The accurate control for the vehicle height and leveling adjustment system of an electronic air suspension(EAS) still is a challenging problem that has not been effectively solved in prior researches. This paper propo...The accurate control for the vehicle height and leveling adjustment system of an electronic air suspension(EAS) still is a challenging problem that has not been effectively solved in prior researches. This paper proposes a new adaptive controller to control the vehicle height and to adjust the roll and pitch angles of the vehicle body(leveling control) during the vehicle height adjustment procedures by an EAS system. A nonlinear mechanism model of the full?car vehicle height adjustment system is established to reflect the system dynamic behaviors and to derive the system optimal control law. To deal with the nonlinear characters in the vehicle height and leveling adjustment processes, the nonlinear system model is globally linearized through the state feedback method. On this basis, a fuzzy sliding mode controller(FSMC) is designed to improve the control accuracy of the vehicle height adjustment and to reduce the peak values of the roll and pitch angles of the vehicle body. To verify the effectiveness of the proposed control method more accurately, the full?car EAS system model programmed using AMESim is also given. Then, the co?simulation study of the FSMC performance can be conducted. Finally, actual vehicle tests are performed with a city bus, and the test results illustrate that the vehicle height adjustment performance is effectively guaranteed by the FSMC, and the peak values of the roll and pitch angles of the vehicle body during the vehicle height adjustment procedures are also reduced significantly. This research proposes an effective control methodology for the vehicle height and leveling adjustment system of an EAS, which provides a favorable control performance for the system.展开更多
AIM:To observe early clinical outcome with lens position adjustment following the implantable collamer lens(ICL)surgery.METHODS:Sixty patients were selected for this retrospective study.One eye from each patient recei...AIM:To observe early clinical outcome with lens position adjustment following the implantable collamer lens(ICL)surgery.METHODS:Sixty patients were selected for this retrospective study.One eye from each patient received Toric ICL for astigmatism correction,and the other received non-astigmatic ICL surgery using horizontal position.Patients with higher postoperative arch height were selected,and their non-astigmatic eye clinical outcome were observed after ICL surgery at 1wk,1,and 3mo.The clinical measurements included uncorrected visual acuity(UCVA),intraocular pressure(IOP),refractive state,corneal endothelium cell count,and arch height.Three months later,the ICL in each patient’s non-astigmatic eye was adjusted to the vertical from the horizontal position.The results were compared before and 1wk,1,and 3mo after adjustment.RESULTS:UCVA and IOP were significantly reduced 1wk after position adjustment compared to 1wk after ICL implantation(P<0.05).The patients demonstrated significantly reduced arch height and corneal endothelium cell count 1wk,1,and 3mo after adjusting position compared to 1wk,1,and 3mo after ICL implantation(P<0.05).However,there was no significant difference in refraction between 1wk,1,and 3mo after ICL implantation and position adjustment(P>0.05).CONCLUSION:Early positioning adjustment postphakic ICL implantation can benefit patients with adjusted arch height or higher IOP.Despite the good clinical effects,the doctors should pay attention to the potential for adverse effects on UCVA and corneal endothelium cells following early position adjustment after posterior chamber phakic ICL implantation.展开更多
At present,the principal data processing methods involving complex observations are based on two strategies according to characteristics of the observation process,i.e.,step-by-step and direct resolution.However,these...At present,the principal data processing methods involving complex observations are based on two strategies according to characteristics of the observation process,i.e.,step-by-step and direct resolution.However,these strategies have some limitations,e.g.they cannot consider statistical observation error information,redundant observations and so on.This paper applies least squares methods to complex data processing to extend surveying adjustment theory from real to complex number space.We compared the two adjustment criteria for a complex domain in a quantitative way.In order to understand the effectiveness of complex least squares,tree height inversion from PolInSAR data is taken as an example.We firstly established both a complex adjustment function model and a stochastic model for PolInSAR tree height inversion,and then applied the complex least squares method to estimate tree height.Results show that the complex least squares approach is reliable and outperforms other classic tree height retrieval methods;the method is simple and easy to implement.展开更多
