期刊文献+
共找到39,137篇文章
< 1 2 250 >
每页显示 20 50 100
Dynamic Economic Scheduling with Self-Adaptive Uncertainty in Distribution Network Based on Deep Reinforcement Learning
1
作者 Guanfu Wang Yudie Sun +5 位作者 Jinling Li Yu Jiang Chunhui Li Huanan Yu He Wang Shiqiang Li 《Energy Engineering》 EI 2024年第6期1671-1695,共25页
Traditional optimal scheduling methods are limited to accurate physical models and parameter settings, which aredifficult to adapt to the uncertainty of source and load, and there are problems such as the inability to... Traditional optimal scheduling methods are limited to accurate physical models and parameter settings, which aredifficult to adapt to the uncertainty of source and load, and there are problems such as the inability to make dynamicdecisions continuously. This paper proposed a dynamic economic scheduling method for distribution networksbased on deep reinforcement learning. Firstly, the economic scheduling model of the new energy distributionnetwork is established considering the action characteristics of micro-gas turbines, and the dynamic schedulingmodel based on deep reinforcement learning is constructed for the new energy distribution network system with ahigh proportion of new energy, and the Markov decision process of the model is defined. Secondly, Second, for thechanging characteristics of source-load uncertainty, agents are trained interactively with the distributed networkin a data-driven manner. Then, through the proximal policy optimization algorithm, agents adaptively learn thescheduling strategy and realize the dynamic scheduling decision of the new energy distribution network system.Finally, the feasibility and superiority of the proposed method are verified by an improved IEEE 33-node simulationsystem. 展开更多
关键词 self-adaptive the uncertainty of sources and load deep reinforcement learning dynamic economic scheduling
下载PDF
MCWOA Scheduler:Modified Chimp-Whale Optimization Algorithm for Task Scheduling in Cloud Computing 被引量:1
2
作者 Chirag Chandrashekar Pradeep Krishnadoss +1 位作者 Vijayakumar Kedalu Poornachary Balasundaram Ananthakrishnan 《Computers, Materials & Continua》 SCIE EI 2024年第2期2593-2616,共24页
Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay ... Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO). 展开更多
关键词 Cloud computing schedulING chimp optimization algorithm whale optimization algorithm
下载PDF
Yield and Nutritive Values of Semi- and Non-Fall Dormant Alfalfa Cultivars under Late-Cutting Schedule in California’s Central Valley
3
作者 Sultan Begna Dan Putnam +2 位作者 Dong Wang Khaled Bali Longxi Yu 《American Journal of Plant Sciences》 CAS 2024年第10期858-876,共19页
California is one of the major alfalfa (Medicago sativa L) forage-producing states in the U.S, but its production area has decreased significantly in the last couple of decades. Selection of cultivars with high yield ... California is one of the major alfalfa (Medicago sativa L) forage-producing states in the U.S, but its production area has decreased significantly in the last couple of decades. Selection of cultivars with high yield and nutritive value under late-cutting schedule strategy may help identify cultivars that growers can use to maximize yield while maintaining area for sustainable alfalfa production, but there is little information on this strategy. A field study was conducted to determine cumulative dry matter (DM) and nutritive values of 20 semi- and non-fall dormant (FD) ratings (FD 7 and FD 8 - 10, respectively) cultivars under 35-day cut in California’s Central Valley in 2020-2022. Seasonal cumulative DM yields ranged from 6.8 in 2020 to 37.0 Mg·ha−1 in 2021. Four FD 8 - 9 cultivars were the highest yielding with 3-yrs avg. DM greater than the lowest yielding lines by 46%. FD 7 cultivar “715RR” produced the highest crude protein (CP: 240 g·Kg−1) while FD 8 cultivar “HVX840RR” resulted in the highest neutral detergent fiber digestibility (NDFD: 484 g·Kg−1, 7% greater than the top yielding cultivars) but with DM yield intermediate. Yields and NDFD correlated positively but weakly indicating some semi- and non-FD cultivars performing similarly. These results suggest that selecting high yielding cultivars under 35-day cutting schedule strategy can be used as a tool to help growers to maximize yield while achieving good quality forages for sustainable alfalfa production in California’s Central Valley. 展开更多
