On the basis ofa 2D 4-node Mindlin shell element method, a novel self-adapting delamination finite element method is presented, which is developed to model the delamination damage of composite laminates. In the method...On the basis ofa 2D 4-node Mindlin shell element method, a novel self-adapting delamination finite element method is presented, which is developed to model the delamination damage of composite laminates. In the method, the sublaminate elements are generated automatically when the delamination damage occurs or extends. Thus, the complex process and state of delamination damage can be simulated practically with high efficiency for both analysis and modeling. Based on the self-adapting delamination method, linear dynamic finite element damage analysis is performed to simulate the low-velocity impact damage process of three types of mixed woven composite laminates. Taking the frictional force among sublaminations during delaminating and the transverse normal stress into account, the analytical results are consistent with those of the experimental data.展开更多
The element energy projection (EEP) method for computation of super- convergent resulting in a one-dimensional finite element method (FEM) is successfully used to self-adaptive FEM analysis of various linear probl...The element energy projection (EEP) method for computation of super- convergent resulting in a one-dimensional finite element method (FEM) is successfully used to self-adaptive FEM analysis of various linear problems, based on which this paper presents a substantial extension of the whole set of technology to nonlinear problems. The main idea behind the technology transfer from linear analysis to nonlinear analysis is to use Newton's method to linearize nonlinear problems into a series of linear problems so that the EEP formulation and the corresponding adaptive strategy can be directly used without the need for specific super-convergence formulation for nonlinear FEM. As a re- sult, a unified and general self-adaptive algorithm for nonlinear FEM analysis is formed. The proposed algorithm is found to be able to produce satisfactory finite element results with accuracy satisfying the user-preset error tolerances by maximum norm anywhere on the mesh. Taking the nonlinear ordinary differential equation (ODE) of second-order as the model problem, this paper describes the related fundamental idea, the imple- mentation strategy, and the computational algorithm. Representative numerical exam- ples are given to show the efficiency, stability, versatility, and reliability of the proposed approach.展开更多
Based on the newly-developed element energy projection (EEP) method with optimal super-convergence order for computation of super-convergent results, an improved self-adaptive strategy for one-dimensional finite ele...Based on the newly-developed element energy projection (EEP) method with optimal super-convergence order for computation of super-convergent results, an improved self-adaptive strategy for one-dimensional finite element method (FEM) is proposed. In the strategy, a posteriori errors are estimated by comparing FEM solutions to EEP super-convergent solutions with optimal order of super-convergence, meshes are refined by using the error-averaging method. Quasi-FEM solutions are used to replace the true FEM solutions in the adaptive process. This strategy has been found to be simple, clear, efficient and reliable. For most problems, only one adaptive step is needed to produce the required FEM solutions which pointwise satisfy the user specified error tolerances in the max-norm. Taking the elliptical ordinary differential equation of the second order as the model problem, this paper describes the fundamental idea, implementation strategy and computational algorithm and representative numerical examples are given to show the effectiveness and reliability of the proposed approach.展开更多
Based on the newly-developed element energy projection (EEP) method for computation of super-convergent results in one-dimensional finite element method (FEM), the task of self-adaptive FEM analysis was converted ...Based on the newly-developed element energy projection (EEP) method for computation of super-convergent results in one-dimensional finite element method (FEM), the task of self-adaptive FEM analysis was converted into the task of adaptive piecewise polynomial interpolation. As a result, a satisfactory FEM mesh can be obtained, and further FEM analysis on this mesh would immediately produce an FEM solution which usually satisfies the user specified error tolerance. Even though the error tolerance was not completely satisfied, one or two steps of further local refinements would be sufficient. This strategy was found to be very simple, rapid, cheap and efficient. Taking the elliptical ordinary differential equation of second order as the model problem, the fundamental idea, implementation strategy and detailed algorithm are described. Representative numerical examples are given to show the effectiveness and reliability of the proposed approach.展开更多
