A self-adaptive large neighborhood search method for scheduling n jobs on m non-identical parallel machines with mul- tiple time windows is presented. The problems' another feature lies in oversubscription, namely no...A self-adaptive large neighborhood search method for scheduling n jobs on m non-identical parallel machines with mul- tiple time windows is presented. The problems' another feature lies in oversubscription, namely not all jobs can be scheduled within specified scheduling horizons due to the limited machine capacity. The objective is thus to maximize the overall profits of processed jobs while respecting machine constraints. A first-in- first-out heuristic is applied to find an initial solution, and then a large neighborhood search procedure is employed to relax and re- optimize cumbersome solutions. A machine learning mechanism is also introduced to converge on the most efficient neighborhoods for the problem. Extensive computational results are presented based on data from an application involving the daily observation scheduling of a fleet of earth observing satellites. The method rapidly solves most problem instances to optimal or near optimal and shows a robust performance in sensitive analysis.展开更多
The goal of this paper is to find an excellent adaptive window function for extracting the weak vibration signal and high frequency vibration signal under strong noise.The relationship between windowing transform andf...The goal of this paper is to find an excellent adaptive window function for extracting the weak vibration signal and high frequency vibration signal under strong noise.The relationship between windowing transform andfiltering is analyzed first in the paper.The advantage of adjustable time-frequency window of wavelet transform is introduced.Secondly the relationship between harmonic wavelet and multiple analytic band-pass filter is analyzed.The coherence of the multiple analytic band-pass filter and harmonic wavelet base function is discussed,and the characteristic that multiple analytic band-pass filter included in the harmonic wavelet transform is founded.Thirdly,by extending the harmonic wavelet transform,the concept of the adaptive harmonic window and its theoretical equation without decomposition are put forward in this paper.Then comparing with the Hanning window,the good performance of restraining side-lobe leakage possessed by adaptive harmonic window is shown,and the adaptive characteristics of window width changing and analytical center moving of the adaptive harmonic window are presented.Finally,the proposed adaptive harmonic window is applied to weak signal extraction and high frequency orbit extraction of high speed rotor under strong noise,and the satisfactory results are achieved.The application results show that the adaptive harmonic window function can be successfully applied to the actual engineering signal processing.展开更多
This paper proposes a technique that uses the number of oscillation cycles(NOC)of a VCO-based comparator to set multiple adaptive bypass windows in a 12-bit successive approximation register(SAR)analog-to-digital conv...This paper proposes a technique that uses the number of oscillation cycles(NOC)of a VCO-based comparator to set multiple adaptive bypass windows in a 12-bit successive approximation register(SAR)analog-to-digital converter(ADC).The analysis of the number of bit cycles,power and static performance shows that three adaptive bypass windows reduce power consumption,and decrease DNL and have similar INL,compared with the SAR ADC without bypass windows.In addition,a 1-bit split-and-recombination redundancy technique and a general bypass logic digital error correction method are proposed to address the settling issues and optimize the size of the bypass window.This design is implemented in 40 nm CMOS technology.The conversion frequency of the ADC reaches up to 30 MS/s.The ADC achieves an SFDR of 85.35 dB and 11.12-bit ENOB with Nyquist input,consuming 380μW,down from 427μW without multiple adaptive bypass windows,at a 1.1 V supply,resulting in a figure of merit(FoM)of 5.69 fJ/conversion-step.展开更多
An LMS adaptive time delay estimation method with two windows is presented. This method can reduce the superfluous calculation greatly when the time of correlation is long. It is suitable for the time delay estimation...An LMS adaptive time delay estimation method with two windows is presented. This method can reduce the superfluous calculation greatly when the time of correlation is long. It is suitable for the time delay estimation of white band-limited random signals. The feasibility and the performances of this method are also studied.展开更多
In order to mitigate speckle noise in synthetic aperture radar(SAR)images and enhance the accuracy of SAR tomography,non-local means(NL-means)filtering has been proven to be an effective method for improving the quali...In order to mitigate speckle noise in synthetic aperture radar(SAR)images and enhance the accuracy of SAR tomography,non-local means(NL-means)filtering has been proven to be an effective method for improving the quality of SAR interferograms.Apart from considerations like noise type and the definition of similarity,the size and shape of filtering windows are critical factors influencing the efficacy of NL-means filtering,yet there has been limited research on this aspect.This paper introduces an enhanced NL-means filtering method based on adaptive windows,allowing for the automatic adjustment of filtering window size according to the amplitude information of the SAR interferogram.Simultaneously,a directional window is incorporated to align SAR interferograms,achieving the dual objective of preserving filtering standards and retaining detailed information.Experimental results on interferogram filtering and tomography,based on TerraSAR-X data,demonstrate that the proposed method effectively reduces phase noise while maintaining texture accuracy,thereby improving tomography quality.展开更多