关键词 ALFALFA Maximizing Yield Nutritive Value CULTIVAR Cutting schedule Production Area California
下载PDF
Bidirectional rotating direct-current triboelectric nanogenerator with self-adaptive mechanical switching for harvesting reciprocating motion
4
作者 Donghan Lee Joonmin Chae +6 位作者 Sumin Cho Jong Woo Kim Awais Ahmad Mohammad Rezaul Karim Moonwoo La Sung Jea Park Dongwhi Choi 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第4期324-335,共12页
Amid the growing interest in triboelectric nanogenerators(TENGs)as novel energy-harvesting devices,several studies have focused on direct current(DC)TENGs to generate a stable DC output for operating electronic device... Amid the growing interest in triboelectric nanogenerators(TENGs)as novel energy-harvesting devices,several studies have focused on direct current(DC)TENGs to generate a stable DC output for operating electronic devices.However,owing to the working mechanisms of conventional DC TENGs,generating a stable DC output from reciprocating motion remains a challenge.Accordingly,we propose a bidirectional rotating DC TENG(BiR-TENG),which can generate DC outputs,regardless of the direction of rotation,from reciprocating motions.The distinct design of the BiR-TENG enables the mechanical rectification of the alternating current output into a rotational-direction-dependent DC output.Furthermore,it allows the conversion of the rotational-direction-dependent DC output into a unidirectional DC output by adapting the configurations depending on the rotational direction.Owing to these tailored design strategies and subsequent optimizations,the BiR-TENG could generate an effective unidirectional DC output.Applications of the BiR-TENG for the reciprocating motions of swinging doors and waves were demonstrated by harnessing this output.This study demonstrates the potential of the BiR-TENG design strategy as an effective and versatile solution for energy harvesting from reciprocating motions,highlighting the suitability of DC outputs as an energy source for electronic devices. 展开更多
关键词 direct-current triboelectric nanogenerator mechanical rectification self-adaptive mechanical design harvesting reciprocation motion
下载PDF
Formal Modeling of Self-Adaptive Resource Scheduling in Cloud
5
作者 Atif Ishaq Khan Syed Asad Raza Kazmi Awais Qasim 《Computers, Materials & Continua》 SCIE EI 2023年第1期1183-1197,共15页
A self-adaptive resource provisioning on demand is a critical factor in cloud computing.The selection of accurate amount of resources at run time is not easy due to dynamic nature of requests.Therefore,a self-adaptive... A self-adaptive resource provisioning on demand is a critical factor in cloud computing.The selection of accurate amount of resources at run time is not easy due to dynamic nature of requests.Therefore,a self-adaptive strategy of resources is required to deal with dynamic nature of requests based on run time change in workload.In this paper we proposed a Cloud-based Adaptive Resource Scheduling Strategy(CARSS)Framework that formally addresses these issues and is more expressive than traditional approaches.The decision making in CARSS is based on more than one factors.TheMAPE-K based framework determines the state of the resources based on their current utilization.Timed-Arc Petri Net(TAPN)is used to model system formally and behaviour is expressed in TCTL,while TAPAAL model checker verifies the underline properties of the system. 展开更多
关键词 Formal modeling MULTI-AGENT self-adaptive cloud computing
下载PDF
基于NPV Scheduler软件的露天转地下矿山开采境界研究 被引量:3
6
作者 马宁 汪昌亮 丁鹏 《中国矿山工程》 2023年第2期21-25,共5页
基础的L-G图论法未考虑地下开采可能的成本优势,在露天转地下矿山开采境界圈定时存在一定的局限性。本文通过对价格法与储量盈利比较法计算的经济合理剥采比进行分析,结合NPV Scheduler软件研究了露天转地下开采境界圈定方法,并通过工... 基础的L-G图论法未考虑地下开采可能的成本优势,在露天转地下矿山开采境界圈定时存在一定的局限性。本文通过对价格法与储量盈利比较法计算的经济合理剥采比进行分析,结合NPV Scheduler软件研究了露天转地下开采境界圈定方法,并通过工程实例验证了该方法的合理性。研究成果对露天转地下矿山开采境界的确定具有一定的指导意义。 展开更多
关键词 露天转地下 NPV scheduler 经济合理剥采比 L-G图论法
下载PDF
