The demarcation line between the cancerous lesion and the surrounding area could be easily recognized with flexible spectral imaging color enhancement (FICE) system compared with conventional white light images. The c...The demarcation line between the cancerous lesion and the surrounding area could be easily recognized with flexible spectral imaging color enhancement (FICE) system compared with conventional white light images. The characteristic f inding of depressed-type early gastric cancer (EGC) in most cases was revealed as reddish lesions distinct from the surrounding yellowish non-cancerous area without magnification. Conventional endoscopic images provide little information regarding depressed lesions located in the tangential line, but FICE produces higher color contrast of such cancers. Histological f indings in depressed area with reddish col- or changes show a high density of glandular structure and an apparently irregular microvessel in intervening parts between crypts, resulting in the higher color con- trast of FICE image between cancer and surrounding area. Some depressed cancers are shown as whitish lesion by conventional endoscopy. FICE also can pro- duce higher color contrast between whitish cancerous lesions and surrounding atrophic mucosa. For nearly flat cancer, FICE can produce an irregular structuralpattern of cancer distinct from that of the surrounding mucosa, leading to a clear demarcation. Most elevated-type EGCs are detected easily as yellowish lesions with clearly contrasting demarcation. In some cases, a partially reddish change is accompanied on the tumor surface similar to depressed type cancer. In addition, the FICE system is quite useful for the detection of minute gastric cancer, even without magnif ication. These new contrasting images with the FICE system may have the potential to increase the rate of detection of gastric cancers and screen for them more effectively as well as to determine the extent of EGC.展开更多
AIM:To conduct a preliminary study on the effect of flexible spectral imaging color enhancement (FICE) used in combination with ultraslim endoscopy by focusing on the enhanced contrast between tumor and non-tumor lesi...AIM:To conduct a preliminary study on the effect of flexible spectral imaging color enhancement (FICE) used in combination with ultraslim endoscopy by focusing on the enhanced contrast between tumor and non-tumor lesions. METHODS: We examined 50 lesions of 40 patients with epithelial tumors of the upper gastrointestinal tract before endoscopic submucosal dissection using ultraslim endoscopy with conventional natural color imag ing and with FICE imaging. We retrospectively invest igated the effect of the use of FICE on endoscopic diagn osis in comparison with normal light. RESULTS: Visibility of the epithelial tumors of the upper gastrointestinal tract with FICE was superior to normal light in 54% of the observations and comparable to normal light in 46% of the observations. There was no lesion for which visibility with FICE was inferior to that with normal light. FICE visualized 69.6% of hyperemic lesions and 58.8% of discolored lesions better than conventional endoscopy with natural color imaging. FICE sign if icantly improved the visibility of lesions with hyp ere mia or discoloration compared with normocolored lesions. CONCLUSION: This study suggests that the use of FICE would improve the ability of ultraslim endoscopy to detect epithelial tumors of the upper gastrointestinal tract.展开更多
In this paper the spectral enhancement of laser-induced breakdown spectroscopy (LIBS) for copper plasma in the presence of a magnetic field is investigated and the temporal- and spatial-resolved plasma emission spec...In this paper the spectral enhancement of laser-induced breakdown spectroscopy (LIBS) for copper plasma in the presence of a magnetic field is investigated and the temporal- and spatial-resolved plasma emission spectra are analyzed. Experimental results show that the copper plasma atomic and ion spectra have been enhanced in the presence of the external magnetic field. In addition, the Cu I 521.82 nm spectral intensity evolution with delay time appears to have a double peak around the delay time of 2 μs, but that of Cu II 507.57 nm has a sharp decrease because of the electron-atom three body recombination process. The plasma temperature with magnetic confinement is lower than that of the case in the absence of magnetic fields. Finally, the spectral enhancement mechanisms of laser induced breakdown spectroscopy with magnetic confinement are analyzed.展开更多
