According to the theory of similarity, a three-dimensional simulation study on the self-vibrational characteristics of the 2050mm hot-strip finishing mill housing at Baoshan Iron and Steel Complex has been carried out...According to the theory of similarity, a three-dimensional simulation study on the self-vibrational characteristics of the 2050mm hot-strip finishing mill housing at Baoshan Iron and Steel Complex has been carried out. The analysis of the main vibrational modes of the first three orders has also been done by means of holographic interferometry. In addition, the authors have carried out the numerical analysis of finite elements in three dimensions. The comparison of the results of both analyses (simulation analysis and numerical analysis of finite element) shows that they are consistent.展开更多
Based on vibration analysis, single-layered graphene sheet (SLGS) with multiple attached nanoparticles is developed as nanoscale mass sensor in thermal environments. Graphene sensors are assumed to be in simplysuppo...Based on vibration analysis, single-layered graphene sheet (SLGS) with multiple attached nanoparticles is developed as nanoscale mass sensor in thermal environments. Graphene sensors are assumed to be in simplysupported configuration. Based on the nonlocal plate the- ory which incorporates size effects into the classical theory, closed-form expressions lot the frequencies and relative fre- quency shills of SLGS-based mass sensor are derived using the Galerkin method. The suggested model is justified by a good agreement between the results given by the present model and available data in literature. The effects of tem- perature difference, nonlocal parameter, the location of the nanoparticle and the number of nanoparticles on the relative frequency shift of the mass sensor are also elucidated. The obtained results show that the sensitivity of the SLGS- based mass sensor increases with increasing temperature difference.展开更多
The paper proposes an analytical approach to investigate the synchronization of the two coupled exciters in a vibrating system of spatial motion. Introducing the distur- bance parameters for average angular velocity o...The paper proposes an analytical approach to investigate the synchronization of the two coupled exciters in a vibrating system of spatial motion. Introducing the distur- bance parameters for average angular velocity of two excit- ers, we deduce the non-dimensional coupling equations of angular velocities of two exciters, in which the inertia cou- pling matrix is symmetric and the stiffness coupling matrix is antisymmetric in a non-resonant vibrating system. The analysis of the coupling dynamic characteristic shows that the coupled cosine effect of the phase angles will cause the torque acting on two motors to limit the increase of phase difference between two exciters as well as sustain its sym- metry of two exciters during the running process. It physi- cally explains the peculiarity of self-synchronization of two exciters. The cosine effect of phase angles of the vibrations excited by each exciter will decrease its moment of inertia. The residual moment of inertia of each exciter represents its relative moment of inertia. The stability condition of synchro- nization of two exciters is that the relative non-dimensional moments of inertia of two exciters are all greater than zero and four times their product is greater than the square of their coefficient of coupled cosine effect of phase angles, which is equivalent to that the inertia coupling matrix is positive definite and all its elements are positive. The numeric results show that the structure of the vibrating system can ensure the stability condition of synchronous operation.展开更多
Using geometry optimization and DFT method at the B3LYP/6-31G* level for C20H10, an equilibrium geometry is identified to have the form of polyhedral hydrocarbon with five carbon-carbon single bonds linking two pentap...Using geometry optimization and DFT method at the B3LYP/6-31G* level for C20H10, an equilibrium geometry is identified to have the form of polyhedral hydrocarbon with five carbon-carbon single bonds linking two pentaprismane cages. Thus, C20H10 is a tri-cage molecule with three pentaprismane cages. Vibrational frequencies and infrared spectrum are computed at the same level. The heat of formation for this molecule has also been estimated in this paper.展开更多
The molecule with Th symmetry is rare.A dodecahedrane-like molecule C12H12B8 with uncommon Th symmetry has been reported here.Density functional calculations and minimization techniques have been employed to character...The molecule with Th symmetry is rare.A dodecahedrane-like molecule C12H12B8 with uncommon Th symmetry has been reported here.Density functional calculations and minimization techniques have been employed to characterize its structural and electronic properties.Its geometry,electronic properties,vibrational frequencies and heat of formation have been calculated at the B3LYP/6-311+G(d,p) level of theory.The absence of imaginary vibrational frequency confirms that it corresponds to true minimum on the potential energy hypersurface.Its vibrational bands in the IR intensity have been discussed and compared with future experimental identification.At the B3LYP/6-311+G(d,p) level,the heat of formation has been calculated to be 720.9 kJ mol^-1 using the isodesmic reaction.According to this value,it is a potential high energy density molecule.展开更多
Geometries, energies, and vibrational frequencies for two C4N12O4 isomers with pagodane- and isopagodane-like structures have been calculated at the B3LYP/6-31G* level.Isomers 1 and 2 are of D2h and D2d symmetry, res...Geometries, energies, and vibrational frequencies for two C4N12O4 isomers with pagodane- and isopagodane-like structures have been calculated at the B3LYP/6-31G* level.Isomers 1 and 2 are of D2h and D2d symmetry, respectively. Heats of formation for the two C4N12O4 isomers have been estimated in this paper, indicating they would be reasonable candidates for high energy density materials.展开更多
The optimized molecular structure and harmonic vibrational frequencies of a 1,4-bis [ 2-(4-pyridyl)ethenyl]- benzene(BPENB) molecule were calculated via five popular density functional theory(DFI') methods. On ...The optimized molecular structure and harmonic vibrational frequencies of a 1,4-bis [ 2-(4-pyridyl)ethenyl]- benzene(BPENB) molecule were calculated via five popular density functional theory(DFI') methods. On the basis of the comparison between calculated and experimental results, it is concluded that the B3PW91 and B3LYP methods are superior to the others in optimizing structures, and the BPW91 method reproduces the observed fundamental fre-quencies most satisfactorily.展开更多
文摘According to the theory of similarity, a three-dimensional simulation study on the self-vibrational characteristics of the 2050mm hot-strip finishing mill housing at Baoshan Iron and Steel Complex has been carried out. The analysis of the main vibrational modes of the first three orders has also been done by means of holographic interferometry. In addition, the authors have carried out the numerical analysis of finite elements in three dimensions. The comparison of the results of both analyses (simulation analysis and numerical analysis of finite element) shows that they are consistent.