One of the advantages of laser speckle is detecting microvascular through image processing. This paper proposes a new image processing method for laser speckle, adaptive window method that adaptively processes laser s...One of the advantages of laser speckle is detecting microvascular through image processing. This paper proposes a new image processing method for laser speckle, adaptive window method that adaptively processes laser speckle images in the space. Disadvantage of conventional fixed window method is that it uses the same window size regardless of target areas. Inherently laser speckle contains undesired noise. Thus a large window is helpful for removing the noise, but it results in low resolution of image. Otherwise a small window may detect micro vascular but it has limits in noise removal. To overcome this trade-off, the concept of adaptive window method is newly introduced to conventional laser speckle image analysis. In addition, the modified adaptive window method applied to other selection images. We have compared conventional Laser Speckle Contrast Analysis (LASCA) and its variants with the proposed method in terms of image quality and processing complexity, Moreover compared the result of the accompamed changing sdection images have also been compared.展开更多
This paper investigates the thermal performance of a new adaptive window which is seasonally reversible.The new window is similar in construction to the regular double-hung low-e windows,but can reverse its properties...This paper investigates the thermal performance of a new adaptive window which is seasonally reversible.The new window is similar in construction to the regular double-hung low-e windows,but can reverse its properties.In this window,the low-e coating faces the inside during the heating season,which reflects the infrared radiation to the inside.During the cooling season,the low-e coating faces the outside to reflect the outside heat.This window was tested in two test cells to evaluate its thermal performance.WINDOW5.2a software was used to predict the window thermal properties and BEANS building simulation software was used to predict the energy savings of the new window design.The simulation results showed an increase in the heat gain through the new window of up to 38%over the conventional double-glazing low-e window during the heating period for heavy thermal mass buildings,and 14%for light weight thermal mass buildings.At the same time,the window maintained its low heat gain properties in the cooling season.When used in moderate climates,the new adaptive window will significantly reduce energy consumption in buildings during both the heating and the cooling seasons.展开更多
Due to the fact that conventional heuristic attribute reduction algorithms are poor in running efficiency and difficult in accomplishing the co-evolutionary reduction mechanism in the decision table, an adaptive multi...Due to the fact that conventional heuristic attribute reduction algorithms are poor in running efficiency and difficult in accomplishing the co-evolutionary reduction mechanism in the decision table, an adaptive multicascade attribute reduction algorithm based on quantum-inspired mixed co-evolution is proposed. First, a novel and efficient self- adaptive quantum rotation angle strategy is designed to direct the participating populations to mutual adaptive evolution and to accelerate convergence speed. Then, a multicascade model of cooperative and competitive mixed co-evolution is adopted to decompose the evolutionary attribute species into subpopulations according to their historical performance records, which can increase the diversity of subpopulations and select some elitist individuals so as to strengthen the sharing ability of their searching experience. So the global optimization reduction set can be obtained quickly. The experimental results show that, compared with the existing algorithms, the proposed algorithm can achieve a higher performance for attribute reduction, and it can be considered as a more competitive heuristic algorithm on the efficiency and accuracy of minimum attribute reduction.展开更多
Due to the limited transmission resources for data relay in the tracking and data relay satellite system (TDRSS), there are many job requirements in busy days which will be discarded in the conventional job scheduli...Due to the limited transmission resources for data relay in the tracking and data relay satellite system (TDRSS), there are many job requirements in busy days which will be discarded in the conventional job scheduling model. Therefore, the improvement of scheduling efficiency in the TDRSS can not only help to increase the resource utilities, but also to reduce the scheduling failure ratio. A model of nonhomogeneous parallel machines scheduling problems with time window (NPM-TW) is firstly built up for the TDRSS, considering the distinct features of the variable preparation time and the nonhomogeneous transmission rates for different types of antennas on each tracking and data relay satellite (TDRS). Then, an adaptive subsequence adjustment (ASA) framework with evolutionary asymmetric path-relinking (EvAPR) is proposed to solve this problem, in which an asymmetric progressive crossover operation is involved to overcome the local optima by the conventional job inserting methods. The numerical results show that, compared with the classical greedy randomized adaptive search procedure (GRASP) algorithm, the scheduling failure ratio of jobs can be reduced over 11% on average by the proposed ASA with EvAPR.展开更多