Laser-induced breakdown spectroscopy(LIBS)is a powerful technique for elemental analysis,offering rapid analysis,minimal sample preparation,wide elemental coverage,and portability.To enhance the detection sensitivity ...Laser-induced breakdown spectroscopy(LIBS)is a powerful technique for elemental analysis,offering rapid analysis,minimal sample preparation,wide elemental coverage,and portability.To enhance the detection sensitivity of LIBS,increasing the spectral emission intensity is crucial.This paper explores the use of Tesla coil(TC)discharge as an alternative to spark discharge in silicon LIBS.The study examines the influence of TC discharge on both time-integrated and timeresolved spectra,with and without TC discharge;the corresponding electron temperature and density are obtained.The results show that TC discharge significantly amplifies the spectral intensity,improving signal sensitivity in LIBS analysis.Specifically,in the laser energy range from 7.4 to 24.0 mJ,TC discharge increased the average spectral line intensities of Si(II)385.60 nm and Si(I)390.55 nm by factors of 8.4 and 5.1,respectively.Additionally,the average electron temperature and density were enhanced by approximately 3.2%and 4.2%,respectively,under TC discharge.The advantages of TC discharge include higher energy deposition,extended discharge duration,reduced electrode erosion,and enhanced safety.This research contributes to advancing LIBS technology and expanding its applications in various fields.展开更多
Aiming at the problem of music noise introduced by classical spectral subtraction,a shorttime modulation domain(STM)spectral subtraction method has been successfully applied for singlechannel speech enhancement.Howeve...Aiming at the problem of music noise introduced by classical spectral subtraction,a shorttime modulation domain(STM)spectral subtraction method has been successfully applied for singlechannel speech enhancement.However,due to the inaccurate voice activity detection(VAD),the residual music noise and enhanced performance still need to be further improved,especially in the low signal to noise ratio(SNR)scenarios.To address this issue,an improved frame iterative spectral subtraction in the STM domain(IMModSSub)is proposed.More specifically,with the inter-frame correlation,the noise subtraction is directly applied to handle the noisy signal for each frame in the STM domain.Then,the noisy signal is classified into speech or silence frames based on a predefined threshold of segmented SNR.With these classification results,a corresponding mask function is developed for noisy speech after noise subtraction.Finally,exploiting the increased sparsity of speech signal in the modulation domain,the orthogonal matching pursuit(OMP)technique is employed to the speech frames for improving the speech quality and intelligibility.The effectiveness of the proposed method is evaluated with three types of noise,including white noise,pink noise,and hfchannel noise.The obtained results show that the proposed method outperforms some established baselines at lower SNRs(-5 to +5 dB).展开更多
This paper addresses the problem of single-channel speech enhancement in the adverse environment. The critical-band rate scale based on improved multi-band spectral subtraction is investigated in this study for enhanc...This paper addresses the problem of single-channel speech enhancement in the adverse environment. The critical-band rate scale based on improved multi-band spectral subtraction is investigated in this study for enhancement of single-channel speech. In this work, the whole speech spectrum is divided into different non-uniformly spaced frequency bands in accordance with the critical-band rate scale of the psycho-acoustic model and the spectral over-subtraction is carried-out separately in each band. In addition, for the estimation of the noise from each band, the adaptive noise estimation approach is used and does not require explicit speech silence detection. The noise is estimated and updated by adaptively smoothing the noisy signal power in each band. The smoothing parameter is controlled by a-posteriori signal-to-noise ratio (SNR). For the performance analysis of the proposed algorithm, the objective measures, such as, SNR, segmental SNR, and perceptual evaluations of the speech quality are conducted for the variety of noises at different levels of SNRs. The speech spectrogram and objective evaluations of the proposed algorithm are compared with other standard speech enhancement algorithms and proved that the musical structure of the remnant noise and background noise is better suppressed by the proposed algorithm.展开更多
An improved ensemble empirical mode decomposition(EEMD) algorithm is described in this work, in which the sifting and ensemble number are self-adaptive. In particular, the new algorithm can effectively avoid the mode ...An improved ensemble empirical mode decomposition(EEMD) algorithm is described in this work, in which the sifting and ensemble number are self-adaptive. In particular, the new algorithm can effectively avoid the mode mixing problem. The algorithm has been validated with a simulation signal and locomotive bearing vibration signal. The results show that the proposed self-adaptive EEMD algorithm has a better filtering performance compared with the conventional EEMD. The filter results further show that the feature of the signal can be distinguished clearly with the proposed algorithm, which implies that the fault characteristics of the locomotive bearing can be detected successfully.展开更多
