China. Social risk factors, such as Gross domestic product(GDP), population density, and traffic congestion, were utilized as input datasets in this study. The results indicate that SOM-ANNis suitable for automatically and quantitatively assessing risks associated with waterlogging. The greatest advantage of SOM-ANN in the assessment of waterlogging risk is that a priori knowledge about classification categories and assessment indicator weights is not needed. As a result, SOM-ANN can effectively overcome interference from subjective factors,producing classification results that are more objective and accurate. In this paper, the risk level of waterlogging in Beijing was divided into five grades. The points that were assigned risk grades of IV or Vwere located mainly in the districts of Chaoyang, Haidian, Xicheng, and Dongcheng. 展开更多
关键词 Waterlogging risk assessment self-organizing map(SOM) neural network Urban storm
下载PDF
Adaptive Surrogate Model Based Optimization (ASMBO) for Unknown Groundwater Contaminant Source Characterizations Using Self-Organizing Maps 被引量:2
14
作者 Shahrbanoo Hazrati-Yadkoori Bithin Datta 《Journal of Water Resource and Protection》 2017年第2期193-214,共22页
Characterization of unknown groundwater contaminant sources in terms of location, magnitude and duration of source activity is a complex problem. In this study, to increase the efficiency and accuracy of source charac... Characterization of unknown groundwater contaminant sources in terms of location, magnitude and duration of source activity is a complex problem. In this study, to increase the efficiency and accuracy of source characterization an alternative methodology to the methodologies proposed earlier is developed. This methodology, Adaptive Surrogate Modeling Based Optimization (ASMBO) uses the capabilities of Self Organizing Map (SOM) algorithm to design the surrogate models and adaptive surrogate models for source characterization. The most important advantage of this methodology is its direct utilization for groundwater contaminant characterization without the necessity of utilizing a linked simulation optimization model. The validation of the SOM based surrogate models and SOM based adaptive surrogate models demonstrates that the quantity and quality of initial sample sizes have crucial role on the accuracy of solutions as the designed monitoring locations. The performance evaluation results of the proposed methodology are obtained using error free and erroneous concentration measurement data. These results demonstrate that the developed methodology could approximate groundwater flow and transport simulation models, and substitute the optimization model for characterization of unknown groundwater contaminant sources in terms of location, magnitude and duration of source activity. 展开更多
关键词 self-organizing Map Surrogate MODELS ADAPTIVE Surrogate MODELS GROUNDWATER Contamination Source Identification
下载PDF
Intrusion Detection Method Based on Improved Growing Hierarchical Self-Organizing Map 被引量:2
15
作者 张亚平 布文秀 +2 位作者 苏畅 王璐瑶 许涵 《Transactions of Tianjin University》 EI CAS 2016年第4期334-338,共5页
Considering that growing hierarchical self-organizing map(GHSOM) ignores the influence of individual component in sample vector analysis, and its accurate rate in detecting unknown network attacks is relatively lower,... Considering that growing hierarchical self-organizing map(GHSOM) ignores the influence of individual component in sample vector analysis, and its accurate rate in detecting unknown network attacks is relatively lower, an improved GHSOM method combined with mutual information is proposed. After theoretical analysis, experiments are conducted to illustrate the effectiveness of the proposed method by accurately clustering the input data. Based on different clusters, the complex relationship within the data can be revealed effectively. 展开更多
关键词 growing hierarchical self-organizing map(GHSOM) hierarchical structure mutual information intrusion detection network security
下载PDF
MLP training in a self-organizing state space model using unscented Kalman particle filter 被引量:3
16
作者 Yanhui Xi Hui Peng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第1期141-146,共6页
Many Bayesian learning approaches to the multi-layer perceptron (MLP) parameter optimization have been proposed such as the extended Kalman filter (EKF). This paper uses the unscented Kalman particle filter (UPF... Many Bayesian learning approaches to the multi-layer perceptron (MLP) parameter optimization have been proposed such as the extended Kalman filter (EKF). This paper uses the unscented Kalman particle filter (UPF) to train the MLP in a self- organizing state space (SOSS) model. This involves forming augmented state vectors consisting of all parameters (the weights of the MLP) and outputs. The UPF is used to sequentially update the true system states and high dimensional parameters that are inherent to the SOSS moder for the MLP simultaneously. Simulation results show that the new method performs better than traditional optimization methods. 展开更多
关键词 multi-layer perceptron (MLP) Bayesian method self-organizing state space (SOSS) unscented Kalman particle filter(UPF).