基于Scheduled Sampling采样机制的人体行为预测
7
作者 杜薇 于雅楠 尹光华 《天津职业技术师范大学学报》 2023年第2期54-59,共6页
针对循环神经网络存在的预测误差累积问题,提出了融合Scheduled Sampling采样机制的序列预测算法。该算法选用较大概率p作为选择使用真实值或是前一帧预测数据作为当前时间步输入依据,并随着时间的推移p值逐渐变小,使解码器更倾向于使... 针对循环神经网络存在的预测误差累积问题,提出了融合Scheduled Sampling采样机制的序列预测算法。该算法选用较大概率p作为选择使用真实值或是前一帧预测数据作为当前时间步输入依据,并随着时间的推移p值逐渐变小,使解码器更倾向于使用预测序列作为输入,以此增加模型的健壮性。实验结果表明:该算法能够将Human3.6M数据集中绝大多数动作短期预测误差降低到0.5 dm左右,相比原方法降低了0.2~0.4 dm,在行为预测上表现良好。 展开更多
关键词 行为预测 循环神经网络 scheduled Sampling
下载PDF
Self-adaptive large neighborhood search algorithm for parallel machine scheduling problems 被引量:7
8
作者 Pei Wang Gerhard Reinelt Yuejin Tan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第2期208-215,共8页
A self-adaptive large neighborhood search method for scheduling n jobs on m non-identical parallel machines with mul- tiple time windows is presented. The problems' another feature lies in oversubscription, namely no... A self-adaptive large neighborhood search method for scheduling n jobs on m non-identical parallel machines with mul- tiple time windows is presented. The problems' another feature lies in oversubscription, namely not all jobs can be scheduled within specified scheduling horizons due to the limited machine capacity. The objective is thus to maximize the overall profits of processed jobs while respecting machine constraints. A first-in- first-out heuristic is applied to find an initial solution, and then a large neighborhood search procedure is employed to relax and re- optimize cumbersome solutions. A machine learning mechanism is also introduced to converge on the most efficient neighborhoods for the problem. Extensive computational results are presented based on data from an application involving the daily observation scheduling of a fleet of earth observing satellites. The method rapidly solves most problem instances to optimal or near optimal and shows a robust performance in sensitive analysis. 展开更多
关键词 non-identical parallel machine scheduling problem with multiple time windows (NPMSPMTW) oversubscribed self- adaptive large neighborhood search (SALNS) machine learning.
下载PDF
In-situ interfacial passivation and self-adaptability synergistically stabilizing all-solid-state lithium metal batteries 被引量:1
9
作者 Huanhui Chen Xing Cao +6 位作者 Moujie Huang Xiangzhong Ren Yubin Zhao Liang Yu Ya Liu Liubiao Zhong Yejun Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期282-292,I0007,共12页
The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined ... The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries. 展开更多
关键词 Solid-state lithium batteries Composite solid electrolyte In-situ polymerization Interfacial passivation layer self-adaptability
下载PDF
Self-adaptive bulk/surface engineering of Bi_(x)O_(y)Br_(z) towards enhanced photocatalysis:Current status and future challenges
10
作者 Zhiwei Wu Bidyut Kumar Kundu +5 位作者 Wanqiong Kang Lei Mao Sen Zhang Lan Yuan Fen Guo Chuang Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期387-413,I0009,共28页
The bulk/surface states of semiconductor photocatalysts are imperative parameters to maneuver their performance by significantly affecting the key processes of photocatalysis including light absorption,separation of c... The bulk/surface states of semiconductor photocatalysts are imperative parameters to maneuver their performance by significantly affecting the key processes of photocatalysis including light absorption,separation of charge carrier,and surface site reaction.Recent years have witnessed the encouraging progress of self-adaptive bulk/surface engineered Bi_(x)O_(y)Br_(z) for photocatalytic applications spanning various fields.However,despite the maturity of current research,the interaction between the bulk/surface state and the performance of Bi_(x)O_(y)Br_(z) has not yet been fully understood and highlighted.In this regard,a timely tutorial overview is quite urgent to summarize the most recent key progress and outline developing obstacles in this exciting area.Herein,the structural characteristics and fundamental principles of Bi_(x)O_(y)Br_(z)for driving photocatalytic reaction as well as related key issues are firstly reviewed.Then,we for the first time summarized