The relationship between ship stability and sail area is firstly investigated based on the sail-assisted ship's stability in this paper. Then a height-adjustable sail structure is proposed that could be automatically...The relationship between ship stability and sail area is firstly investigated based on the sail-assisted ship's stability in this paper. Then a height-adjustable sail structure is proposed that could be automatically adjusted according to the wind conditions, ship loading and other requirements. The influences on the sail height in different ship load conditions, different wind apparent velocity and wind direction are analyzed of a sail-assisted bulk carrier. Finally a control procedure of sail height adjustment in real time is proposed according to the actual load conditions, wind conditions, ship velocity and other parameters to make the best use of wind energy, which is significant for the practical application of sail-assisting technology in the future.展开更多
An intelligent shearer height adjusting system is a key technology for mining at a man-less working face. A control strategy for a shearer height adjusting system based on a mathematical model of the height adjusting ...An intelligent shearer height adjusting system is a key technology for mining at a man-less working face. A control strategy for a shearer height adjusting system based on a mathematical model of the height adjusting mechanism is proposed. It considers the non-linearity and time variations in the control process and uses Dynamic Fuzzy Neural Networks (D-FNN). The inverse characteristics of the system are studied. An adaptive on-line learning and error compensation mechanism guarantees sys- tem real-time performance and reliability. Parameters from a German Eickhoff SL500 shearer were used with Maflab/Simulink to simulate a height adjusting control system. Simulation shows that the trace error of a D-FNN controller is smaller than that of a PID controller. Also, the D-FNN control scheme has good generalization and tracking performance, which allow it to satisfy the needs of a shearer height adjusting system.展开更多
Wire arc additive manufacturing(WAAM)has been investigated to deposit large-scale metal parts due to its high deposition efficiency and low material cost.However,in the process of automatically manufacturing the high-...Wire arc additive manufacturing(WAAM)has been investigated to deposit large-scale metal parts due to its high deposition efficiency and low material cost.However,in the process of automatically manufacturing the high-quality metal parts by WAAM,several problems about the heat build-up,the deposit-path optimization,and the stability of the process parameters need to be well addressed.To overcome these issues,a new WAAM method based on the double electrode micro plasma arc welding(DE-MPAW)was designed.The circuit principles of different metal-transfer models in the DE-MPAW deposition process were analyzed theoretically.The effects between the parameters,wire feed rate and torch stand-off distance,in the process of WAAM were investigated experimentally.In addition,a real-time DE-MPAW control system was developed to optimize and stabilize the deposition process by self-adaptively changing the wire feed rate and torch stand-off distance.Finally,a series of tests were performed to evaluate the control system’s performance.The results show that the capability against interferences in the process of WAAM has been enhanced by this self-adaptive adjustment system.Further,the deposition paths about the metal part’s layer heights in WAAM are simplified.Finally,the appearance of the WAAM-deposited metal layers is also improved with the use of the control system.展开更多
Firstly, in view of the respective defects of existing self-centering devices for vehicle suspension height, the design scheme of the proposed mechanical self-centering device for suspension height is described. Takin...Firstly, in view of the respective defects of existing self-centering devices for vehicle suspension height, the design scheme of the proposed mechanical self-centering device for suspension height is described. Taking the rear suspension of a certain light bus as a research example, the structures and parameters of the novel device are designed and ascertained. Then, the road excitation models, the performance evaluation indexes and the half-vehicle model are built, the simulation outputs of time and frequency domain are obtained with the road excitations of random and pulse by using MATLAB/Simulink software. So the main characteristics of the self-centering suspension are presented preliminarily. Finally, a multi-objective parameter design optimization model for the self-centering device is built by weighted sum approach, and optimal solution is obtained by adopting complex approach. The relevant choosing-type parameters for self-centering device components are deduced by using discrete variable optimal method, and the optimal results are verified and analyzed. So the performance potentials of the self-centering device are exerted fully in condition of ensuring overall suspension performances.展开更多