Effective and efficient SAR image segmentation has a significant role in coastal zone interpretation. In this paper, a coastal zone segmentation model is proposed based on Potts model. By introducing edge self-adaptio...Effective and efficient SAR image segmentation has a significant role in coastal zone interpretation. In this paper, a coastal zone segmentation model is proposed based on Potts model. By introducing edge self-adaption parameter and modifying noisy data term, the proposed variational model provides a good solution for the coastal zone SAR image with common characteristics of inherent speckle noise and complicated geometrical details. However, the proposed model is difficult to solve due to to its nonlinear, non-convex and non-smooth characteristics. Followed by curve evolution theory and operator splitting method, the minimization problem is reformulated as a constrained minimization problem. A fast alternating minimization iterative scheme is designed to implement coastal zone segmentation. Finally, various two-stage and multiphase experimental results illustrate the advantage of the proposed segmentation model, and indicate the high computation efficiency of designed numerical approximation algorithm.展开更多
Removing random noise in seismic data is a key step in seismic data processing. A failed denoising may introduce many artifacts, and lead to the failure of final processing results. Seislet transform is a wavelet-like...Removing random noise in seismic data is a key step in seismic data processing. A failed denoising may introduce many artifacts, and lead to the failure of final processing results. Seislet transform is a wavelet-like transform that analyzes seismic data following variable slopes of seismic events. The local slope is the key of seismic data. An earlier work used traditional normal moveout(NMO) equation to construct velocity-dependent(VD) seislet transform, which only adapt to hyperbolic condition. In this work, we use shifted hyperbola NMO equation to obtain more accurate slopes in nonhyperbolic situation. Self-adaptive threshold method was used to remove random noise while preserving useful signal. The synthetic and field data tests demonstrate that this method is more suitable for noise attenuation.展开更多
Abstract Some modified Levitin Polyak projection methods are proposed in this paper for solving monotone linear variational inequalityx∈Ω,(x′-x) T(Hx+c)≤0,\ x′∈Ω.It is pointed out that there are similar methods...Abstract Some modified Levitin Polyak projection methods are proposed in this paper for solving monotone linear variational inequalityx∈Ω,(x′-x) T(Hx+c)≤0,\ x′∈Ω.It is pointed out that there are similar methods for solving a general linear variational inequality.展开更多
Power inverter adopting virtual synchronous generator(VSG)control can provide inertia support for distributed generation systems.However,it cannot take into account the dynamic regulation characteristics of frequency....Power inverter adopting virtual synchronous generator(VSG)control can provide inertia support for distributed generation systems.However,it cannot take into account the dynamic regulation characteristics of frequency.Thus,when the system encounters a sudden change in load or disturbance,the dynamic process of frequency regulation will be greatly influenced.In view of this issue,an improved VSG control strategy based on a coordinated self-adaptive(CSA)method is proposed.The time domain analysis method is used to study the influences of virtual inertia and damping parameter perturbation on the system steady and dynamic performances.Furthermore,in order to make the control strategy suitable for large load changes and suppress frequency variations beyond the limit,the secondary frequency modulation is introduced into the control loop.Through the coordinated adaptive control of virtual inertia,virtual damping and frequency modulation,the dynamic performance of vSG frequency regulation can be obviously improved.Simulation and experiment results have verified the effectiveness of the proposed CSA control strategy.展开更多
Hybrid molecule/cluster statistical thermodynamics (HMCST) method is an efficient tool to simulate nano-scale systems under quasi-static loading at finite temperature. In this paper, a self-adaptive algorithm is dev...Hybrid molecule/cluster statistical thermodynamics (HMCST) method is an efficient tool to simulate nano-scale systems under quasi-static loading at finite temperature. In this paper, a self-adaptive algorithm is developed for this method. Explicit refinement criterion based on the gradient of slip shear deformation and a switching criterion based on generalized Einstein approximation is proposed respectively. Results show that this self-adaptive method can accurately find clusters to be refined or transferred to molecules, and efficiently refine or trans- fer the clusters. Furthermore, compared with fully atomistic simulation, the high computational efficiency of the self-adaptive method appears very attractive.展开更多
