In this paper,a novel method of ultra-lightweight convolution neural network(CNN)design based on neural architecture search(NAS)and knowledge distillation(KD)is proposed.It can realize the automatic construction of th...In this paper,a novel method of ultra-lightweight convolution neural network(CNN)design based on neural architecture search(NAS)and knowledge distillation(KD)is proposed.It can realize the automatic construction of the space target inverse synthetic aperture radar(ISAR)image recognition model with ultra-lightweight and high accuracy.This method introduces the NAS method into the radar image recognition for the first time,which solves the time-consuming and labor-consuming problems in the artificial design of the space target ISAR image automatic recognition model(STIIARM).On this basis,the NAS model’s knowledge is transferred to the student model with lower computational complexity by the flow of the solution procedure(FSP)distillation method.Thus,the decline of recognition accuracy caused by the direct compression of model structural parameters can be effectively avoided,and the ultralightweight STIIARM can be obtained.In the method,the Inverted Linear Bottleneck(ILB)and Inverted Residual Block(IRB)are firstly taken as each block’s basic structure in CNN.And the expansion ratio,output filter size,number of IRBs,and convolution kernel size are set as the search parameters to construct a hierarchical decomposition search space.Then,the recognition accuracy and computational complexity are taken as the objective function and constraint conditions,respectively,and the global optimization model of the CNN architecture search is established.Next,the simulated annealing(SA)algorithm is used as the search strategy to search out the lightweight and high accuracy STIIARM directly.After that,based on the three principles of similar block structure,the same corresponding channel number,and the minimum computational complexity,the more lightweight student model is designed,and the FSP matrix pairing between the NAS model and student model is completed.Finally,by minimizing the loss between the FSP matrix pairs of the NAS model and student model,the student model’s weight adjustment is completed.Thus the ultra-lightweight and high accuracy STIIARM is obtained.The proposed method’s effectiveness is verified by the simulation experiments on the ISAR image dataset of five types of space targets.展开更多
In this paper, we use the global search characteristics of genetic algorithms to help search the weight space of the neurons in the cascade-correlation architecture. The cascade-correlation learning architecture is a ...In this paper, we use the global search characteristics of genetic algorithms to help search the weight space of the neurons in the cascade-correlation architecture. The cascade-correlation learning architecture is a technique of training and building neural networks that starts with a simple network of neurons and adds additional neurons as they are needed to suit a particular problem. In our approach, instead ofmodifying the genetic algorithm to account for convergence problems, we search the weight-space using the genetic algorithm and then apply the gradient technique of Quickprop to optimize the weights. This hybrid algorithm which is a combination of genetic algorithms and cascade-correlation is applied to the two spirals problem. We also use our algorithm in the prediction of the cyclic oxidation resistance of Ni- and Co-base superalloys.展开更多
By extending the Levy wavefunction constrained search to Fock Space,one can define a wavefunction constrained search for electron densities in systems having noninteger number of electrons.For pure-state v-representab...By extending the Levy wavefunction constrained search to Fock Space,one can define a wavefunction constrained search for electron densities in systems having noninteger number of electrons.For pure-state v-representable densities,the results are equivalent to what one would obtain with the zero-temperature grand canonical ensemble.In other cases,the wavefunction constrained search in Fock space presents an upper bound to the grand canonical ensemble functional.One advantage of the Fock-space wavefunction constrained search functional over the zero-temperature grand-canonical ensemble constrained search functional is that certain specific excited states(i.e.,those that are not ground-statev-representable) are the stationary points of the Fock-space functional.However,a potential disadvantage of the Fock-space constrained search functional is that it is not convex.展开更多