Most noise suppression algorithms of single channel use the mean of noisy segments to estimate the characteristics of noise spectrum, ignoring the estimation of noise in speech segments. Therefore, when the energy lev...Most noise suppression algorithms of single channel use the mean of noisy segments to estimate the characteristics of noise spectrum, ignoring the estimation of noise in speech segments. Therefore, when the energy level of noise varies with the time, the performance of removing noise will be degraded. To solve this problem, a speech enhancement approach based on dynamic noise estimation within correlation domain was proposed. This method exploits the characteristics that noise energy mainly concentrates on 0 th order correlation coefficients, signal is auto correlated but signal and noise, noise and noise are uncorrelated, then estimates and decomposes the noise, thus helps to solve the above mentioned problem. The results of recognition experiments on speech signals of 15 Chinese cities’ names corrupted by noise of exhibition hall shows, this approach is better than SS (Spectral Subtraction) method, adapts better to the variances of energy levels of speech signal corrupted by noise, has some practicability to improve the robustness of recognition systems under noisy environment.展开更多
This paper proposes an algorithm that adopts the harmonic regeneration as post-processing to improve the performance of speech enhancement using traditional Short Time Spectral Amplitude(STSA).The proposed algorithm a...This paper proposes an algorithm that adopts the harmonic regeneration as post-processing to improve the performance of speech enhancement using traditional Short Time Spectral Amplitude(STSA).The proposed algorithm aims to alleviate the distortion of the high harmonics of enhanced speech via the traditional STSA,and consequently improves the speech quality.We first detect the pitch,or fundamental frequency,of the enhanced speech via the traditional STSA,and then,divide the whole spectrum into multiple sub-bands which center on each harmonic.After that,a series of specially designed windows centered on each harmonic are applied to all the sub-bands,in order to redistribute the energy in the sub-bands.The results of experiment demonstrate that the method has both theo-retical and practical basis.展开更多
Sentinel-1A/B data are crucial for retrieving numerical information about surface phenomena and processes.Coregistration of terrain observation by progressive scans(TOPS)data is a critical step in its application.TOPS...Sentinel-1A/B data are crucial for retrieving numerical information about surface phenomena and processes.Coregistration of terrain observation by progressive scans(TOPS)data is a critical step in its application.TOPS data must be fundamentally co-registered with an accuracy of 0.001 pixels.However,various decorrelation factors due to natural vegetation and seasonal effects affect the coregistration accuracy of TOPS data.This paper proposed an enhanced spectral diversity coregistration method for dual-polarimetric(PolESD)Sentinel-1A/B TOPS data.The PolESD method suppresses speckle noise based on a unified non-local framework in dual-pol Synthetic Aperture Radar(SAR),and extracts the phase of the optimal polarization channel from the denoised polarimetric interferometric coherency matrix.Compared with the traditional ESD method developed for single-polarization data,the PolESD method can obtain more accurate coherence and phase and get more pixels for azimuth-offset estimation.In bare areas covered with low vegetation,the number of pixels selected by PolESD is more than the Boxcar method.It can also correct misregistration more effectively and eliminate phase jumps in the burst edge.Therefore,PolESD will help improve the application of TOPS data in low-coherence scenarios.展开更多
This paper proposes a multi-band speech enhancement algorithm exploiting iterative processing for enhancement of single channel speech. In the proposed algorithm, the output of the multi-band spectral subtraction (MBS...This paper proposes a multi-band speech enhancement algorithm exploiting iterative processing for enhancement of single channel speech. In the proposed algorithm, the output of the multi-band spectral subtraction (MBSS) algorithm is used as the input signal again for next iteration process. As after the first MBSS processing step, the additive noise transforms to the remnant noise, the remnant noise needs to be further re-estimated. The proposed algorithm reduces the remnant musical noise further by iterating the enhanced output signal to