In the measurement of liquid level in industrial site environment,noise interference can affect the measurement accuracy.In order to improve the measurement accuracy of liquid level in the viscous state,a nuclear radi...In the measurement of liquid level in industrial site environment,noise interference can affect the measurement accuracy.In order to improve the measurement accuracy of liquid level in the viscous state,a nuclear radiation level measurement system based on the least mean square(LMS)filtering correction method is designed.The system uses STM32F103 as the control core and adopts HART bus HT1200M chip for remote signal transmission and reception.The adaptive LMS algorithm can be used for more accurate filtering,calculating iterative weight vector,updating weighted coefficient,effectively removing system measurement noise and improving the measurement accuracy.The results show that the nuclear radiation level gauge based on normalized LMS can correct the measurement system accuracy in adaptive rules,improve the measurement accuracy to meet the requirements of industrial field environment for liquid level measurement and enhance the industrial automation control degree.展开更多
A suit of online self-adapting control (OSAC) approach has been developed to predict and optimize annealing craft system. The approach consists of three critical parts including prediction module, self-adapting opti...A suit of online self-adapting control (OSAC) approach has been developed to predict and optimize annealing craft system. The approach consists of three critical parts including prediction module, self-adapting optimization module, and self-learning amendment module. Firstly, the prediction module and self- adapting optimization module are based on the modeling methods. The self-adapting optimization module consists of two parts including "reappearance of annealed process" and "optimization of subsequent annealing process". Secondly, the self-learning amendment module, based on furnace atmosphere, equipment performance, and compensation coefficients, is designed to improve the accuracy of optimization results. The results obtained from the proposed approach, usually finished in about 3 min, are in good agreement with the test values, such as the deviation of temperature for hot-spot and cold-spot are within 10 K, the relative errors are within 1.1%, and the accuracy of annealing for heating period is increased by using self-learning amendment module.展开更多
As a novel architecture,software-defined networking(SDN) is viewed as the key technology of future networking.The core idea of SDN is to decouple the control plane and the data plane,enabling centralized,flexible,and ...As a novel architecture,software-defined networking(SDN) is viewed as the key technology of future networking.The core idea of SDN is to decouple the control plane and the data plane,enabling centralized,flexible,and programmable network control.Although local area networks like data center networks have benefited from SDN,it is still a problem to deploy SDN in wide area networks(WANs) or large-scale networks.Existing works show that multiple controllers are required in WANs with each covering one small SDN domain.However,the problems of SDN domain partition and controller placement should be further addressed.Therefore,we propose the spectral clustering based partition and placement algorithms,by which we can partition a large network into several small SDN domains efficiently and effectively.In our algorithms,the matrix perturbation theory and eigengap are used to discover the stability of SDN domains and decide the optimal number of SDN domains automatically.To evaluate our algorithms,we develop a new experimental framework with the Internet2 topology and other available WAN topologies.The results show the effectiveness of our algorithm for the SDN domain partition and controller placement problems.展开更多
Phosphor-converted light-emitting diodes (pc- LEDs), which employ blue LEDs with yellow phosphors to generate white light illumination, is a widely used solid- state lighting source. In order to conduct a phosphor l...Phosphor-converted light-emitting diodes (pc- LEDs), which employ blue LEDs with yellow phosphors to generate white light illumination, is a widely used solid- state lighting source. In order to conduct a phosphor layer coating with high quality on LED chip, a self-adaptive coating technology is introduced in this paper. A slurry coating technique combined with selfexposure method is applied and developed to demonstrate the benefits of selfadaptive coating layer. For self-exposure, the slurry coating is exposed to the blue emission of LED itself other than to ultraviolet (UV) light outside to make photoresist crosslinking. Results of measurement indicate that white LEDs with self-adaptive coating have shown self-adaptability to the angular distribution of intensity of blue light and performed higher spatial color uniformity than those with conventional coating and other conformal coating.展开更多