To reduce the damages of pavement,vehicle components and agricultural product during transportation,an electric control air suspension height adjustment system of agricultural transport vehicle was studied by means of...To reduce the damages of pavement,vehicle components and agricultural product during transportation,an electric control air suspension height adjustment system of agricultural transport vehicle was studied by means of simulation and bench test.For the oscillation phenomenon of vehicle height in driving process,the mathematical model of the vehicle height adjustment system was developed,and the controller of vehicle height based on single neuron adaptive PID control algorithm was designed.The control model was simulated via Matlab/Simulink,and bench test was conducted.Results show that the method is feasible and effective to solve the agricultural vehicle body height unstable phenomenon in the process of switching.Compared with other PID algorithms,the single neuron adaptive PID control in agricultural transport vehicle has shorter response time,faster response speed and more stable switching state.The stability of the designed vehicle height adjustment system and the ride comfort of agricultural transport vehicle were improved.展开更多
In this paper, we propose the novel method of complex least squares adjustment (CLSA) to invert vegetation height accurately using single-baseline polarimetric synthetic aperture radar interferometry (PollnSAR) da...In this paper, we propose the novel method of complex least squares adjustment (CLSA) to invert vegetation height accurately using single-baseline polarimetric synthetic aperture radar interferometry (PollnSAR) data. CLSA basically estimates both volume-only coherence and ground phase directly without assuming that the ground-to-volume amplitude radio of a particular polarization channel (e.g., HV) is less than -10 dB, as in the three-stage method. In addition, CLSA can effectively limit errors in interferometric complex coherence, which may translate directly into erroneous ground-phase and volume-only coherence estimations. The proposed CLSA method is validated with BioSAR2008 P-band E-SAR and L-band SIR-C PollnSAR data. Its results are then compared with those of the traditional three-stage method and with external data. It implies that the CLSA method is much more robust than the three-stage method.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51375212,61601203)Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions of China+1 种基金Key Research and Development Program of Jiangsu Province(BE2016149)Jiangsu Provincial Natural Science Foundation of China(BK20140555)
文摘The accurate control for the vehicle height and leveling adjustment system of an electronic air suspension(EAS) still is a challenging problem that has not been effectively solved in prior researches. This paper proposes a new adaptive controller to control the vehicle height and to adjust the roll and pitch angles of the vehicle body(leveling control) during the vehicle height adjustment procedures by an EAS system. A nonlinear mechanism model of the full?car vehicle height adjustment system is established to reflect the system dynamic behaviors and to derive the system optimal control law. To deal with the nonlinear characters in the vehicle height and leveling adjustment processes, the nonlinear system model is globally linearized through the state feedback method. On this basis, a fuzzy sliding mode controller(FSMC) is designed to improve the control accuracy of the vehicle height adjustment and to reduce the peak values of the roll and pitch angles of the vehicle body. To verify the effectiveness of the proposed control method more accurately, the full?car EAS system model programmed using AMESim is also given. Then, the co?simulation study of the FSMC performance can be conducted. Finally, actual vehicle tests are performed with a city bus, and the test results illustrate that the vehicle height adjustment performance is effectively guaranteed by the FSMC, and the peak values of the roll and pitch angles of the vehicle body during the vehicle height adjustment procedures are also reduced significantly. This research proposes an effective control methodology for the vehicle height and leveling adjustment system of an EAS, which provides a favorable control performance for the system.
基金Supported by Tianjin Key Medical Discipline(Specialty)Construction Project(No.TJYXZDXK-037A).