The surface-related multiple elimination(SRME) method is based on feedback formulation and has become one of the most preferred multiple suppression methods used. However, some differences are apparent between the pre...The surface-related multiple elimination(SRME) method is based on feedback formulation and has become one of the most preferred multiple suppression methods used. However, some differences are apparent between the predicted multiples and those in the source seismic records, which may result in conventional adaptive multiple subtraction methods being barely able to effectively suppress multiples in actual production. This paper introduces a combined adaptive multiple attenuation method based on the optimized event tracing technique and extended Wiener filtering. The method firstly uses multiple records predicted by SRME to generate a multiple velocity spectrum, then separates the original record to an approximate primary record and an approximate multiple record by applying the optimized event tracing method and short-time window FK filtering method. After applying the extended Wiener filtering method, residual multiples in the approximate primary record can then be eliminated and the damaged primary can be restored from the approximate multiple record. This method combines the advantages of multiple elimination based on the optimized event tracing method and the extended Wiener filtering technique. It is an ideal method for suppressing typical hyperbolic and other types of multiples, with the advantage of minimizing damage of the primary. Synthetic and field data tests show that this method produces better multiple elimination results than the traditional multi-channel Wiener filter method and is more suitable for multiple elimination in complicated geological areas.展开更多
The multitrip pickup and delivery problem with time windows and manpower planning(MTPDPTW-MP)determines a set of ambulance routes and finds staff assignment for a hospital. It involves different stakeholders with dive...The multitrip pickup and delivery problem with time windows and manpower planning(MTPDPTW-MP)determines a set of ambulance routes and finds staff assignment for a hospital. It involves different stakeholders with diverse interests and objectives. This study firstly introduces a multiobjective MTPDPTW-MP(MO-MTPDPTWMP) with three objectives to better describe the real-world scenario. A multiobjective iterated local search algorithm with adaptive neighborhood selection(MOILS-ANS) is proposed to solve the problem. MOILS-ANS can generate a diverse set of alternative solutions for decision makers to meet their requirements. To better explore the search space, problem-specific neighborhood structures and an adaptive neighborhood selection strategy are carefully designed in MOILS-ANS. Experimental results show that the proposed MOILS-ANS significantly outperforms the other two multiobjective algorithms. Besides, the nature of objective functions and the properties of the problem are analyzed. Finally, the proposed MOILS-ANS is compared with the previous single-objective algorithm and the benefits of multiobjective optimization are discussed.展开更多
Adaptive digital filtering has traditionally been developed based on the minimum mean square error (MMSE) criterion and has found ever-increasing applications in communications. This paper presents an alternative ad...Adaptive digital filtering has traditionally been developed based on the minimum mean square error (MMSE) criterion and has found ever-increasing applications in communications. This paper presents an alternative adaptive filtering design based on the minimum symbol error rate (MSER) criterion for communication applications. It is shown that the MSER filtering is smarter, as it exploits the non-Gaussian distribution of filter output effectively. Consequently, it provides significant performance gain in terms of smaller symbol error over the MMSE approach. Adopting Parzen window or kernel density estimation for a probability density function, a block-data gradient adaptive MSER algorithm is derived. A stochastic gradient adaptive MSER algorithm, referred to as the least symbol error rate, is further developed for sample-by-sample adaptive implementation of the MSER filtering. Two applications, involving single-user channel equalization and beamforming assisted receiver, are included to demonstrate the effectiveness and generality of the proposed adaptive MSER filtering approach.展开更多
In this paper, the performance of median filter, elevation dependent adaptive sigma median filter, and directionally dependent adaptive sigma median filter are tested on both InSAR Tandem DEM and simulated high-level ...In this paper, the performance of median filter, elevation dependent adaptive sigma median filter, and directionally dependent adaptive sigma median filter are tested on both InSAR Tandem DEM and simulated high-level noisy DEM. Through the comparison, the directionally dependent adaptive sigma median filter is proved to be the most effective one not only in the noise removing but also in the boundary preserve.展开更多
The scheduling efficiency of the tracking and data relay satellite system(TDRSS)is strictly limited by the scheduling degrees of freedom(DoF),including time DoF defined by jobs' flexible time windows and spatial ...The scheduling efficiency of the tracking and data relay satellite system(TDRSS)is strictly limited by the scheduling degrees of freedom(DoF),including time DoF defined by jobs' flexible time windows and spatial DoF brought by multiple servable tracking and data relay satellites(TDRSs).In this paper,ageneralized multiple time windows(GMTW)model is proposed to fully exploit the time and spatial DoF.Then,the improvements of service capability and job-completion probability based on the GMTW are theoretically proved.Further,an asymmetric path-relinking(APR)based heuristic job scheduling framework is presented to maximize the usage of DoF provided by the GMTW.Simulation results show that by using our proposal 11%improvement of average jobcompletion probability can be obtained.Meanwhile,the computing time of the time-to-target can be shorten to 1/9 of the GRASP.展开更多