The elastic parameters of soft tissues are important for medical diagnosis and virtual surgery simulation. In this study, we propose a novel nonlinear parameter estimation method for soft tissues. Firstly, an in-house...The elastic parameters of soft tissues are important for medical diagnosis and virtual surgery simulation. In this study, we propose a novel nonlinear parameter estimation method for soft tissues. Firstly, an in-house data acquisition platform was used to obtain external forces and their corresponding deformation values, To provide highly precise data for estimating nonlinear param- eters, the measured forces were corrected using the constructed weighted combination forecasting model based on a support vector machine (WCFM_SVM). Secondly, a tetrahedral finite element parameter estimation model was established to describe the physical characteristics of soft tissues, using the substitution parameters of Young's modulus and Poisson's ratio to avoid solving compli- cated nonlinear problems. To improve the robustness of our model and avoid poor local minima, the initial parameters solved by a linear finite element model were introduced into the parameter estimation model. Finally, a self-adapting Levenberg-Marquardt (LM) algorithm was presented, which is capable of adaptively adjusting iterative parameters to solve the established parameter estimation model. The maximum absolute error of our WCFM SVM model was less than 0.03 Newton, resulting in more accurate forces in comparison with other correction models tested. The maximum absolute error between the calculated and measured nodal displacements was less than 1.5 mm, demonstrating that our nonlinear parameters are precise.展开更多
The analysis of underwater topography ultrasonic image, which can be obtained by using B-scan ultrasound imaging technique, is the basis and important work in topography study. In this paper, we present a novel self-a...The analysis of underwater topography ultrasonic image, which can be obtained by using B-scan ultrasound imaging technique, is the basis and important work in topography study. In this paper, we present a novel self-adapted method for the extraction of submerged topographic line. Since the distribution of gray values in the image has a mutation process, this feature is used to appropriately track the topographic line of imaging band, and wavelet denoising method is applied to denoise the obtained lines. The described method also takes the continuity of topography into consideration during tracking procedure. The results show that the extraction error is within 2-pixel width(approximate 1 mm). This method is suitable for the extraction of current model topographic lines with the advantages of good self-adaption, high speed and high resolution.展开更多
基金National Natural Science Foundation of China (50073002)
文摘On the basis ofa 2D 4-node Mindlin shell element method, a novel self-adapting delamination finite element method is presented, which is developed to model the delamination damage of composite laminates. In the method, the sublaminate elements are generated automatically when the delamination damage occurs or extends. Thus, the complex process and state of delamination damage can be simulated practically with high efficiency for both analysis and modeling. Based on the self-adapting delamination method, linear dynamic finite element damage analysis is performed to simulate the low-velocity impact damage process of three types of mixed woven composite laminates. Taking the frictional force among sublaminations during delaminating and the transverse normal stress into account, the analytical results are consistent with those of the experimental data.
基金supported by the National Natural Science Foundation of China(Nos.51378293,51078199,50678093,and 50278046)the Program for Changjiang Scholars and the Innovative Research Team in University of China(No.IRT00736)
文摘The element energy projection (EEP) method for computation of super- convergent resulting in a one-dimensional finite element method (FEM) is successfully used to self-adaptive FEM analysis of various linear problems, based on which this paper presents a substantial extension of the whole set of technology to nonlinear problems. The main idea behind the technology transfer from linear analysis to nonlinear analysis is to use Newton's method to linearize nonlinear problems into a series of linear problems so that the EEP formulation and the corresponding adaptive strategy can be directly used without the need for specific super-convergence formulation for nonlinear FEM. As a re- sult, a unified and general self-adaptive algorithm for nonlinear FEM analysis is formed. The proposed algorithm is found to be able to produce satisfactory finite element results with accuracy satisfying the user-preset error tolerances by maximum norm anywhere on the mesh. Taking the nonlinear ordinary differential equation (ODE) of second-order as the model problem, this paper describes the related fundamental idea, the imple- mentation strategy, and the computational algorithm. Representative numerical exam- ples are given to show the efficiency, stability, versatility, and reliability of the proposed approach.