the input again and performing the operation repeatedly. The newly estimated remnant noise is further used to process the next MBSS step. This procedure is iterated a small number of times. The proposed algorithm estimates noise in each iteration and spectral over-subtraction is executed independently in each band. The experiments are conducted for various types of noises. The performance of the proposed enhancement algorithm is evaluated for various types of noises at different level of SNRs using, 1) objective quality measures: signal-to-noise ratio (SNR), segmental SNR, perceptual evaluation of speech quality (PESQ);and 2) subjective quality measure: mean opinion score (MOS). The results of proposed enhancement algorithm are compared with the popular MBSS algorithm. Experimental results as well as the objective and subjective quality measurement test results confirm that the enhanced speech obtained from the proposed algorithm is more pleasant to listeners than speech enhanced by classical MBSS algorithm.展开更多
Only a small amount of spectral information is collected because the collection solid angle of the optical fiber probe and lens is very limited when collecting spectral information.To overcome this limitation,this stu...Only a small amount of spectral information is collected because the collection solid angle of the optical fiber probe and lens is very limited when collecting spectral information.To overcome this limitation,this study presents a novel method for acquiring plasma spectral information from various spatial directions.A parabolic-shaped plasma spectral collection device(PSCD)is employed to effectively collect more spectral information into the spectrometer,thereby enhancing the overall spectral intensity.The research objects in this study were soil samples containing different concentrations of heavy metals Pb,Cr,and Cd.The results indicate that the PSCD significantly enhances the spectral signal,with an enhancement rate of up to 45%.Moreover,the signal-to-noise ratio also increases by as much as 36%.Simultaneously,when compared to the absence of a device,it is found that there is no significant variation in plasma temperature when the PSCD is utilized.This observation eliminates the impact of the spatial effect caused by the PSCD on the spectral intensity.Consequently,a concentrationspectral intensity relationship curve is established under the PSCD.The results revealed that the linear fitting R^(2)for Pb,Cr,and Cd increased by 0.011,0.001,and 0.054,respectively.Additionally,the limit of detection(LOD)decreased by 0.361 ppm,0.901 ppm,and 0.602 ppm,respectively.These findings indicate that the spectral enhancement rate elevates with the increase in heavy metal concentration.Hence,the PSCD can effectively enhance the spectral intensity and reduce the detection limit of heavy metals in soil.展开更多
Recently,image-enhanced endoscopy(IEE) has been used to diagnose gastrointestinal tumors.This method is a change from conventional white-light(WL) endoscopy without dyeing solution,requiring only the push of a button....Recently,image-enhanced endoscopy(IEE) has been used to diagnose gastrointestinal tumors.This method is a change from conventional white-light(WL) endoscopy without dyeing solution,requiring only the push of a button.In IEE,there are many advantages in diagnosis of neoplastic tumors,evaluation of invasion depth for cancerous lesions,and detection of neoplastic lesions.In narrow band imaging(NBI) systems(Olympus Medical Co.,Tokyo,Japan),optical filters that allow narrow-band light to pass at wavelengths of 415 and 540 nm are used.Mucosal surface blood vessels are seen most clearly at 415 nm,which is the wavelength that corresponds to the hemoglobin absorption band,while vessels in the deep layer of the mucosa can be detected at 540 nm.Thus,NBI also can detect pit-like structures named surface pattern.The flexible spectral imaging color enhancement(FICE) system(Fujifilm Medical Co.,Tokyo,Japan) is also an IEE but different to NBI.FICE depends on the use of spectral-estimation technology to reconstruct images at different wavelengths based on WL images.FICE can enhance vascular and surface patterns.The autofluorescence imaging(AFI) video endoscope system(Olympus Medical Co.,Tokyo,Japan) is a new illumination method that uses the difference in intensity of autofluorescence between the normal area and neoplastic lesions.AFI light comprises a blue light for emitting and a green light for hemoglobin absorption.The aim of this review is to highlight the efficacy of IEE for diagnosis of colorectal tumors for endoscopic treatment.展开更多