The study aims to investigate the financial technology(FinTech)factors influencing Chinese banking performance.Financial expectations and global realities may be changed by FinTech’s multidimensional scope,which is l...The study aims to investigate the financial technology(FinTech)factors influencing Chinese banking performance.Financial expectations and global realities may be changed by FinTech’s multidimensional scope,which is lacking in the traditional financial sector.The use of technology to automate financial services is becoming more important for economic organizations and industries because the digital age has seen a period of transition in terms of consumers and personalization.The future of FinTech will be shaped by technologies like the Internet of Things,blockchain,and artificial intelligence.The involvement of these platforms in financial services is a major concern for global business growth.FinTech is becoming more popular with customers because of such benefits.FinTech has driven a fundamental change within the financial services industry,placing the client at the center of everything.Protection has become a primary focus since data are a component of FinTech transactions.The task of consolidating research reports for consensus is very manual,as there is no standardized format.Although existing research has proposed certain methods,they have certain drawbacks in FinTech payment systems(including cryptocurrencies),credit markets(including peer-to-peer lending),and insurance systems.This paper implements blockchainbased financial technology for the banking sector to overcome these transition issues.In this study,we have proposed an adaptive neuro-fuzzy-based K-nearest neighbors’algorithm.The chaotic improved foraging optimization algorithm is used to optimize the proposed method.The rolling window autoregressive lag modeling approach analyzes FinTech growth.The proposed algorithm is compared with existing approaches to demonstrate its efficiency.The findings showed that it achieved 91%accuracy,90%privacy,96%robustness,and 25%cyber-risk performance.Compared with traditional approaches,the recommended strategy will be more convenient,safe,and effective in the transition period.展开更多
Adaptive optimization is one of the means that agile organization of command and control resource (AOC2R) adapts for the dynamic battlefield environment. A math model of the adaptive optimization of AOC2R is put for...Adaptive optimization is one of the means that agile organization of command and control resource (AOC2R) adapts for the dynamic battlefield environment. A math model of the adaptive optimization of AOC2R is put forward by analyzing the interrelating concept and research. The model takes the adaptive process as a multi-stage decision making problem. The 2-phases method is presented to calculate the model, which obtains the related parameters by running the colored Petri net (CPN) model of AOC2R and then searches for the result by ant colony optimization (ACO) algorithm integrated with genetic optimization techniques. The simulation results demonstrate that the proposed algorithm greatly improves the performance of AOC2R.展开更多
Textual data streams have been extensively used in practical applications where consumers of online products have expressed their views regarding online products.Due to changes in data distribution,commonly referred t...Textual data streams have been extensively used in practical applications where consumers of online products have expressed their views regarding online products.Due to changes in data distribution,commonly referred to as concept drift,mining this data stream is a challenging problem for researchers.The majority of the existing drift detection techniques are based on classification errors,which have higher probabilities of false-positive or missed detections.To improve classification accuracy,there is a need to develop more intuitive detection techniques that can identify a great number of drifts in the data streams.This paper presents an adaptive unsupervised learning technique,an ensemble classifier based on drift detection for opinion mining and sentiment classification.To improve classification performance,this approach uses four different dissimilarity measures to determine the degree of concept drifts in the data stream.Whenever a drift is detected,the proposed method builds and adds a new classifier to the ensemble.To add a new classifier,the total number of classifiers in the ensemble is first checked if the limit is exceeded before the classifier with the least weight is removed from the ensemble.To this end,a weighting mechanism is used to calculate the weight of each classifier,which decides the contribution of each classifier in the final classification results.Several experiments were conducted on real-world datasets and the resultswere evaluated on the false positive rate,miss detection rate,and accuracy measures.The proposed method is also compared with the state-of-the-art methods,which include DDM,EDDM,and PageHinkley with support vector machine(SVM)and Naive Bayes classifiers that are frequently used in concept drift detection studies.In all cases,the results show the efficiency of our proposed method.展开更多
基金supported by the National Natural Science Foundation of China (7060103570801062)
文摘A self-adaptive large neighborhood search method for scheduling n jobs on m non-identical parallel machines with mul- tiple time windows is presented. The problems' another feature lies in oversubscription, namely not all jobs can be scheduled within specified scheduling horizons due to the limited machine capacity. The objective is thus to maximize the overall profits of processed jobs while respecting machine constraints. A first-in- first-out heuristic is applied to find an initial solution, and then a large neighborhood search procedure is employed to relax and re- optimize cumbersome solutions. A machine learning mechanism is also introduced to converge on the most efficient neighborhoods for the problem. Extensive computational results are presented based on data from an application involving the daily observation scheduling of a fleet of earth observing satellites. The method rapidly solves most problem instances to optimal or near optimal and shows a robust performance in sensitive analysis.
