This study aims to make full use of the agricultural waste peanut shells to lower material costs and achieve cleaner production at the same time.Cellulose nanofibrils(CNF)extracted from peanut shells were mixed with a...This study aims to make full use of the agricultural waste peanut shells to lower material costs and achieve cleaner production at the same time.Cellulose nanofibrils(CNF)extracted from peanut shells were mixed with acrylic acid(AA)and dimethyl diallyl ammonium chloride(DMDAAC)to prepare a new type of capsule core(dust suppressant).Then,the self-adaptive AA-DM-CNF/CA microcapsules were prepared under the action of calcium alginate.The infrared spectroscopy and X-ray diffraction analysis results suggest that AA,DMDAAC and CNF have experienced graft copolymerization which leads to the formation of an amorphous structure.The scanning electron microscopy analysis results demonstrate that the internal dust suppressant can expand and break the wall after absorbing water,featuring a self-adaptive function.Meanwhile,the laser particle size analysis results show that the microcapsules,inside which the encapsulated dust suppressant can be observed clearly,maintain a good shape.The product performance experimental results reveal that the capsule core and the capsule wall achieve synergistic dust suppression,thus lengthening the dust suppression time.The product boasts good dust suppression,weather resistance,degradation and synergistic combustion performances.Moreover,this study,as the first report on the development and analysis of dust-suppressing microcapsules,fills in the research gap on the reaction mechanism between dust-suppressing microcapsules and coal by MS simulation.The proposed AA-DM-CNF/CA dust-suppressing microcapsules can effectively lower the dust concentration in the space and protect the physical and mental health of coal workers.In general,this research provides a new insight into the structure control and performance enhancement of dust suppressants.Expanding the application range of microcapsules is of crucial economic and social benefits.展开更多
With the purpose of reducing the influence of background noise on the call quality of mobile phones, background noise suppression circuit is designed based on the principle of self-adaptive noise cancellation. Because...With the purpose of reducing the influence of background noise on the call quality of mobile phones, background noise suppression circuit is designed based on the principle of self-adaptive noise cancellation. Because this method is not involved in the nature of the noise itself, it can be used both for stationary noise cancellation and quasi-stationary noise cancellation. The working principle and circuit design of the system are introduced in detail. Simulated experiment was conducted in the lab, and its experimental results were analyzed. The experimental results show that the circuit works well with low cost, and has a broad prospect of application and popularization.展开更多
基金supported by the National Key R&D Program of China(No.2022YFC2503201)the National Natural Science Foundation of China(Nos.52274215,52004150 and 52074012)+2 种基金the Qingchuang Science and Technology Project of Universities in Shandong Province,China(No.2019KJH005)the Outstanding Young Talents Project of Shandong University of Science and Technology(No.SKR22-5-01)the China Scholarship Council(No.202108370223).
文摘This study aims to make full use of the agricultural waste peanut shells to lower material costs and achieve cleaner production at the same time.Cellulose nanofibrils(CNF)extracted from peanut shells were mixed with acrylic acid(AA)and dimethyl diallyl ammonium chloride(DMDAAC)to prepare a new type of capsule core(dust suppressant).Then,the self-adaptive AA-DM-CNF/CA microcapsules were prepared under the action of calcium alginate.The infrared spectroscopy and X-ray diffraction analysis results suggest that AA,DMDAAC and CNF have experienced graft copolymerization which leads to the formation of an amorphous structure.The scanning electron microscopy analysis results demonstrate that the internal dust suppressant can expand and break the wall after absorbing water,featuring a self-adaptive function.Meanwhile,the laser particle size analysis results show that the microcapsules,inside which the encapsulated dust suppressant can be observed clearly,maintain a good shape.The product performance experimental results reveal that the capsule core and the capsule wall achieve synergistic dust suppression,thus lengthening the dust suppression time.The product boasts good dust suppression,weather resistance,degradation and synergistic combustion performances.Moreover,this study,as the first report on the development and analysis of dust-suppressing microcapsules,fills in the research gap on the reaction mechanism between dust-suppressing microcapsules and coal by MS simulation.The proposed AA-DM-CNF/CA dust-suppressing microcapsules can effectively lower the dust concentration in the space and protect the physical and mental health of coal workers.In general,this research provides a new insight into the structure control and performance enhancement of dust suppressants.Expanding the application range of microcapsules is of crucial economic and social benefits.
文摘With the purpose of reducing the influence of background noise on the call quality of mobile phones, background noise suppression circuit is designed based on the principle of self-adaptive noise cancellation. Because this method is not involved in the nature of the noise itself, it can be used both for stationary noise cancellation and quasi-stationary noise cancellation. The working principle and circuit design of the system are introduced in detail. Simulated experiment was conducted in the lab, and its experimental results were analyzed. The experimental results show that the circuit works well with low cost, and has a broad prospect of application and popularization.