Various index structures have recently been proposed to facilitate high-dimensional KNN queries, among which the techniques of approximate vector presentation and one-dimensional (1D) transformation can break the curs...Various index structures have recently been proposed to facilitate high-dimensional KNN queries, among which the techniques of approximate vector presentation and one-dimensional (1D) transformation can break the curse of dimensionality. Based on the two techniques above, a novel high-dimensional index is proposed, called Bit-code and Distance based index (BD). BD is based on a special partitioning strategy which is optimized for high-dimensional data. By the definitions of bit code and transformation function, a high-dimensional vector can be first approximately represented and then transformed into a 1D vector, the key managed by a B+-tree. A new KNN search algorithm is also proposed that exploits the bit code and distance to prune the search space more effectively. Results of extensive experiments using both synthetic and real data demonstrated that BD out- performs the existing index structures for KNN search in high-dimensional spaces.展开更多
The optimization of process parameters in polyolefin production can bring significant economic benefits to the factory.However,due to small data sets,high costs associated with parameter verification cycles,and diffic...The optimization of process parameters in polyolefin production can bring significant economic benefits to the factory.However,due to small data sets,high costs associated with parameter verification cycles,and difficulty in establishing an optimization model,the optimization process is often restricted.To address this issue,we propose using a transfer learning Bayesian optimization strategy to improve the efficiency of parameter optimization while minimizing resource consumption.Specifically,we leverage Gaussian process(GP)regression models to establish an integrated model that incorporates both source and target grade production task data.We then measure the similarity weights of each model by comparing their predicted trends,and utilize these weights to accelerate the solution of optimal process parameters for producing target polyolefin grades.In order to enhance the accuracy of our approach,we acknowledge that measuring similarity in a global search space may not effectively capture local similarity characteristics.Therefore,we propose a novel method for transfer learning optimization that operates within a local space(LSTL-PBO).This method employs partial data acquired through random sampling from the target task data and utilizes Bayesian optimization techniques for model establishment.By focusing on a local search space,we aim to better discern and leverage the inherent similarities between source tasks and the target task.Additionally,we incorporate a parallel concept into our method to address multiple local search spaces simultaneously.By doing so,we can explore different regions of the parameter space in parallel,thereby increasing the chances of finding optimal process parameters.This localized approach allows us to improve the precision and effectiveness of our optimization process.The performance of our method is validated through experiments on benchmark problems,and we discuss the sensitivity of its hyperparameters.The results show that our proposed method can significantly improve the efficiency of process parameter optimization,reduce the dependence on source tasks,and enhance the method's robustness.This has great potential for optimizing processes in industrial environments.展开更多
In differentiable search architecture search methods,a more efficient search space design can significantly improve the performance of the searched architecture,thus requiring people to carefully define the search spa...In differentiable search architecture search methods,a more efficient search space design can significantly improve the performance of the searched architecture,thus requiring people to carefully define the search space with different complexity according to various operations.Meanwhile rationalizing the search strategies to explore the well-defined search space will further improve the speed and efficiency of architecture search.With this in mind,we propose a faster and more efficient differentiable architecture search method,AllegroNAS.Firstly,we introduce a more efficient search space enriched by the introduction of two redefined convolution modules.Secondly,we utilize a more efficient architectural parameter regularization method,mitigating the overfitting problem during the search process and reducing the error brought about by gradient approximation.Meanwhile,we introduce a natural exponential cosine annealing method to make the learning rate of the neural network training process more suitable for the search procedure.Moreover,group convolution and data augmentation are employed to reduce the computational cost.Finally,through extensive experiments on several public datasets,we demonstrate that our method can more swiftly search for better-performing neural network architectures in a more efficient search space,thus validating the effectiveness of our approach.展开更多