To realize the fast and accurate quantitative analysis of the mixture of polycyclic aromatic hydrocarbons(PAHs),surface-enhanced Raman spectroscopy(SERS)coupled with multivariate calibrations were employed.In this stu...To realize the fast and accurate quantitative analysis of the mixture of polycyclic aromatic hydrocarbons(PAHs),surface-enhanced Raman spectroscopy(SERS)coupled with multivariate calibrations were employed.In this study,three kinds of calibration algorithms were used to quantitative analysis of the mixture of naphthalene(Nap),phenanthrene(Phe),and pyrene(Pyr).Firstly,partial least squares(PLS)algorithm was used to select characteristic variables,then the global search capability of genetic algorithm(GA)was used for the determining of the initial weights and thresholds of back propagation(BP)neural network so that local minima was avoided.The PLS-GA-BP model exhibited superiority to quantify PAHs mixture,which achieved R2=0.9975,0.9710,0.9643,ARE=10.07%,19.28%,16.72%and RMSE=13.10,5.40,5.10 nmol L−1 for Nap,Phe,Pyr(in the PAHs mixture)concentration prediction respectively.The forecast error,ARE and RMSE have been reduced more than 50%and 60%respectively compared with the whole spectral BP model.The study indicates that accurate quantitative spectroscopic analysis of the mixture of PAHs samples can be achieved through the combination of SERS technique and PLS-GA-BP algorithm.展开更多
Histogram of collinear gradient-enhanced coding (HCGEC), a robust key point descriptor for multi-spectral image matching, is proposed. The HCGEC mainly encodes rough structures within an image and suppresses detaile...Histogram of collinear gradient-enhanced coding (HCGEC), a robust key point descriptor for multi-spectral image matching, is proposed. The HCGEC mainly encodes rough structures within an image and suppresses detailed textural information, which is desirable in multi-spectral image matching. Experiments on two multi-spectral data sets demonstrate that the proposed descriptor can yield significantly better results than some state-of- the-art descriptors.展开更多
Surface-enhanced resonance Raman scattering (SERRS) of Rhodamine 6G (R6G) adsorbed on colloidal silver clusters has been studied. Based on the great enhancement of the Raman signal and the quench of the fluorescen...Surface-enhanced resonance Raman scattering (SERRS) of Rhodamine 6G (R6G) adsorbed on colloidal silver clusters has been studied. Based on the great enhancement of the Raman signal and the quench of the fluorescence, the SERRS spectra of R6G were recorded for the samples of dye colloidal solution with different concentrations. Spectral inhomogeneity behaviours from single molecules in the dried sample films were observed with complementary evidences, such as spectral polarization, spectral diffusion, intensity fluctuation of vibrational lines and even "breathing" of the molecules. Sequential spectra observed from a liquid sample with an average of 0.3 dye molecules in the probed volume exhibited the expected Poisson distribution for actually measuring 0, 1 or 2 molecules. Difference between the SERRS spectra of R6G excited by linearly and circularly polarized light were experimentally measured.展开更多
A combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy is investigated.Depositing Au nanoparticles at the surface of a brass target can enhance the coupling of the target and the ...A combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy is investigated.Depositing Au nanoparticles at the surface of a brass target can enhance the coupling of the target and the laser.More atoms in the brass sample are excited.As a secondary excitation source,spark discharge reheats the generated plasma,which further amplifies the enhancement results of nanoparticles.The spectral intensity with the spark discharge increases more obviously with nanoparticle concentration increasing than without the spark discharge.Also,plasma temperature and electron density are calculated by the Boltzmann plot and Stark broadening.The changes in the plasma temperature and electron density are consistent with the spectral emission changes.展开更多
Direct-comb spectroscopy techniques uses optical frequency combs(OFCs)as spectroscopic light source.They deliver high sensitivity,high frequency resolution and precision in a broad spectral range.Due to these features...Direct-comb spectroscopy techniques uses optical frequency combs(OFCs)as spectroscopic light source.They deliver high sensitivity,high frequency resolution and precision in a broad spectral range.Due to these features,the field has burgeoned in recent years.In this work we constructed an OFC-based cavity-enhanced Fourier-transform spectrometer in the nearinfrared region and used it for a line-shape study of rovibrational transitions of CO perturbed by Ar.The highly sensitive measurements spanned the wavenumber range from 6270 cm^-1 to 6410 cm^-1,which covered both P and R branch of the second overtone band of CO.The spectrometer delivers high-resolution surpassing the Fourier-transform resolution limit determined by interferogram length,successfully removing ringing and broadening effects caused by instrumental line shape function.The instrumental-line-shape-free method and high signal-to-noise ratio in the measurement allowed us to observe collisional effects beyond those described by the Voigt profile.We retrieved collisional line-shape parameters by fitting the speed-dependent Voigt profile and found good agreement with the values given by precise cavity ring-down spectroscopy measurements that used a continuous-wave laser referenced to a stabilized OFC.The results demonstrate that OFC-based cavity-enhanced Fouriertransform spectroscopy is a strong tool for accurate line-shape studies that will be crucial for future spectral databases.展开更多