基金the National Natural Science Foundation of China(No.50678093)Program for Changjiang Scholars and Innovative Research Team in University(No.IRT00736)
文摘Based on the newly-developed element energy projection (EEP) method with optimal super-convergence order for computation of super-convergent results, an improved self-adaptive strategy for one-dimensional finite element method (FEM) is proposed. In the strategy, a posteriori errors are estimated by comparing FEM solutions to EEP super-convergent solutions with optimal order of super-convergence, meshes are refined by using the error-averaging method. Quasi-FEM solutions are used to replace the true FEM solutions in the adaptive process. This strategy has been found to be simple, clear, efficient and reliable. For most problems, only one adaptive step is needed to produce the required FEM solutions which pointwise satisfy the user specified error tolerances in the max-norm. Taking the elliptical ordinary differential equation of the second order as the model problem, this paper describes the fundamental idea, implementation strategy and computational algorithm and representative numerical examples are given to show the effectiveness and reliability of the proposed approach.
基金Project supported by the National Natural Science Foundation of China (No.50278046)
文摘Based on the newly-developed element energy projection (EEP) method for computation of super-convergent results in one-dimensional finite element method (FEM), the task of self-adaptive FEM analysis was converted into the task of adaptive piecewise polynomial interpolation. As a result, a satisfactory FEM mesh can be obtained, and further FEM analysis on this mesh would immediately produce an FEM solution which usually satisfies the user specified error tolerance. Even though the error tolerance was not completely satisfied, one or two steps of further local refinements would be sufficient. This strategy was found to be very simple, rapid, cheap and efficient. Taking the elliptical ordinary differential equation of second order as the model problem, the fundamental idea, implementation strategy and detailed algorithm are described. Representative numerical examples are given to show the effectiveness and reliability of the proposed approach.
基金supported by the China Postdoctoral Science Foundation under Grant No.2015M571993the Shandong Provincial Natural Science Foundation,China under Grant No.ZR2017MD004+1 种基金the National Natural Science Foundation of China under Grant No.61602269Qingdao Postdoctoral Application Research Funded Project
文摘Effective and efficient SAR image segmentation has a significant role in coastal zone interpretation. In this paper, a coastal zone segmentation model is proposed based on Potts model. By introducing edge self-adaption parameter and modifying noisy data term, the proposed variational model provides a good solution for the coastal zone SAR image with common characteristics of inherent speckle noise and complicated geometrical details. However, the proposed model is difficult to solve due to to its nonlinear, non-convex and non-smooth characteristics. Followed by curve evolution theory and operator splitting method, the minimization problem is reformulated as a constrained minimization problem. A fast alternating minimization iterative scheme is designed to implement coastal zone segmentation. Finally, various two-stage and multiphase experimental results illustrate the advantage of the proposed segmentation model, and indicate the high computation efficiency of designed numerical approximation algorithm.
基金Supported by Project of National Natural Science Foundation of China(No.41004041)
文摘Removing random noise in seismic data is a key step in seismic data processing. A failed denoising may introduce many artifacts, and lead to the failure of final processing results. Seislet transform is a wavelet-like transform that analyzes seismic data following variable slopes of seismic events. The local slope is the key of seismic data. An earlier work used traditional normal moveout(NMO) equation to construct velocity-dependent(VD) seislet transform, which only adapt to hyperbolic condition. In this work, we use shifted hyperbola NMO equation to obtain more accurate slopes in nonhyperbolic situation. Self-adaptive threshold method was used to remove random noise while preserving useful signal. The synthetic and field data tests demonstrate that this method is more suitable for noise attenuation.