There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced se...There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced self-adaptiveevolutionary algorithm (ESEA) to overcome the demerits above. In the ESEA, four evolutionary operators are designed to enhance the evolutionary structure. Besides, the ESEA employs four effective search strategies under the framework of the self-adaptive learning. Four groups of the experiments are done to find out the most suitable parameter values for the ESEA. In order to verify the performance of the proposed algorithm, 26 state-of-the-art test functions are solved by the ESEA and its competitors. The experimental results demonstrate that the universality and robustness of the ESEA out-perform its competitors.展开更多
A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rat...A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rate and pitch adjusting rate, are encoded as a symbiotic individual of an original individual(i.e., harmony vector). Harmony search operators are applied to evolving the original population. DE is applied to co-evolving the symbiotic population based on feedback information from the original population. Thus, with the evolution of the original population in DEHS, the symbiotic population is dynamically and self-adaptively adjusted, and real-time optimum control parameters are obtained. The proposed DEHS algorithm has been applied to various benchmark functions and two typical dynamic optimization problems. The experimental results show that the performance of the proposed algorithm is better than that of other HS variants. Satisfactory results are obtained in the application.展开更多
Iterated local search(ILS)is used to construct the optimal experimental designs for multi-dimensional constrained spaces,in which the inner loop is based on the stochastic coordinate-exchange(SCE)algorithm.Every time ...Iterated local search(ILS)is used to construct the optimal experimental designs for multi-dimensional constrained spaces,in which the inner loop is based on the stochastic coordinate-exchange(SCE)algorithm.Every time a local optimal solution is found by the SCE algorithm,the perturbation operator is applied to it,and then a new solution is explored in the areas where the exchange of coordinates may produce improvement,so as to retain the features and attributes of the current optimal solution and avoid the defects of random restart.We implement the iterated local coordinate-exchange algorithm for experimental designs in the multi-dimensional constrained spaces.In addition,sensitivity analysis was conducted to analyze the impacts of the parameters on the performance of the proposed algorithm.Also we compared the performance of the proposed algorithm to the SCE algorithm using the random restart strategy.The analysis shows that the proposed algorithm is better than the SCE algorithm in terms of efficiency and quality,especially in the experimental designs for high-dimensional constrained space.展开更多
The specificities of collision-free path planning of space manipulators are analyzed. Path planning strategies are presented in consideration of these specificities, and an implementation procedure is also described i...The specificities of collision-free path planning of space manipulators are analyzed. Path planning strategies are presented in consideration of these specificities, and an implementation procedure is also described in detail according to these strategies.展开更多
The split common fixed point problem is an inverse problem that consists in finding an element in a fixed point set such that its image under a bounded linear operator belongs to another fixed-point set. In this paper...The split common fixed point problem is an inverse problem that consists in finding an element in a fixed point set such that its image under a bounded linear operator belongs to another fixed-point set. In this paper, we present new iterative algorithms for solving the split common fixed point problem of demimetric mappings in Hilbert spaces. Moreover, our algorithm does not need any prior information of the operator norm. Weak and strong convergence theorems are given under some mild assumptions. The results in this paper are the extension and improvement of the recent results in the literature.展开更多
An optimizing method of observation scheduling based on time-division multiplexing is proposed in this paper,and its efficiency is verified by outdoor experiments. The initial observation scheduling is first obtained ...An optimizing method of observation scheduling based on time-division multiplexing is proposed in this paper,and its efficiency is verified by outdoor experiments. The initial observation scheduling is first obtained by using a semi-random search algorithm,and secondly the connection time pair( CTP) between adjacent objects is optimized by using a genetic algorithm. After obtaining these two parameters,the final observation scheduling can be obtained. According to pre-designed tracks between each adjacent objects in observation order,the seamless observation of neighboring targets is derived by automatically steering the antenna beam,so the observation efficiency is improved.展开更多