The paper presents a number of signal processing approaches for the spectral interferometric interrogation of extrinsic Fabry-Perot interferometers(EFPIs). The analysis of attainable microdisplacement resolution is pe...The paper presents a number of signal processing approaches for the spectral interferometric interrogation of extrinsic Fabry-Perot interferometers(EFPIs). The analysis of attainable microdisplacement resolution is performed and the analytical equations describing the dependence of resolution on parameters of the interrogation setup are derived. The efficiency of the proposed signal processing approaches and the validity of analytical derivations are supported by experiments. The proposed approaches allow the interrogation of up to four multiplexed sensors with attained resolution between 30 pm and 80 pm, up to three times improvement of microdisplacement resolution of a single sensor by means of using the reference interferometer and noisecompensating approach, and ability to register signals with frequencies up to 1 kHz in the case of 1 Hz spectrum acquisition rate. The proposed approaches can be used for various applications, including biomedical, industrial inspection, and others, amongst the microdisplacement measurement.展开更多
文摘The demarcation line between the cancerous lesion and the surrounding area could be easily recognized with flexible spectral imaging color enhancement (FICE) system compared with conventional white light images. The characteristic f inding of depressed-type early gastric cancer (EGC) in most cases was revealed as reddish lesions distinct from the surrounding yellowish non-cancerous area without magnification. Conventional endoscopic images provide little information regarding depressed lesions located in the tangential line, but FICE produces higher color contrast of such cancers. Histological f indings in depressed area with reddish col- or changes show a high density of glandular structure and an apparently irregular microvessel in intervening parts between crypts, resulting in the higher color con- trast of FICE image between cancer and surrounding area. Some depressed cancers are shown as whitish lesion by conventional endoscopy. FICE also can pro- duce higher color contrast between whitish cancerous lesions and surrounding atrophic mucosa. For nearly flat cancer, FICE can produce an irregular structuralpattern of cancer distinct from that of the surrounding mucosa, leading to a clear demarcation. Most elevated-type EGCs are detected easily as yellowish lesions with clearly contrasting demarcation. In some cases, a partially reddish change is accompanied on the tumor surface similar to depressed type cancer. In addition, the FICE system is quite useful for the detection of minute gastric cancer, even without magnif ication. These new contrasting images with the FICE system may have the potential to increase the rate of detection of gastric cancers and screen for them more effectively as well as to determine the extent of EGC.
文摘AIM:To conduct a preliminary study on the effect of flexible spectral imaging color enhancement (FICE) used in combination with ultraslim endoscopy by focusing on the enhanced contrast between tumor and non-tumor lesions. METHODS: We examined 50 lesions of 40 patients with epithelial tumors of the upper gastrointestinal tract before endoscopic submucosal dissection using ultraslim endoscopy with conventional natural color imag ing and with FICE imaging. We retrospectively invest igated the effect of the use of FICE on endoscopic diagn osis in comparison with normal light. RESULTS: Visibility of the epithelial tumors of the upper gastrointestinal tract with FICE was superior to normal light in 54% of the observations and comparable to normal light in 46% of the observations. There was no lesion for which visibility with FICE was inferior to that with normal light. FICE visualized 69.6% of hyperemic lesions and 58.8% of discolored lesions better than conventional endoscopy with natural color imaging. FICE sign if icantly improved the visibility of lesions with hyp ere mia or discoloration compared with normocolored lesions. CONCLUSION: This study suggests that the use of FICE would improve the ability of ultraslim endoscopy to detect epithelial tumors of the upper gastrointestinal tract.