different self-adaptive engineering processes over Bi_(x)O_(y)Br_(z)followed by a classification of the generation approaches towards diverse Bi_(x)O_(y)Br_(z)materials.The features of different strategies,the up-to-date characterization techniques to detect bulk/surface states,and the effect of bulk/surface states on improving the photoactivity of Bi_(x)O_(y)Br_(z)in expanded applications are further discussed.Finally,the present research status,challenges,and future research opportunities of self-adaptive bulk/surface engineered Bi_(x)O_(y)Br_(z)are prospected.It is anticipated that this critical review can trigger deeper investigations and attract upcoming innovative ideas on the rational design of Bi_(x)O_(y)Br_(z)-based photocatalysts. 展开更多
关键词 Bismuth oxybromide self-adaptive engineering Pollutant degradation Energy application PHOTOCATALYSIS
下载PDF
A Modified Firefly Optimization Algorithm-Based Fuzzy Packet Scheduler for MANET
11
作者 Mercy Sharon Devadas N.Bhalaji Xiao-Zhi Gao 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期2685-2702,共18页
In Mobile ad hoc Networks(MANETs),the packet scheduling process is considered the major challenge because of error-prone connectivity among mobile nodes that introduces intolerable delay and insufficient throughput wi... In Mobile ad hoc Networks(MANETs),the packet scheduling process is considered the major challenge because of error-prone connectivity among mobile nodes that introduces intolerable delay and insufficient throughput with high packet loss.In this paper,a Modified Firefly Optimization Algorithm improved Fuzzy Scheduler-based Packet Scheduling(MFPA-FSPS)Mechanism is proposed for sustaining Quality of Service(QoS)in the network.This MFPA-FSPS mechanism included a Fuzzy-based priority scheduler by inheriting the merits of the Sugeno Fuzzy inference system that potentially and adaptively estimated packets’priority for guaranteeing optimal network performance.It further used the modified Firefly Optimization Algorithm to optimize the rules uti-lized by the fuzzy inference engine to achieve the potential packet scheduling pro-cess.This adoption of a fuzzy inference engine used dynamic optimization that guaranteed excellent scheduling of the necessitated packets at an appropriate time with minimized waiting time.The statistical validation of the proposed MFPA-FSPS conducted using a one-way Analysis of Variance(ANOVA)test confirmed its predominance over the benchmarked schemes used for investigation. 展开更多
关键词 Packet scheduling firefly algorithm ad hoc networks fuzzy scheduler opnet simulator
下载PDF
Performance Improvement through Novel Adaptive Node and Container Aware Scheduler with Resource Availability Control in Hadoop YARN
12
作者 J.S.Manjaly T.Subbulakshmi 《Computer Systems Science & Engineering》 SCIE EI 2023年第12期3083-3108,共26页
The default scheduler of Apache Hadoop demonstrates operational inefficiencies when connecting external sources and processing transformation jobs.This paper has proposed a novel scheduler for enhancement of the perfo... The default scheduler of Apache Hadoop demonstrates operational inefficiencies when connecting external sources and processing transformation jobs.This paper has proposed a novel scheduler for enhancement of the performance of the Hadoop Yet Another Resource Negotiator(YARN)scheduler,called the Adaptive Node and Container Aware Scheduler(ANACRAC),that aligns cluster resources to the demands of the applications in the real world.The approach performs to leverage the user-provided configurations as a unique design to apportion nodes,or containers within the nodes,to application thresholds.Additionally,it provides the flexibility to the applications for selecting and choosing which node’s resources they want to manage and adds limits to prevent threshold breaches by adding additional jobs as needed.Node or container awareness can be utilized individually or in combination to increase efficiency.On top of this,the resource availability within the node and containers can also be investigated.This paper also focuses on the elasticity of the containers and self-adaptiveness depending on the job type.The results proved that 15%–20%performance improvement was achieved compared with the node and container awareness feature of the ANACRAC.It has been validated that this ANACRAC scheduler demonstrates a 70%–90%performance improvement compared with the default Fair scheduler.Experimental results also demonstrated the success of the enhancement and a performance improvement in the range of 60%to 200%when applications were connected with external interfaces and high workloads. 展开更多