文摘Based on vibration analysis, single-layered graphene sheet (SLGS) with multiple attached nanoparticles is developed as nanoscale mass sensor in thermal environments. Graphene sensors are assumed to be in simplysupported configuration. Based on the nonlocal plate the- ory which incorporates size effects into the classical theory, closed-form expressions lot the frequencies and relative fre- quency shills of SLGS-based mass sensor are derived using the Galerkin method. The suggested model is justified by a good agreement between the results given by the present model and available data in literature. The effects of tem- perature difference, nonlocal parameter, the location of the nanoparticle and the number of nanoparticles on the relative frequency shift of the mass sensor are also elucidated. The obtained results show that the sensitivity of the SLGS- based mass sensor increases with increasing temperature difference.
基金supported by Liaoning Province College Science and Research(2008S095)the Key Project of the National Natural Science Foundation of China(50535010,50805020)High-tech Research and Development Program of China(2007AA04Z442)
文摘The paper proposes an analytical approach to investigate the synchronization of the two coupled exciters in a vibrating system of spatial motion. Introducing the distur- bance parameters for average angular velocity of two excit- ers, we deduce the non-dimensional coupling equations of angular velocities of two exciters, in which the inertia cou- pling matrix is symmetric and the stiffness coupling matrix is antisymmetric in a non-resonant vibrating system. The analysis of the coupling dynamic characteristic shows that the coupled cosine effect of the phase angles will cause the torque acting on two motors to limit the increase of phase difference between two exciters as well as sustain its sym- metry of two exciters during the running process. It physi- cally explains the peculiarity of self-synchronization of two exciters. The cosine effect of phase angles of the vibrations excited by each exciter will decrease its moment of inertia. The residual moment of inertia of each exciter represents its relative moment of inertia. The stability condition of synchro- nization of two exciters is that the relative non-dimensional moments of inertia of two exciters are all greater than zero and four times their product is greater than the square of their coefficient of coupled cosine effect of phase angles, which is equivalent to that the inertia coupling matrix is positive definite and all its elements are positive. The numeric results show that the structure of the vibrating system can ensure the stability condition of synchronous operation.
基金This work was supported by the Natural Science Foundation of Shandong Province (Y2002G11)
文摘Using geometry optimization and DFT method at the B3LYP/6-31G* level for C20H10, an equilibrium geometry is identified to have the form of polyhedral hydrocarbon with five carbon-carbon single bonds linking two pentaprismane cages. Thus, C20H10 is a tri-cage molecule with three pentaprismane cages. Vibrational frequencies and infrared spectrum are computed at the same level. The heat of formation for this molecule has also been estimated in this paper.
基金supported by the Natural Science Foundation of Shandong Province (No. ZR2011BM022)
文摘The molecule with Th symmetry is rare.A dodecahedrane-like molecule C12H12B8 with uncommon Th symmetry has been reported here.Density functional calculations and minimization techniques have been employed to characterize its structural and electronic properties.Its geometry,electronic properties,vibrational frequencies and heat of formation have been calculated at the B3LYP/6-311+G(d,p) level of theory.The absence of imaginary vibrational frequency confirms that it corresponds to true minimum on the potential energy hypersurface.Its vibrational bands in the IR intensity have been discussed and compared with future experimental identification.At the B3LYP/6-311+G(d,p) level,the heat of formation has been calculated to be 720.9 kJ mol^-1 using the isodesmic reaction.According to this value,it is a potential high energy density molecule.
基金This work was supported by the Natural Science Foundation of Shandong Province (Y2002G11)
文摘Geometries, energies, and vibrational frequencies for two C4N12O4 isomers with pagodane- and isopagodane-like structures have been calculated at the B3LYP/6-31G* level.Isomers 1 and 2 are of D2h and D2d symmetry, respectively. Heats of formation for the two C4N12O4 isomers have been estimated in this paper, indicating they would be reasonable candidates for high energy density materials.
基金Supported by the National Natural Science Foundation of China(No.20473029)the Open Project Program of the Key Labora-tory for Supramolecular Structure and Materials of Ministry of EducationJilin University and the Fund for Doctor of Yantai University.
文摘The optimized molecular structure and harmonic vibrational frequencies of a 1,4-bis [ 2-(4-pyridyl)ethenyl]- benzene(BPENB) molecule were calculated via five popular density functional theory(DFI') methods. On the basis of the comparison between calculated and experimental results, it is concluded that the B3PW91 and B3LYP methods are superior to the others in optimizing structures, and the BPW91 method reproduces the observed fundamental fre-quencies most satisfactorily.