基金supported by National Natural Science Foundation of China(No.61178022)the Natural Science Foundation of Jilin Province,China(No.201215132)the Doctoral Program of High Education of China(No.20112216120006)
文摘In this paper the spectral enhancement of laser-induced breakdown spectroscopy (LIBS) for copper plasma in the presence of a magnetic field is investigated and the temporal- and spatial-resolved plasma emission spectra are analyzed. Experimental results show that the copper plasma atomic and ion spectra have been enhanced in the presence of the external magnetic field. In addition, the Cu I 521.82 nm spectral intensity evolution with delay time appears to have a double peak around the delay time of 2 μs, but that of Cu II 507.57 nm has a sharp decrease because of the electron-atom three body recombination process. The plasma temperature with magnetic confinement is lower than that of the case in the absence of magnetic fields. Finally, the spectral enhancement mechanisms of laser induced breakdown spectroscopy with magnetic confinement are analyzed.
基金the support by the National Key Research and Development Program of China(No.2019YFA0307701)National Natural Science Foundation of China(Nos.11674128,11674124 and 11974138)。
文摘Laser-induced breakdown spectroscopy(LIBS)is a powerful technique for elemental analysis,offering rapid analysis,minimal sample preparation,wide elemental coverage,and portability.To enhance the detection sensitivity of LIBS,increasing the spectral emission intensity is crucial.This paper explores the use of Tesla coil(TC)discharge as an alternative to spark discharge in silicon LIBS.The study examines the influence of TC discharge on both time-integrated and timeresolved spectra,with and without TC discharge;the corresponding electron temperature and density are obtained.The results show that TC discharge significantly amplifies the spectral intensity,improving signal sensitivity in LIBS analysis.Specifically,in the laser energy range from 7.4 to 24.0 mJ,TC discharge increased the average spectral line intensities of Si(II)385.60 nm and Si(I)390.55 nm by factors of 8.4 and 5.1,respectively.Additionally,the average electron temperature and density were enhanced by approximately 3.2%and 4.2%,respectively,under TC discharge.The advantages of TC discharge include higher energy deposition,extended discharge duration,reduced electrode erosion,and enhanced safety.This research contributes to advancing LIBS technology and expanding its applications in various fields.
基金National Natural Science Foundation of China(NSFC)(No.61671075)Major Program of National Natural Science Foundation of China(No.61631003)。
文摘Aiming at the problem of music noise introduced by classical spectral subtraction,a shorttime modulation domain(STM)spectral subtraction method has been successfully applied for singlechannel speech enhancement.However,due to the inaccurate voice activity detection(VAD),the residual music noise and enhanced performance still need to be further improved,especially in the low signal to noise ratio(SNR)scenarios.To address this issue,an improved frame iterative spectral subtraction in the STM domain(IMModSSub)is proposed.More specifically,with the inter-frame correlation,the noise subtraction is directly applied to handle the noisy signal for each frame in the STM domain.Then,the noisy signal is classified into speech or silence frames based on a predefined threshold of segmented SNR.With these classification results,a corresponding mask function is developed for noisy speech after noise subtraction.Finally,exploiting the increased sparsity of speech signal in the modulation domain,the orthogonal matching pursuit(OMP)technique is employed to the speech frames for improving the speech quality and intelligibility.The effectiveness of the proposed method is evaluated with three types of noise,including white noise,pink noise,and hfchannel noise.The obtained results show that the proposed method outperforms some established baselines at lower SNRs(-5 to +5 dB).
文摘This paper addresses the problem of single-channel speech enhancement in the adverse environment. The critical-band rate scale based on improved multi-band spectral subtraction is investigated in this study for enhancement of single-channel speech. In this work, the whole speech spectrum is divided into different non-uniformly spaced frequency bands in accordance with the critical-band rate scale of the psycho-acoustic model and the spectral over-subtraction is carried-out separately in each band. In addition, for the estimation of the noise from each band, the adaptive noise estimation approach is used and does not require explicit speech silence detection. The noise is estimated and updated by adaptively smoothing the noisy signal power in each band. The smoothing parameter is controlled by a-posteriori signal-to-noise ratio (SNR). For the performance analysis of the proposed algorithm, the objective measures, such as, SNR, segmental SNR, and perceptual evaluations of the speech quality are conducted for the variety of noises at different levels of SNRs. The speech spectrogram and objective evaluations of the proposed algorithm are compared with other standard speech enhancement algorithms and proved that the musical structure of the remnant noise and background noise is better suppressed by the proposed algorithm.