Shopping Search Engine(SSE)implies a unique challenge for validating distinct items available online in market place.For sellers,having a user finding relevant search results on top is very difficult.Buyers tend to cl...Shopping Search Engine(SSE)implies a unique challenge for validating distinct items available online in market place.For sellers,having a user finding relevant search results on top is very difficult.Buyers tend to click on and buy from the listings which appear first.Search engine optimization devotes that goal to influence such challenges.In current shopping search platforms,lots of irrelevant items retrieved from their indices;e.g.retrieving accessories of exact items rather than retrieving the items itself,regardless the price of item were considered or not.Also,users tend to move from shoppers to another searching for appropriate items where the time is crucial for consumers.In our proposal,we exploit the drawbacks of current shopping search engines,and the main goal of this research is to combine and merge multiple search results retrieved from some highly professional shopping sellers in the commercial market.Experimental results showed that our approach is more efficient and robust for retrieving a complete list of desired and relevant items with respect to all query space.展开更多
文摘In this paper,a novel method of ultra-lightweight convolution neural network(CNN)design based on neural architecture search(NAS)and knowledge distillation(KD)is proposed.It can realize the automatic construction of the space target inverse synthetic aperture radar(ISAR)image recognition model with ultra-lightweight and high accuracy.This method introduces the NAS method into the radar image recognition for the first time,which solves the time-consuming and labor-consuming problems in the artificial design of the space target ISAR image automatic recognition model(STIIARM).On this basis,the NAS model’s knowledge is transferred to the student model with lower computational complexity by the flow of the solution procedure(FSP)distillation method.Thus,the decline of recognition accuracy caused by the direct compression of model structural parameters can be effectively avoided,and the ultralightweight STIIARM can be obtained.In the method,the Inverted Linear Bottleneck(ILB)and Inverted Residual Block(IRB)are firstly taken as each block’s basic structure in CNN.And the expansion ratio,output filter size,number of IRBs,and convolution kernel size are set as the search parameters to construct a hierarchical decomposition search space.Then,the recognition accuracy and computational complexity are taken as the objective function and constraint conditions,respectively,and the global optimization model of the CNN architecture search is established.Next,the simulated annealing(SA)algorithm is used as the search strategy to search out the lightweight and high accuracy STIIARM directly.After that,based on the three principles of similar block structure,the same corresponding channel number,and the minimum computational complexity,the more lightweight student model is designed,and the FSP matrix pairing between the NAS model and student model is completed.Finally,by minimizing the loss between the FSP matrix pairs of the NAS model and student model,the student model’s weight adjustment is completed.Thus the ultra-lightweight and high accuracy STIIARM is obtained.The proposed method’s effectiveness is verified by the simulation experiments on the ISAR image dataset of five types of space targets.
文摘In this paper, we use the global search characteristics of genetic algorithms to help search the weight space of the neurons in the cascade-correlation architecture. The cascade-correlation learning architecture is a technique of training and building neural networks that starts with a simple network of neurons and adds additional neurons as they are needed to suit a particular problem. In our approach, instead ofmodifying the genetic algorithm to account for convergence problems, we search the weight-space using the genetic algorithm and then apply the gradient technique of Quickprop to optimize the weights. This hybrid algorithm which is a combination of genetic algorithms and cascade-correlation is applied to the two spirals problem. We also use our algorithm in the prediction of the cyclic oxidation resistance of Ni- and Co-base superalloys.
文摘By extending the Levy wavefunction constrained search to Fock Space,one can define a wavefunction constrained search for electron densities in systems having noninteger number of electrons.For pure-state v-representable densities,the results are equivalent to what one would obtain with the zero-temperature grand canonical ensemble.In other cases,the wavefunction constrained search in Fock space presents an upper bound to the grand canonical ensemble functional.One advantage of the Fock-space wavefunction constrained search functional over the zero-temperature grand-canonical ensemble constrained search functional is that certain specific excited states(i.e.,those that are not ground-statev-representable) are the stationary points of the Fock-space functional.However,a potential disadvantage of the Fock-space constrained search functional is that it is not convex.