关键词 Big data HADOOP YARN hadoop distributed file system(HDFS) MapReduce scheduling fair scheduler
下载PDF
A WSN Node Fault Diagnosis Model Based on BRB with Self-Adaptive Quality Factor
13
作者 Guo-Wen Sun Gang Xiang +3 位作者 Wei He Kai Tang Zi-Yi Wang Hai-Long Zhu 《Computers, Materials & Continua》 SCIE EI 2023年第4期1157-1177,共21页
Wireless sensor networks (WSNs) operate in complex and harshenvironments;thus, node faults are inevitable. Therefore, fault diagnosis ofthe WSNs node is essential. Affected by the harsh working environment ofWSNs and ... Wireless sensor networks (WSNs) operate in complex and harshenvironments;thus, node faults are inevitable. Therefore, fault diagnosis ofthe WSNs node is essential. Affected by the harsh working environment ofWSNs and wireless data transmission, the data collected by WSNs containnoisy data, leading to unreliable data among the data features extracted duringfault diagnosis. To reduce the influence of unreliable data features on faultdiagnosis accuracy, this paper proposes a belief rule base (BRB) with a selfadaptivequality factor (BRB-SAQF) fault diagnosis model. First, the datafeatures required for WSN node fault diagnosis are extracted. Second, thequality factors of input attributes are introduced and calculated. Third, themodel inference process with an attribute quality factor is designed. Fourth,the projection covariance matrix adaptation evolution strategy (P-CMA-ES)algorithm is used to optimize the model’s initial parameters. Finally, the effectivenessof the proposed model is verified by comparing the commonly usedfault diagnosis methods for WSN nodes with the BRB method consideringstatic attribute reliability (BRB-Sr). The experimental results show that BRBSAQFcan reduce the influence of unreliable data features. The self-adaptivequality factor calculation method is more reasonable and accurate than thestatic attribute reliability method. 展开更多
关键词 self-adaptive quality factor belief rule base wireless sensor networks fault diagnosis
下载PDF
Factors Determining the Postponement of Schedule Gyneaco-Obstetric Surgery at CHUMEFJE in Libreville (Gabon)
14
作者 Pamphile Assoumou Obiang Jacques Albert Bang Ntamack +7 位作者 Ophélia Makoyo Ulysse Minkobame Jean Pierre Malanda Anouchka Mewie Juvette Elsy Ntsame Robert Eya’ama Ernest Junior Minto’o Jean François Meye 《Open Journal of Obstetrics and Gynecology》 2023年第10期1699-1710,共12页
The study aimed to identify factors causing delays in scheduled gynaeco-obstetric surgeries at CHUMEFJE in Libreville from January 2019 to July 2020. Through a 16-month observational survey, it was found that out of 3... The study aimed to identify factors causing delays in scheduled gynaeco-obstetric surgeries at CHUMEFJE in Libreville from January 2019 to July 2020. Through a 16-month observational survey, it was found that out of 346 scheduled procedures, 128 (36.4%) were postponed. Organizational issues in the operating theatre were responsible for 80.3% of these delays, with 95.3% being preventable. To enhance efficiency, improvements in operating theatre organization are recommended. 展开更多
关键词 scheduled Gynaeco Obstetric Surgery POSTPONEMENT Determining Factors
下载PDF
DR-IS:Dynamic Response Incremental Scheduling in Time-Sensitive Network
15
作者 Pei Jinchuan Hu Yuxiang +1 位作者 Tian Le Li Ziyong 《China Communications》 SCIE CSCD 2024年第10期28-42,共15页