文摘AIM:To observe early clinical outcome with lens position adjustment following the implantable collamer lens(ICL)surgery.METHODS:Sixty patients were selected for this retrospective study.One eye from each patient received Toric ICL for astigmatism correction,and the other received non-astigmatic ICL surgery using horizontal position.Patients with higher postoperative arch height were selected,and their non-astigmatic eye clinical outcome were observed after ICL surgery at 1wk,1,and 3mo.The clinical measurements included uncorrected visual acuity(UCVA),intraocular pressure(IOP),refractive state,corneal endothelium cell count,and arch height.Three months later,the ICL in each patient’s non-astigmatic eye was adjusted to the vertical from the horizontal position.The results were compared before and 1wk,1,and 3mo after adjustment.RESULTS:UCVA and IOP were significantly reduced 1wk after position adjustment compared to 1wk after ICL implantation(P<0.05).The patients demonstrated significantly reduced arch height and corneal endothelium cell count 1wk,1,and 3mo after adjusting position compared to 1wk,1,and 3mo after ICL implantation(P<0.05).However,there was no significant difference in refraction between 1wk,1,and 3mo after ICL implantation and position adjustment(P>0.05).CONCLUSION:Early positioning adjustment postphakic ICL implantation can benefit patients with adjusted arch height or higher IOP.Despite the good clinical effects,the doctors should pay attention to the potential for adverse effects on UCVA and corneal endothelium cells following early position adjustment after posterior chamber phakic ICL implantation.
基金The National Natural Science Foundation of China(41274010,40974007,40901172)National Key Basic Research and Development Program of China(2012AA121301)+2 种基金Hunan Provincial Natural Science Foundation of China(12JJ4035)Postgraduate Autonomous Exploration Project of Central South University(2013zzts055)China Scholarship Council(201406370079).
文摘At present,the principal data processing methods involving complex observations are based on two strategies according to characteristics of the observation process,i.e.,step-by-step and direct resolution.However,these strategies have some limitations,e.g.they cannot consider statistical observation error information,redundant observations and so on.This paper applies least squares methods to complex data processing to extend surveying adjustment theory from real to complex number space.We compared the two adjustment criteria for a complex domain in a quantitative way.In order to understand the effectiveness of complex least squares,tree height inversion from PolInSAR data is taken as an example.We firstly established both a complex adjustment function model and a stochastic model for PolInSAR tree height inversion,and then applied the complex least squares method to estimate tree height.Results show that the complex least squares approach is reliable and outperforms other classic tree height retrieval methods;the method is simple and easy to implement.
文摘The relationship between ship stability and sail area is firstly investigated based on the sail-assisted ship's stability in this paper. Then a height-adjustable sail structure is proposed that could be automatically adjusted according to the wind conditions, ship loading and other requirements. The influences on the sail height in different ship load conditions, different wind apparent velocity and wind direction are analyzed of a sail-assisted bulk carrier. Finally a control procedure of sail height adjustment in real time is proposed according to the actual load conditions, wind conditions, ship velocity and other parameters to make the best use of wind energy, which is significant for the practical application of sail-assisting technology in the future.
基金support for this work, provided by the National High Technology Research and Development Program of China (No2008AA062202)China University of Mining & Technology Scaling Program
文摘An intelligent shearer height adjusting system is a key technology for mining at a man-less working face. A control strategy for a shearer height adjusting system based on a mathematical model of the height adjusting mechanism is proposed. It considers the non-linearity and time variations in the control process and uses Dynamic Fuzzy Neural Networks (D-FNN). The inverse characteristics of the system are studied. An adaptive on-line learning and error compensation mechanism guarantees sys- tem real-time performance and reliability. Parameters from a German Eickhoff SL500 shearer were used with Maflab/Simulink to simulate a height adjusting control system. Simulation shows that the trace error of a D-FNN controller is smaller than that of a PID controller. Also, the D-FNN control scheme has good generalization and tracking performance, which allow it to satisfy the needs of a shearer height adjusting system.
基金Supported by National Natural Science Foundation of China(Grant No.51665034).