基金Project(51675262)supported by the National Natural Science Foundation of ChinaProject(6140210020102)supported by the Advance Research Field Fund Project of ChinaProject(2016YFD0700800)supported by the National Key Research and Development Plan of China
文摘The goal of this paper is to find an excellent adaptive window function for extracting the weak vibration signal and high frequency vibration signal under strong noise.The relationship between windowing transform andfiltering is analyzed first in the paper.The advantage of adjustable time-frequency window of wavelet transform is introduced.Secondly the relationship between harmonic wavelet and multiple analytic band-pass filter is analyzed.The coherence of the multiple analytic band-pass filter and harmonic wavelet base function is discussed,and the characteristic that multiple analytic band-pass filter included in the harmonic wavelet transform is founded.Thirdly,by extending the harmonic wavelet transform,the concept of the adaptive harmonic window and its theoretical equation without decomposition are put forward in this paper.Then comparing with the Hanning window,the good performance of restraining side-lobe leakage possessed by adaptive harmonic window is shown,and the adaptive characteristics of window width changing and analytical center moving of the adaptive harmonic window are presented.Finally,the proposed adaptive harmonic window is applied to weak signal extraction and high frequency orbit extraction of high speed rotor under strong noise,and the satisfactory results are achieved.The application results show that the adaptive harmonic window function can be successfully applied to the actual engineering signal processing.
基金supported by the National Natural Science Foundation of China under Grant 61534002 and Grant 61761136015.
文摘This paper proposes a technique that uses the number of oscillation cycles(NOC)of a VCO-based comparator to set multiple adaptive bypass windows in a 12-bit successive approximation register(SAR)analog-to-digital converter(ADC).The analysis of the number of bit cycles,power and static performance shows that three adaptive bypass windows reduce power consumption,and decrease DNL and have similar INL,compared with the SAR ADC without bypass windows.In addition,a 1-bit split-and-recombination redundancy technique and a general bypass logic digital error correction method are proposed to address the settling issues and optimize the size of the bypass window.This design is implemented in 40 nm CMOS technology.The conversion frequency of the ADC reaches up to 30 MS/s.The ADC achieves an SFDR of 85.35 dB and 11.12-bit ENOB with Nyquist input,consuming 380μW,down from 427μW without multiple adaptive bypass windows,at a 1.1 V supply,resulting in a figure of merit(FoM)of 5.69 fJ/conversion-step.
文摘An LMS adaptive time delay estimation method with two windows is presented. This method can reduce the superfluous calculation greatly when the time of correlation is long. It is suitable for the time delay estimation of white band-limited random signals. The feasibility and the performances of this method are also studied.
基金supported in part by the National Natural Science Foundation of China(Nos.62201051,62101039)in part by the Shandong Excellent Young Scientists Fund Program(Overseas)in part by the National Key Research and Development Program of China(No.SQ2022YFB3900055).
文摘In order to mitigate speckle noise in synthetic aperture radar(SAR)images and enhance the accuracy of SAR tomography,non-local means(NL-means)filtering has been proven to be an effective method for improving the quality of SAR interferograms.Apart from considerations like noise type and the definition of similarity,the size and shape of filtering windows are critical factors influencing the efficacy of NL-means filtering,yet there has been limited research on this aspect.This paper introduces an enhanced NL-means filtering method based on adaptive windows,allowing for the automatic adjustment of filtering window size according to the amplitude information of the SAR interferogram.Simultaneously,a directional window is incorporated to align SAR interferograms,achieving the dual objective of preserving filtering standards and retaining detailed information.Experimental results on interferogram filtering and tomography,based on TerraSAR-X data,demonstrate that the proposed method effectively reduces phase noise while maintaining texture accuracy,thereby improving tomography quality.