Time-Sensitive Network(TSN)with deterministic transmission capability is increasingly used in many emerging fields.It mainly guarantees the Quality of Service(QoS)of applications with strict requirements on time and s... Time-Sensitive Network(TSN)with deterministic transmission capability is increasingly used in many emerging fields.It mainly guarantees the Quality of Service(QoS)of applications with strict requirements on time and security.One of the core features of TSN is traffic scheduling with bounded low delay in the network.However,traffic scheduling schemes in TSN are usually synthesized offline and lack dynamism.To implement incremental scheduling of newly arrived traffic in TSN,we propose a Dynamic Response Incremental Scheduling(DR-IS)method for time-sensitive traffic and deploy it on a software-defined time-sensitive network architecture.Under the premise of meeting the traffic scheduling requirements,we adopt two modes,traffic shift and traffic exchange,to dynamically adjust the time slot injection position of the traffic in the original scheme,and determine the sending offset time of the new timesensitive traffic to minimize the global traffic transmission jitter.The evaluation results show that DRIS method can effectively control the large increase of traffic transmission jitter in incremental scheduling without affecting the transmission delay,thus realizing the dynamic incremental scheduling of time-sensitive traffic in TSN. 展开更多
关键词 incremental scheduling time-sensitive network traffic scheduling transmission jitter
下载PDF
采用NPV Scheduler软件对某大型露天矿山进行境界优化
16
作者 程志平 《采矿技术》 2023年第6期49-53,共5页
某大型矿床随着开采的进行以及补充勘探的深入,加上市场的变化,使得原来的境界设计条件发生了一些变化,因此需要根据最新的边界条件对境界进行优化设计。采用NPV Scheduler软件用L-G图论法对该铜矿的最终开采境界进行了优化圈定,使得最... 某大型矿床随着开采的进行以及补充勘探的深入,加上市场的变化,使得原来的境界设计条件发生了一些变化,因此需要根据最新的边界条件对境界进行优化设计。采用NPV Scheduler软件用L-G图论法对该铜矿的最终开采境界进行了优化圈定,使得最终境界更符合当前采选成本和市场条件。 展开更多
关键词 NPV scheduler 补充勘探 境界优化 L-G图论法 采选成本
下载PDF
Energy-Saving Distributed Flexible Job Shop Scheduling Optimization with Dual Resource Constraints Based on Integrated Q-Learning Multi-Objective Grey Wolf Optimizer
17
作者 Hongliang Zhang Yi Chen +1 位作者 Yuteng Zhang Gongjie Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1459-1483,共25页
The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worke... The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality. 展开更多
关键词 Distributed flexible job shop scheduling problem dual resource constraints energy-saving scheduling multi-objective grey wolf optimizer Q-LEARNING
下载PDF
A Layered Energy-Efficient Multi-Node Scheduling Mechanism for Large-Scale WSN
18
作者 Xue Zhao Shaojun Tao +2 位作者 Hongying Tang Jiang Wang Baoqing Li 《Computers, Materials & Continua》 SCIE EI 2024年第4期1335-1351,共17页
In recent years, target tracking has been considered one of the most important applications of wireless sensornetwork (WSN). Optimizing target tracking performance and prolonging network lifetime are two equally criti... In recent years, target tracking has been considered one of the most important applications of wireless sensornetwork (WSN). Optimizing target tracking performance and prolonging network lifetime are two equally criticalobjectives in this scenario. The existing mechanisms still have weaknesses in balancing the two demands. Theproposed heuristic multi-node collaborative scheduling mechanism (HMNCS) comprises cluster head (CH)election, pre-selection, and task set selectionmechanisms, where the latter two kinds of selections forma two-layerselection mechanism. The CH election innovatively introduces the movement trend of the target and establishesa scoring mechanism to determine the optimal CH, which can delay the CH rotation and thus reduce energyconsumption. The pre-selection mechanism adaptively filters out suitable nodes as the candidate task set to applyfor tracking tasks, which can reduce the application consumption and the overhead of the following task setselection. Finally, the task node selection is mathematically transformed into an optimization problem and thegenetic algorithm is adopted to form a final task set in the task set selection mechanism. Simulation results showthat HMNCS outperforms other compared mechanisms in the tracking accuracy and the network lifetime. 展开更多
关键词 Node scheduling pre-selection target tracking WSN
下载PDF
A Novel Scheduling Framework for Multi-Programming Quantum Computing in Cloud Environment
19