文摘Wire arc additive manufacturing(WAAM)has been investigated to deposit large-scale metal parts due to its high deposition efficiency and low material cost.However,in the process of automatically manufacturing the high-quality metal parts by WAAM,several problems about the heat build-up,the deposit-path optimization,and the stability of the process parameters need to be well addressed.To overcome these issues,a new WAAM method based on the double electrode micro plasma arc welding(DE-MPAW)was designed.The circuit principles of different metal-transfer models in the DE-MPAW deposition process were analyzed theoretically.The effects between the parameters,wire feed rate and torch stand-off distance,in the process of WAAM were investigated experimentally.In addition,a real-time DE-MPAW control system was developed to optimize and stabilize the deposition process by self-adaptively changing the wire feed rate and torch stand-off distance.Finally,a series of tests were performed to evaluate the control system’s performance.The results show that the capability against interferences in the process of WAAM has been enhanced by this self-adaptive adjustment system.Further,the deposition paths about the metal part’s layer heights in WAAM are simplified.Finally,the appearance of the WAAM-deposited metal layers is also improved with the use of the control system.
基金supported by Youth Technological Phosphor Project of Shanghai City (No.04QMX1474).
文摘Firstly, in view of the respective defects of existing self-centering devices for vehicle suspension height, the design scheme of the proposed mechanical self-centering device for suspension height is described. Taking the rear suspension of a certain light bus as a research example, the structures and parameters of the novel device are designed and ascertained. Then, the road excitation models, the performance evaluation indexes and the half-vehicle model are built, the simulation outputs of time and frequency domain are obtained with the road excitations of random and pulse by using MATLAB/Simulink software. So the main characteristics of the self-centering suspension are presented preliminarily. Finally, a multi-objective parameter design optimization model for the self-centering device is built by weighted sum approach, and optimal solution is obtained by adopting complex approach. The relevant choosing-type parameters for self-centering device components are deduced by using discrete variable optimal method, and the optimal results are verified and analyzed. So the performance potentials of the self-centering device are exerted fully in condition of ensuring overall suspension performances.
基金the National Natural Science Foundation of China(Grant No.51375212,71373105)Research Fund for the Doctoral Program of Higher Education of China(Grant No.20133227130001)+1 种基金Research and Innovation Project for College Graduates of Jiangsu Province of China(Grant No.CXZZ12_0663)Jiangsu Provincial Natural Science Foundation of China(Grant No.BK20131255)。
文摘To reduce the damages of pavement,vehicle components and agricultural product during transportation,an electric control air suspension height adjustment system of agricultural transport vehicle was studied by means of simulation and bench test.For the oscillation phenomenon of vehicle height in driving process,the mathematical model of the vehicle height adjustment system was developed,and the controller of vehicle height based on single neuron adaptive PID control algorithm was designed.The control model was simulated via Matlab/Simulink,and bench test was conducted.Results show that the method is feasible and effective to solve the agricultural vehicle body height unstable phenomenon in the process of switching.Compared with other PID algorithms,the single neuron adaptive PID control in agricultural transport vehicle has shorter response time,faster response speed and more stable switching state.The stability of the designed vehicle height adjustment system and the ride comfort of agricultural transport vehicle were improved.
基金supported by the National Basic Research Program of China(Grant No.2013CB733303)National Natural Science Foundation of China(Grant Nos.41274010,41371335)supported by PA-SB ESA EO Project Campaign of"Development of methods for Forest Biophysical Parameters Inversion Using POLIn SAR Data"(Grant No.ID.14655)
文摘In this paper, we propose the novel method of complex least squares adjustment (CLSA) to invert vegetation height accurately using single-baseline polarimetric synthetic aperture radar interferometry (PollnSAR) data. CLSA basically estimates both volume-only coherence and ground phase directly without assuming that the ground-to-volume amplitude radio of a particular polarization channel (e.g., HV) is less than -10 dB, as in the three-stage method. In addition, CLSA can effectively limit errors in interferometric complex coherence, which may translate directly into erroneous ground-phase and volume-only coherence estimations. The proposed CLSA method is validated with BioSAR2008 P-band E-SAR and L-band SIR-C PollnSAR data. Its results are then compared with those of the traditional three-stage method and with external data. It implies that the CLSA method is much more robust than the three-stage method.