基金supported by the SEOUL R&BD NT070079,Korea,the ITRC(Information Technology Research Center)support program supervised by the ⅡTA(Institute for Information Technology Advancement)
文摘One of the advantages of laser speckle is detecting microvascular through image processing. This paper proposes a new image processing method for laser speckle, adaptive window method that adaptively processes laser speckle images in the space. Disadvantage of conventional fixed window method is that it uses the same window size regardless of target areas. Inherently laser speckle contains undesired noise. Thus a large window is helpful for removing the noise, but it results in low resolution of image. Otherwise a small window may detect micro vascular but it has limits in noise removal. To overcome this trade-off, the concept of adaptive window method is newly introduced to conventional laser speckle image analysis. In addition, the modified adaptive window method applied to other selection images. We have compared conventional Laser Speckle Contrast Analysis (LASCA) and its variants with the proposed method in terms of image quality and processing complexity, Moreover compared the result of the accompamed changing sdection images have also been compared.
文摘This paper investigates the thermal performance of a new adaptive window which is seasonally reversible.The new window is similar in construction to the regular double-hung low-e windows,but can reverse its properties.In this window,the low-e coating faces the inside during the heating season,which reflects the infrared radiation to the inside.During the cooling season,the low-e coating faces the outside to reflect the outside heat.This window was tested in two test cells to evaluate its thermal performance.WINDOW5.2a software was used to predict the window thermal properties and BEANS building simulation software was used to predict the energy savings of the new window design.The simulation results showed an increase in the heat gain through the new window of up to 38%over the conventional double-glazing low-e window during the heating period for heavy thermal mass buildings,and 14%for light weight thermal mass buildings.At the same time,the window maintained its low heat gain properties in the cooling season.When used in moderate climates,the new adaptive window will significantly reduce energy consumption in buildings during both the heating and the cooling seasons.
基金The National Natural Science Foundation of China(No. 61139002,61171132)the Funding of Jiangsu Innovation Program for Graduate Education (No. CXZZ11_0219 )+2 种基金the Natural Science Foundation of Jiangsu Province (No. BK2010280)the Open Project of Jiangsu Provincial Key Laboratory of Computer Information Processing Technology (No. KJS1023)the Applying Study Foundation of Nantong(No. BK2011062)
文摘Due to the fact that conventional heuristic attribute reduction algorithms are poor in running efficiency and difficult in accomplishing the co-evolutionary reduction mechanism in the decision table, an adaptive multicascade attribute reduction algorithm based on quantum-inspired mixed co-evolution is proposed. First, a novel and efficient self- adaptive quantum rotation angle strategy is designed to direct the participating populations to mutual adaptive evolution and to accelerate convergence speed. Then, a multicascade model of cooperative and competitive mixed co-evolution is adopted to decompose the evolutionary attribute species into subpopulations according to their historical performance records, which can increase the diversity of subpopulations and select some elitist individuals so as to strengthen the sharing ability of their searching experience. So the global optimization reduction set can be obtained quickly. The experimental results show that, compared with the existing algorithms, the proposed algorithm can achieve a higher performance for attribute reduction, and it can be considered as a more competitive heuristic algorithm on the efficiency and accuracy of minimum attribute reduction.
基金supported by the National Natural Science Foundation of China(6113200291338101+3 种基金91338108)the National S&T Major Project(2011ZX03004-001-01)the Research Fund of Tsinghua University(2011Z05117)the Co-innovation Laboratory of Aerospace Broadband Network Technology
文摘Due to the limited transmission resources for data relay in the tracking and data relay satellite system (TDRSS), there are many job requirements in busy days which will be discarded in the conventional job scheduling model. Therefore, the improvement of scheduling efficiency in the TDRSS can not only help to increase the resource utilities, but also to reduce the scheduling failure ratio. A model of nonhomogeneous parallel machines scheduling problems with time window (NPM-TW) is firstly built up for the TDRSS, considering the distinct features of the variable preparation time and the nonhomogeneous transmission rates for different types of antennas on each tracking and data relay satellite (TDRS). Then, an adaptive subsequence adjustment (ASA) framework with evolutionary asymmetric path-relinking (EvAPR) is proposed to solve this problem, in which an asymmetric progressive crossover operation is involved to overcome the local optima by the conventional job inserting methods. The numerical results show that, compared with the classical greedy randomized adaptive search procedure (GRASP) algorithm, the scheduling failure ratio of jobs can be reduced over 11% on average by the proposed ASA with EvAPR.
