The interest on the use of renewable energy resources is increasing, especially towards wind and hydro powers, which should be efficiently converted into electric energy via suitable technology tools. To this aim, sel...The interest on the use of renewable energy resources is increasing, especially towards wind and hydro powers, which should be efficiently converted into electric energy via suitable technology tools. To this aim, self-tuning control techniques represent viable strategies that can be employed for this purpose, due to the features of these nonlinear dynamic processes working over a wide range of operating conditions, driven by stochastic inputs, excitations and disturbances. Some of the considered methods were already verified on wind turbine systems, and important advantages may thus derive from the appropriate implementation of the same control schemes for hydroelectric plants. This represents the key point of the work, which provides some guidelines on the design and the application of these control strategies to these energy conversion systems. In fact, it seems that investigations related with both wind and hydraulic energies present a reduced number of common aspects, thus leading to little exchange and share of possible common points. This consideration is particularly valid with reference to the more established wind area when compared to hydroelectric systems. In this way, this work recalls the models of wind turbine and hydroelectric system, and investigates the application of different control solutions. Another important point of this investigation regards the analysis of the exploited benchmark models, their control objectives, and the development of the control solutions. The working conditions of these energy conversion systems will also be taken into account in order to highlight the reliability and robustness characteristics of the developed control strategies, especially interesting for remote and relatively inaccessible location of many installations.展开更多
分布式资源(distributed energy resources,DERs)的随机元素会引起多虚拟电厂(multi-virtual power plant,MVPP)系统内虚拟电厂(virtual power plant,VPP)策略频繁变化。对于某主体,如何感知其他主体策略突然变化时对自身收益的影响趋势...分布式资源(distributed energy resources,DERs)的随机元素会引起多虚拟电厂(multi-virtual power plant,MVPP)系统内虚拟电厂(virtual power plant,VPP)策略频繁变化。对于某主体,如何感知其他主体策略突然变化时对自身收益的影响趋势,并快速调整自身策略,是亟需解决的难点。该文提出基于二阶随机动力学的多虚拟电厂自趋优能量管理策略,旨在提升VPP应对其他主体策略变化时的自治能力。首先,针对DERs异质运行特性,聚焦可调空间构建VPP聚合运行模型;然后,基于随机图描绘VPP策略变化的随机特性;其次,用二阶随机动力学方程(stochastic dynamic equation,SDE)探索VPP收益结构的自发演化信息,修正其他主体策略变化时自身综合收益;再次,将修正收益作为融合软动作-评价(integrated soft actor–critic,ISAC)强化学习算法的奖励搭建多智能体求解框架。最后,设计多算法对比实验,验证了该文策略的自趋优性能。展开更多
文摘The interest on the use of renewable energy resources is increasing, especially towards wind and hydro powers, which should be efficiently converted into electric energy via suitable technology tools. To this aim, self-tuning control techniques represent viable strategies that can be employed for this purpose, due to the features of these nonlinear dynamic processes working over a wide range of operating conditions, driven by stochastic inputs, excitations and disturbances. Some of the considered methods were already verified on wind turbine systems, and important advantages may thus derive from the appropriate implementation of the same control schemes for hydroelectric plants. This represents the key point of the work, which provides some guidelines on the design and the application of these control strategies to these energy conversion systems. In fact, it seems that investigations related with both wind and hydraulic energies present a reduced number of common aspects, thus leading to little exchange and share of possible common points. This consideration is particularly valid with reference to the more established wind area when compared to hydroelectric systems. In this way, this work recalls the models of wind turbine and hydroelectric system, and investigates the application of different control solutions. Another important point of this investigation regards the analysis of the exploited benchmark models, their control objectives, and the development of the control solutions. The working conditions of these energy conversion systems will also be taken into account in order to highlight the reliability and robustness characteristics of the developed control strategies, especially interesting for remote and relatively inaccessible location of many installations.
文摘分布式资源(distributed energy resources,DERs)的随机元素会引起多虚拟电厂(multi-virtual power plant,MVPP)系统内虚拟电厂(virtual power plant,VPP)策略频繁变化。对于某主体,如何感知其他主体策略突然变化时对自身收益的影响趋势,并快速调整自身策略,是亟需解决的难点。该文提出基于二阶随机动力学的多虚拟电厂自趋优能量管理策略,旨在提升VPP应对其他主体策略变化时的自治能力。首先,针对DERs异质运行特性,聚焦可调空间构建VPP聚合运行模型;然后,基于随机图描绘VPP策略变化的随机特性;其次,用二阶随机动力学方程(stochastic dynamic equation,SDE)探索VPP收益结构的自发演化信息,修正其他主体策略变化时自身综合收益;再次,将修正收益作为融合软动作-评价(integrated soft actor–critic,ISAC)强化学习算法的奖励搭建多智能体求解框架。最后,设计多算法对比实验,验证了该文策略的自趋优性能。