基金Project (No. [2005]555) supported by the Hi-Tech Research and De-velopment Program (863) of China
文摘Various index structures have recently been proposed to facilitate high-dimensional KNN queries, among which the techniques of approximate vector presentation and one-dimensional (1D) transformation can break the curse of dimensionality. Based on the two techniques above, a novel high-dimensional index is proposed, called Bit-code and Distance based index (BD). BD is based on a special partitioning strategy which is optimized for high-dimensional data. By the definitions of bit code and transformation function, a high-dimensional vector can be first approximately represented and then transformed into a 1D vector, the key managed by a B+-tree. A new KNN search algorithm is also proposed that exploits the bit code and distance to prune the search space more effectively. Results of extensive experiments using both synthetic and real data demonstrated that BD out- performs the existing index structures for KNN search in high-dimensional spaces.
基金supported by National Natural Science Foundation of China(62394343)Major Program of Qingyuan Innovation Laboratory(00122002)+1 种基金Major Science and Technology Projects of Longmen Laboratory(231100220600)Shanghai Committee of Science and Technology(23ZR1416000)and Shanghai AI Lab.
文摘The optimization of process parameters in polyolefin production can bring significant economic benefits to the factory.However,due to small data sets,high costs associated with parameter verification cycles,and difficulty in establishing an optimization model,the optimization process is often restricted.To address this issue,we propose using a transfer learning Bayesian optimization strategy to improve the efficiency of parameter optimization while minimizing resource consumption.Specifically,we leverage Gaussian process(GP)regression models to establish an integrated model that incorporates both source and target grade production task data.We then measure the similarity weights of each model by comparing their predicted trends,and utilize these weights to accelerate the solution of optimal process parameters for producing target polyolefin grades.In order to enhance the accuracy of our approach,we acknowledge that measuring similarity in a global search space may not effectively capture local similarity characteristics.Therefore,we propose a novel method for transfer learning optimization that operates within a local space(LSTL-PBO).This method employs partial data acquired through random sampling from the target task data and utilizes Bayesian optimization techniques for model establishment.By focusing on a local search space,we aim to better discern and leverage the inherent similarities between source tasks and the target task.Additionally,we incorporate a parallel concept into our method to address multiple local search spaces simultaneously.By doing so,we can explore different regions of the parameter space in parallel,thereby increasing the chances of finding optimal process parameters.This localized approach allows us to improve the precision and effectiveness of our optimization process.The performance of our method is validated through experiments on benchmark problems,and we discuss the sensitivity of its hyperparameters.The results show that our proposed method can significantly improve the efficiency of process parameter optimization,reduce the dependence on source tasks,and enhance the method's robustness.This has great potential for optimizing processes in industrial environments.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 61305001the Natural Science Foundation of Heilongjiang Province of China under Grant F201222.
文摘In differentiable search architecture search methods,a more efficient search space design can significantly improve the performance of the searched architecture,thus requiring people to carefully define the search space with different complexity according to various operations.Meanwhile rationalizing the search strategies to explore the well-defined search space will further improve the speed and efficiency of architecture search.With this in mind,we propose a faster and more efficient differentiable architecture search method,AllegroNAS.Firstly,we introduce a more efficient search space enriched by the introduction of two redefined convolution modules.Secondly,we utilize a more efficient architectural parameter regularization method,mitigating the overfitting problem during the search process and reducing the error brought about by gradient approximation.Meanwhile,we introduce a natural exponential cosine annealing method to make the learning rate of the neural network training process more suitable for the search procedure.Moreover,group convolution and data augmentation are employed to reduce the computational cost.Finally,through extensive experiments on several public datasets,we demonstrate that our method can more swiftly search for better-performing neural network architectures in a more efficient search space,thus validating the effectiveness of our approach.
基金supported by the Aviation Science Funds of China(2010ZC13012)the Fund of Jiangsu Innovation Program for Graduate Education (CXLX11 0203)
文摘There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced self-adaptiveevolutionary algorithm (ESEA) to overcome the demerits above. In the ESEA, four evolutionary operators are designed to enhance the evolutionary structure. Besides, the ESEA employs four effective search strategies under the framework of the self-adaptive learning. Four groups of the experiments are done to find out the most suitable parameter values for the ESEA. In order to verify the performance of the proposed algorithm, 26 state-of-the-art test functions are solved by the ESEA and its competitors. The experimental results demonstrate that the universality and robustness of the ESEA out-perform its competitors.