下载PDF
SELF-ORGANIZING ASSEMBLY MODELING BASED ON RELATIONAL CONSTRAINTS 被引量:1
17
作者 Tan Jianrong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2000年第2期145-152,共8页
On the research of assembly modeling of mechanical products,current CAD systems can only support the design Process of component-to-assembly. It is difficult to realize the design process of assembly-to -component.The... On the research of assembly modeling of mechanical products,current CAD systems can only support the design Process of component-to-assembly. It is difficult to realize the design process of assembly-to -component.The theory of self-organizing assembly modeling based on relational constraints is proposed, which implements the product design of assembly-to-component commencing with conceptual design and supporting abstract design and step-nice refinement design. 展开更多
关键词 Assembly modeling Assembly constraint self-organizing assembly
下载PDF
A New Dynamic Self-Organizing Method for Mobile Robot Environment Mapping 被引量:1
18
作者 Xiaogang Ruan Yuanyuan Gao +1 位作者 Hongjun Song Jing Chen 《Journal of Intelligent Learning Systems and Applications》 2011年第4期249-256,共8页
To solve the mapping problem for the mobile robots in the unknown environment, a dynamic growing self-organizing map with growing-threshold tuning automatically algorithm (DGSOMGT) based on Self-organizing Map is prop... To solve the mapping problem for the mobile robots in the unknown environment, a dynamic growing self-organizing map with growing-threshold tuning automatically algorithm (DGSOMGT) based on Self-organizing Map is proposed. It introduces a value of spread factor to describe the changing process of the growing threshold dynamically. The method realizes the network structure growing by training through mobile robot movement constantly in the unknown environment. The proposed algorithm is based on self-organizing map and can adjust the growing-threshold value by the number of network neurons increasing. It avoids tuning the parameters repeatedly by human. The experimental results show that the proposed method detects the complex environment quickly, effectively and correctly. The robot can realize environment mapping automatically. Compared with the other methods the proposed mapping strategy has better topological properties and time property. 展开更多
关键词 Mobile ROBOT Environment MAPPING Growing-Threshold Tuning self-organizing
下载PDF
Hidden Markov Models and Self-Organizing Maps Applied to Stroke Incidence
19
作者 Hiroshi Morimoto 《Open Journal of Applied Sciences》 2016年第3期158-168,共11页
Several studies were devoted to investigate the effects of meteorological factors on the occurrence of stroke. Regression models had been mostly used to assess the correlation between weather and stroke incidence. How... Several studies were devoted to investigate the effects of meteorological factors on the occurrence of stroke. Regression models had been mostly used to assess the correlation between weather and stroke incidence. However, these methods could not describe the process proceeding in the back-ground of stroke incidence. The purpose of this study was to provide a new approach based on Hidden Markov Models (HMMs) and self-organizing maps (SOM), interpreting the background from the viewpoint of weather variability. Based on meteorological data, SOM was performed to classify weather patterns. Using these classes by SOM as randomly changing “states”, our Hidden Markov Models were constructed with “observation data” that were extracted from the daily data of emergency transport at Nagoya City in Japan. We showed that SOM was an effective method to get weather patterns that would serve as “states” of Hidden Markov Models. Our Hidden Markov Models provided effective models to clarify background process for stroke incidence. The effectiveness of these Hidden Markov Models was estimated by stochastic test for root mean square errors (RMSE). “HMMs with states by SOM” would serve as a description of the background process of stroke incidence and were useful to show the influence of weather on stroke onset. This finding will contribute to an improvement of our understanding for links between weather variability and stroke incidence. 展开更多
关键词 Hidden Markov Model self organized Maps STROKE Cerebral Infarction
下载PDF
A self-organizing shortest path finding strategy on complex networks
20
作者 沈毅 裴文江 +1 位作者 王开 王少平 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第9期3783-3789,共7页
The shortcomings of traditional methods to find the shortest path are revealed, and a strategy of finding the self- organizing shortest path based on thermal flux diffusion on complex networks is presented. In our met... The shortcomings of traditional methods to find the shortest path are revealed, and a strategy of finding the self- organizing shortest path based on thermal flux diffusion on complex networks is presented. In our method, the shortest paths between the source node and the other nodes are found to be self-organized by comparing node temperatures. The computation complexity of the method scales linearly with the number of edges on underlying networks. The effects of the method on several networks, including a regular network proposed by Ravasz and Barabasi which is called the RB network, a real network, a random network proposed by Ravasz and Barabasi which is called the ER network and a scale-free network, are also demonstrated. Analytic and simulation results show that the method has a higher accuracy and lower computational complexity than the conventional methods. 展开更多
关键词 complex networks self-organIZATION the shortest path thermal flux diffusion
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部