基金support of the National Natural Science Fundation of China (Nos. 41574105 and 41674118)the National Science and Technology Major Project of China (No. 2016ZX05027-002)the Scientific and Technological Innovation Project financially supported by Qingdao National Laboratory for Marine Science and Technology (No. 2015ASKJ03)
文摘The surface-related multiple elimination(SRME) method is based on feedback formulation and has become one of the most preferred multiple suppression methods used. However, some differences are apparent between the predicted multiples and those in the source seismic records, which may result in conventional adaptive multiple subtraction methods being barely able to effectively suppress multiples in actual production. This paper introduces a combined adaptive multiple attenuation method based on the optimized event tracing technique and extended Wiener filtering. The method firstly uses multiple records predicted by SRME to generate a multiple velocity spectrum, then separates the original record to an approximate primary record and an approximate multiple record by applying the optimized event tracing method and short-time window FK filtering method. After applying the extended Wiener filtering method, residual multiples in the approximate primary record can then be eliminated and the damaged primary can be restored from the approximate multiple record. This method combines the advantages of multiple elimination based on the optimized event tracing method and the extended Wiener filtering technique. It is an ideal method for suppressing typical hyperbolic and other types of multiples, with the advantage of minimizing damage of the primary. Synthetic and field data tests show that this method produces better multiple elimination results than the traditional multi-channel Wiener filter method and is more suitable for multiple elimination in complicated geological areas.
基金supported by the National Key R&D Program of China(2018AAA0101203)the National Natural Science Foundation of China(61673403,71601191)the JSPS KAKENHI(JP17K12751)。
文摘The multitrip pickup and delivery problem with time windows and manpower planning(MTPDPTW-MP)determines a set of ambulance routes and finds staff assignment for a hospital. It involves different stakeholders with diverse interests and objectives. This study firstly introduces a multiobjective MTPDPTW-MP(MO-MTPDPTWMP) with three objectives to better describe the real-world scenario. A multiobjective iterated local search algorithm with adaptive neighborhood selection(MOILS-ANS) is proposed to solve the problem. MOILS-ANS can generate a diverse set of alternative solutions for decision makers to meet their requirements. To better explore the search space, problem-specific neighborhood structures and an adaptive neighborhood selection strategy are carefully designed in MOILS-ANS. Experimental results show that the proposed MOILS-ANS significantly outperforms the other two multiobjective algorithms. Besides, the nature of objective functions and the properties of the problem are analyzed. Finally, the proposed MOILS-ANS is compared with the previous single-objective algorithm and the benefits of multiobjective optimization are discussed.
文摘Adaptive digital filtering has traditionally been developed based on the minimum mean square error (MMSE) criterion and has found ever-increasing applications in communications. This paper presents an alternative adaptive filtering design based on the minimum symbol error rate (MSER) criterion for communication applications. It is shown that the MSER filtering is smarter, as it exploits the non-Gaussian distribution of filter output effectively. Consequently, it provides significant performance gain in terms of smaller symbol error over the MMSE approach. Adopting Parzen window or kernel density estimation for a probability density function, a block-data gradient adaptive MSER algorithm is derived. A stochastic gradient adaptive MSER algorithm, referred to as the least symbol error rate, is further developed for sample-by-sample adaptive implementation of the MSER filtering. Two applications, involving single-user channel equalization and beamforming assisted receiver, are included to demonstrate the effectiveness and generality of the proposed adaptive MSER filtering approach.
基金Project supported by the Specialized Research Fund for the Doctoral Programof Higher Education(No.20030486038) Programfor New Century Ex-cellent Talents in University(NCET-04-0681) +1 种基金the Key Laboratory of Geography Spatial Information ,State Bureau of Surveying and Mapping ( No.1460130424210) the Hubei Provincial Excellent Young Sciencisit Foundation (No.2002AC011) .
文摘In this paper, the performance of median filter, elevation dependent adaptive sigma median filter, and directionally dependent adaptive sigma median filter are tested on both InSAR Tandem DEM and simulated high-level noisy DEM. Through the comparison, the directionally dependent adaptive sigma median filter is proved to be the most effective one not only in the noise removing but also in the boundary preserve.