作者 Danyang Zheng Jinchen Xv +3 位作者 Feng Yue Qiming Du ZhihengWang Zheng Shan 《Computers, Materials & Continua》 SCIE EI 2024年第5期1957-1974,共18页
As cloud quantum computing gains broader acceptance,a growing quantity of researchers are directing their focus towards this domain.Nevertheless,the rapid surge in demand for cloud-based quantum computing resources ha... As cloud quantum computing gains broader acceptance,a growing quantity of researchers are directing their focus towards this domain.Nevertheless,the rapid surge in demand for cloud-based quantum computing resources has led to a scarcity,which in turn hampers users from achieving optimal satisfaction.Therefore,cloud quantum computing service providers require a unified analysis and scheduling framework for their quantumresources and user jobs to meet the ever-growing usage demands.This paper introduces a new multi-programming scheduling framework for quantum computing in a cloud environment.The framework addresses the issue of limited quantum computing resources in cloud environments and ensures a satisfactory user experience.It introduces three innovative designs:1)Our framework automatically allocates tasks to different quantum backends while ensuring fairness among users by considering both the cloud-based quantum resources and the user-submitted tasks.2)Multi-programming mechanism is employed across different quantum backends to enhance the overall throughput of the quantum cloud.In comparison to conventional task schedulers,our proposed framework achieves a throughput improvement of more than two-fold in the quantum cloud.3)The framework can balance fidelity and user waiting time by adaptively adjusting scheduling parameters. 展开更多
关键词 Quantum computing schedulING multi-programming qubit mapping
下载PDF
Dynamic Offloading and Scheduling Strategy for Telematics Tasks Based on Latency Minimization
20
作者 Yu Zhou Yun Zhang +4 位作者 Guowei Li Hang Yang Wei Zhang Ting Lyu Yueqiang Xu 《Computers, Materials & Continua》 SCIE EI 2024年第8期1809-1829,共21页
In current research on task offloading and resource scheduling in vehicular networks,vehicles are commonly assumed to maintain constant speed or relatively stationary states,and the impact of speed variations on task ... In current research on task offloading and resource scheduling in vehicular networks,vehicles are commonly assumed to maintain constant speed or relatively stationary states,and the impact of speed variations on task offloading is often overlooked.It is frequently assumed that vehicles can be accurately modeled during actual motion processes.However,in vehicular dynamic environments,both the tasks generated by the vehicles and the vehicles’surroundings are constantly changing,making it difficult to achieve real-time modeling for actual dynamic vehicular network scenarios.Taking into account the actual dynamic vehicular scenarios,this paper considers the real-time non-uniform movement of vehicles and proposes a vehicular task dynamic offloading and scheduling algorithm for single-task multi-vehicle vehicular network scenarios,attempting to solve the dynamic decision-making problem in task offloading process.The optimization objective is to minimize the average task completion time,which is formulated as a multi-constrained non-linear programming problem.Due to the mobility of vehicles,a constraint model is applied in the decision-making process to dynamically determine whether the communication range is sufficient for task offloading and transmission.Finally,the proposed vehicular task dynamic offloading and scheduling algorithm based on muti-agent deep deterministic policy gradient(MADDPG)is applied to solve the optimal solution of the optimization problem.Simulation results show that the algorithm proposed in this paper is able to achieve lower latency task computation offloading.Meanwhile,the average task completion time of the proposed algorithm in this paper can be improved by 7.6%compared to the performance of the MADDPG scheme and 51.1%compared to the performance of deep deterministic policy gradient(DDPG). 展开更多
关键词 Component vehicular DYNAMIC task offloading resource scheduling
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部