文摘Abstract Some modified Levitin Polyak projection methods are proposed in this paper for solving monotone linear variational inequalityx∈Ω,(x′-x) T(Hx+c)≤0,\ x′∈Ω.It is pointed out that there are similar methods for solving a general linear variational inequality.
基金supported by National Natural Science Foundation of China(No.51577124,No.51877148)National Key Research and Development Program of China(SQ2023YFE0198100)。
文摘Power inverter adopting virtual synchronous generator(VSG)control can provide inertia support for distributed generation systems.However,it cannot take into account the dynamic regulation characteristics of frequency.Thus,when the system encounters a sudden change in load or disturbance,the dynamic process of frequency regulation will be greatly influenced.In view of this issue,an improved VSG control strategy based on a coordinated self-adaptive(CSA)method is proposed.The time domain analysis method is used to study the influences of virtual inertia and damping parameter perturbation on the system steady and dynamic performances.Furthermore,in order to make the control strategy suitable for large load changes and suppress frequency variations beyond the limit,the secondary frequency modulation is introduced into the control loop.Through the coordinated adaptive control of virtual inertia,virtual damping and frequency modulation,the dynamic performance of vSG frequency regulation can be obviously improved.Simulation and experiment results have verified the effectiveness of the proposed CSA control strategy.
基金supported by the National Natural Science Foundation of China (Nos.10932011,10772181,10732090,10772012 and 11021262)the National Basic Research Program of China (No.2007CB814803)
文摘Hybrid molecule/cluster statistical thermodynamics (HMCST) method is an efficient tool to simulate nano-scale systems under quasi-static loading at finite temperature. In this paper, a self-adaptive algorithm is developed for this method. Explicit refinement criterion based on the gradient of slip shear deformation and a switching criterion based on generalized Einstein approximation is proposed respectively. Results show that this self-adaptive method can accurately find clusters to be refined or transferred to molecules, and efficiently refine or trans- fer the clusters. Furthermore, compared with fully atomistic simulation, the high computational efficiency of the self-adaptive method appears very attractive.
基金National Natural Science Foundation of China(Nos.61761027,61261029)
文摘In the measurement of liquid level in industrial site environment,noise interference can affect the measurement accuracy.In order to improve the measurement accuracy of liquid level in the viscous state,a nuclear radiation level measurement system based on the least mean square(LMS)filtering correction method is designed.The system uses STM32F103 as the control core and adopts HART bus HT1200M chip for remote signal transmission and reception.The adaptive LMS algorithm can be used for more accurate filtering,calculating iterative weight vector,updating weighted coefficient,effectively removing system measurement noise and improving the measurement accuracy.The results show that the nuclear radiation level gauge based on normalized LMS can correct the measurement system accuracy in adaptive rules,improve the measurement accuracy to meet the requirements of industrial field environment for liquid level measurement and enhance the industrial automation control degree.
基金Supported by the Specialized Research Project of WuhanIron and Steel Corporation (20050038)
文摘A suit of online self-adapting control (OSAC) approach has been developed to predict and optimize annealing craft system. The approach consists of three critical parts including prediction module, self-adapting optimization module, and self-learning amendment module. Firstly, the prediction module and self- adapting optimization module are based on the modeling methods. The self-adapting optimization module consists of two parts including "reappearance of annealed process" and "optimization of subsequent annealing process". Secondly, the self-learning amendment module, based on furnace atmosphere, equipment performance, and compensation coefficients, is designed to improve the accuracy of optimization results. The results obtained from the proposed approach, usually finished in about 3 min, are in good agreement with the test values, such as the deviation of temperature for hot-spot and cold-spot are within 10 K, the relative errors are within 1.1%, and the accuracy of annealing for heating period is increased by using self-learning amendment module.