基金Supported by the National Natural Science Foundation of China(91338101,91338108,61132002,6132106)Research Fund of Tsinghua University(2011Z05117)Co-innovation Laboratory of Aerospace Broadband Network Technology
文摘The scheduling efficiency of the tracking and data relay satellite system(TDRSS)is strictly limited by the scheduling degrees of freedom(DoF),including time DoF defined by jobs' flexible time windows and spatial DoF brought by multiple servable tracking and data relay satellites(TDRSs).In this paper,ageneralized multiple time windows(GMTW)model is proposed to fully exploit the time and spatial DoF.Then,the improvements of service capability and job-completion probability based on the GMTW are theoretically proved.Further,an asymmetric path-relinking(APR)based heuristic job scheduling framework is presented to maximize the usage of DoF provided by the GMTW.Simulation results show that by using our proposal 11%improvement of average jobcompletion probability can be obtained.Meanwhile,the computing time of the time-to-target can be shorten to 1/9 of the GRASP.
基金from funding agencies in the public,commercial,or not-for-profit sectors.
文摘The study aims to investigate the financial technology(FinTech)factors influencing Chinese banking performance.Financial expectations and global realities may be changed by FinTech’s multidimensional scope,which is lacking in the traditional financial sector.The use of technology to automate financial services is becoming more important for economic organizations and industries because the digital age has seen a period of transition in terms of consumers and personalization.The future of FinTech will be shaped by technologies like the Internet of Things,blockchain,and artificial intelligence.The involvement of these platforms in financial services is a major concern for global business growth.FinTech is becoming more popular with customers because of such benefits.FinTech has driven a fundamental change within the financial services industry,placing the client at the center of everything.Protection has become a primary focus since data are a component of FinTech transactions.The task of consolidating research reports for consensus is very manual,as there is no standardized format.Although existing research has proposed certain methods,they have certain drawbacks in FinTech payment systems(including cryptocurrencies),credit markets(including peer-to-peer lending),and insurance systems.This paper implements blockchainbased financial technology for the banking sector to overcome these transition issues.In this study,we have proposed an adaptive neuro-fuzzy-based K-nearest neighbors’algorithm.The chaotic improved foraging optimization algorithm is used to optimize the proposed method.The rolling window autoregressive lag modeling approach analyzes FinTech growth.The proposed algorithm is compared with existing approaches to demonstrate its efficiency.The findings showed that it achieved 91%accuracy,90%privacy,96%robustness,and 25%cyber-risk performance.Compared with traditional approaches,the recommended strategy will be more convenient,safe,and effective in the transition period.
文摘Adaptive optimization is one of the means that agile organization of command and control resource (AOC2R) adapts for the dynamic battlefield environment. A math model of the adaptive optimization of AOC2R is put forward by analyzing the interrelating concept and research. The model takes the adaptive process as a multi-stage decision making problem. The 2-phases method is presented to calculate the model, which obtains the related parameters by running the colored Petri net (CPN) model of AOC2R and then searches for the result by ant colony optimization (ACO) algorithm integrated with genetic optimization techniques. The simulation results demonstrate that the proposed algorithm greatly improves the performance of AOC2R.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups(Project under Grant Number(RGP.2/49/43)).
文摘Textual data streams have been extensively used in practical applications where consumers of online products have expressed their views regarding online products.Due to changes in data distribution,commonly referred to as concept drift,mining this data stream is a challenging problem for researchers.The majority of the existing drift detection techniques are based on classification errors,which have higher probabilities of false-positive or missed detections.To improve classification accuracy,there is a need to develop more intuitive detection techniques that can identify a great number of drifts in the data streams.This paper presents an adaptive unsupervised learning technique,an ensemble classifier based on drift detection for opinion mining and sentiment classification.To improve classification performance,this approach uses four different dissimilarity measures to determine the degree of concept drifts in the data stream.Whenever a drift is detected,the proposed method builds and adds a new classifier to the ensemble.To add a new classifier,the total number of classifiers in the ensemble is first checked if the limit is exceeded before the classifier with the least weight is removed from the ensemble.To this end,a weighting mechanism is used to calculate the weight of each classifier,which decides the contribution of each classifier in the final classification results.Several experiments were conducted on real-world datasets and the resultswere evaluated on the false positive rate,miss detection rate,and accuracy measures.The proposed method is also compared with the state-of-the-art methods,which include DDM,EDDM,and PageHinkley with support vector machine(SVM)and Naive Bayes classifiers that are frequently used in concept drift detection studies.In all cases,the results show the efficiency of our proposed method.