基金Project(2013CB733605)supported by the National Basic Research Program of ChinaProject(21176073)supported by the National Natural Science Foundation of China
文摘A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rate and pitch adjusting rate, are encoded as a symbiotic individual of an original individual(i.e., harmony vector). Harmony search operators are applied to evolving the original population. DE is applied to co-evolving the symbiotic population based on feedback information from the original population. Thus, with the evolution of the original population in DEHS, the symbiotic population is dynamically and self-adaptively adjusted, and real-time optimum control parameters are obtained. The proposed DEHS algorithm has been applied to various benchmark functions and two typical dynamic optimization problems. The experimental results show that the performance of the proposed algorithm is better than that of other HS variants. Satisfactory results are obtained in the application.
基金This work was supported by the National Natural Science Foundation of China(72171231).
文摘Iterated local search(ILS)is used to construct the optimal experimental designs for multi-dimensional constrained spaces,in which the inner loop is based on the stochastic coordinate-exchange(SCE)algorithm.Every time a local optimal solution is found by the SCE algorithm,the perturbation operator is applied to it,and then a new solution is explored in the areas where the exchange of coordinates may produce improvement,so as to retain the features and attributes of the current optimal solution and avoid the defects of random restart.We implement the iterated local coordinate-exchange algorithm for experimental designs in the multi-dimensional constrained spaces.In addition,sensitivity analysis was conducted to analyze the impacts of the parameters on the performance of the proposed algorithm.Also we compared the performance of the proposed algorithm to the SCE algorithm using the random restart strategy.The analysis shows that the proposed algorithm is better than the SCE algorithm in terms of efficiency and quality,especially in the experimental designs for high-dimensional constrained space.
文摘The specificities of collision-free path planning of space manipulators are analyzed. Path planning strategies are presented in consideration of these specificities, and an implementation procedure is also described in detail according to these strategies.
文摘The split common fixed point problem is an inverse problem that consists in finding an element in a fixed point set such that its image under a bounded linear operator belongs to another fixed-point set. In this paper, we present new iterative algorithms for solving the split common fixed point problem of demimetric mappings in Hilbert spaces. Moreover, our algorithm does not need any prior information of the operator norm. Weak and strong convergence theorems are given under some mild assumptions. The results in this paper are the extension and improvement of the recent results in the literature.
基金Supported by the National Natural Science Foundation of China(61271373,61571043)111 Project of China(B14010)
文摘An optimizing method of observation scheduling based on time-division multiplexing is proposed in this paper,and its efficiency is verified by outdoor experiments. The initial observation scheduling is first obtained by using a semi-random search algorithm,and secondly the connection time pair( CTP) between adjacent objects is optimized by using a genetic algorithm. After obtaining these two parameters,the final observation scheduling can be obtained. According to pre-designed tracks between each adjacent objects in observation order,the seamless observation of neighboring targets is derived by automatically steering the antenna beam,so the observation efficiency is improved.
文摘Shopping Search Engine(SSE)implies a unique challenge for validating distinct items available online in market place.For sellers,having a user finding relevant search results on top is very difficult.Buyers tend to click on and buy from the listings which appear first.Search engine optimization devotes that goal to influence such challenges.In current shopping search platforms,lots of irrelevant items retrieved from their indices;e.g.retrieving accessories of exact items rather than retrieving the items itself,regardless the price of item were considered or not.Also,users tend to move from shoppers to another searching for appropriate items where the time is crucial for consumers.In our proposal,we exploit the drawbacks of current shopping search engines,and the main goal of this research is to combine and merge multiple search results retrieved from some highly professional shopping sellers in the commercial market.Experimental results showed that our approach is more efficient and robust for retrieving a complete list of desired and relevant items with respect to all query space.