基金supported by the National Natural Science Foundation of China(Nos.61432002,61370199,61370198,61300187,and 61402069)the Fundamental Research Funds for the Central Universities,China(Nos.DUT15QY20,DUT15TD29,and3132016029)the Prospective Research Project on Future Networks from Jiangsu Future Networks Innovation Institute,China
文摘As a novel architecture,software-defined networking(SDN) is viewed as the key technology of future networking.The core idea of SDN is to decouple the control plane and the data plane,enabling centralized,flexible,and programmable network control.Although local area networks like data center networks have benefited from SDN,it is still a problem to deploy SDN in wide area networks(WANs) or large-scale networks.Existing works show that multiple controllers are required in WANs with each covering one small SDN domain.However,the problems of SDN domain partition and controller placement should be further addressed.Therefore,we propose the spectral clustering based partition and placement algorithms,by which we can partition a large network into several small SDN domains efficiently and effectively.In our algorithms,the matrix perturbation theory and eigengap are used to discover the stability of SDN domains and decide the optimal number of SDN domains automatically.To evaluate our algorithms,we develop a new experimental framework with the Internet2 topology and other available WAN topologies.The results show the effectiveness of our algorithm for the SDN domain partition and controller placement problems.
文摘Phosphor-converted light-emitting diodes (pc- LEDs), which employ blue LEDs with yellow phosphors to generate white light illumination, is a widely used solid- state lighting source. In order to conduct a phosphor layer coating with high quality on LED chip, a self-adaptive coating technology is introduced in this paper. A slurry coating technique combined with selfexposure method is applied and developed to demonstrate the benefits of selfadaptive coating layer. For self-exposure, the slurry coating is exposed to the blue emission of LED itself other than to ultraviolet (UV) light outside to make photoresist crosslinking. Results of measurement indicate that white LEDs with self-adaptive coating have shown self-adaptability to the angular distribution of intensity of blue light and performed higher spatial color uniformity than those with conventional coating and other conformal coating.
基金supported by the National Natural Science Foundation of China (Grant No.61373107)Wuhan Science and Technology Program, China (Grant No.2016010101010022)
文摘The elastic parameters of soft tissues are important for medical diagnosis and virtual surgery simulation. In this study, we propose a novel nonlinear parameter estimation method for soft tissues. Firstly, an in-house data acquisition platform was used to obtain external forces and their corresponding deformation values, To provide highly precise data for estimating nonlinear param- eters, the measured forces were corrected using the constructed weighted combination forecasting model based on a support vector machine (WCFM_SVM). Secondly, a tetrahedral finite element parameter estimation model was established to describe the physical characteristics of soft tissues, using the substitution parameters of Young's modulus and Poisson's ratio to avoid solving compli- cated nonlinear problems. To improve the robustness of our model and avoid poor local minima, the initial parameters solved by a linear finite element model were introduced into the parameter estimation model. Finally, a self-adapting Levenberg-Marquardt (LM) algorithm was presented, which is capable of adaptively adjusting iterative parameters to solve the established parameter estimation model. The maximum absolute error of our WCFM SVM model was less than 0.03 Newton, resulting in more accurate forces in comparison with other correction models tested. The maximum absolute error between the calculated and measured nodal displacements was less than 1.5 mm, demonstrating that our nonlinear parameters are precise.
基金Supported by the Fundamental Research Funds for the Central Universities(2014212020205)
文摘The analysis of underwater topography ultrasonic image, which can be obtained by using B-scan ultrasound imaging technique, is the basis and important work in topography study. In this paper, we present a novel self-adapted method for the extraction of submerged topographic line. Since the distribution of gray values in the image has a mutation process, this feature is used to appropriately track the topographic line of imaging band, and wavelet denoising method is applied to denoise the obtained lines. The described method also takes the continuity of topography into consideration during tracking procedure. The results show that the extraction error is within 2-pixel width(approximate 1 mm). This method is suitable for the extraction of current model topographic lines with the advantages of good self-adaption, high speed and high resolution.