基金Project(61573381)supported by the National Natural Science Foundation of ChinaProject(2012AA051601)supported by the National High-tech Research and Development Program of China
文摘An improved ensemble empirical mode decomposition(EEMD) algorithm is described in this work, in which the sifting and ensemble number are self-adaptive. In particular, the new algorithm can effectively avoid the mode mixing problem. The algorithm has been validated with a simulation signal and locomotive bearing vibration signal. The results show that the proposed self-adaptive EEMD algorithm has a better filtering performance compared with the conventional EEMD. The filter results further show that the feature of the signal can be distinguished clearly with the proposed algorithm, which implies that the fault characteristics of the locomotive bearing can be detected successfully.
文摘Most noise suppression algorithms of single channel use the mean of noisy segments to estimate the characteristics of noise spectrum, ignoring the estimation of noise in speech segments. Therefore, when the energy level of noise varies with the time, the performance of removing noise will be degraded. To solve this problem, a speech enhancement approach based on dynamic noise estimation within correlation domain was proposed. This method exploits the characteristics that noise energy mainly concentrates on 0 th order correlation coefficients, signal is auto correlated but signal and noise, noise and noise are uncorrelated, then estimates and decomposes the noise, thus helps to solve the above mentioned problem. The results of recognition experiments on speech signals of 15 Chinese cities’ names corrupted by noise of exhibition hall shows, this approach is better than SS (Spectral Subtraction) method, adapts better to the variances of energy levels of speech signal corrupted by noise, has some practicability to improve the robustness of recognition systems under noisy environment.
基金Supported by the National Natural Science Foundation of China (No. 60572081)
文摘This paper proposes an algorithm that adopts the harmonic regeneration as post-processing to improve the performance of speech enhancement using traditional Short Time Spectral Amplitude(STSA).The proposed algorithm aims to alleviate the distortion of the high harmonics of enhanced speech via the traditional STSA,and consequently improves the speech quality.We first detect the pitch,or fundamental frequency,of the enhanced speech via the traditional STSA,and then,divide the whole spectrum into multiple sub-bands which center on each harmonic.After that,a series of specially designed windows centered on each harmonic are applied to all the sub-bands,in order to redistribute the energy in the sub-bands.The results of experiment demonstrate that the method has both theo-retical and practical basis.
基金supported by Jilin Changbaishan Volcano National Observation and Research Station(Project No.NORSCBS20-04)National Natural Science Foundation of China(42174023)the Fundamental Research Fund for the Central Universities of Central South University(No.506021722).
文摘Sentinel-1A/B data are crucial for retrieving numerical information about surface phenomena and processes.Coregistration of terrain observation by progressive scans(TOPS)data is a critical step in its application.TOPS data must be fundamentally co-registered with an accuracy of 0.001 pixels.However,various decorrelation factors due to natural vegetation and seasonal effects affect the coregistration accuracy of TOPS data.This paper proposed an enhanced spectral diversity coregistration method for dual-polarimetric(PolESD)Sentinel-1A/B TOPS data.The PolESD method suppresses speckle noise based on a unified non-local framework in dual-pol Synthetic Aperture Radar(SAR),and extracts the phase of the optimal polarization channel from the denoised polarimetric interferometric coherency matrix.Compared with the traditional ESD method developed for single-polarization data,the PolESD method can obtain more accurate coherence and phase and get more pixels for azimuth-offset estimation.In bare areas covered with low vegetation,the number of pixels selected by PolESD is more than the Boxcar method.It can also correct misregistration more effectively and eliminate phase jumps in the burst edge.Therefore,PolESD will help improve the application of TOPS data in low-coherence scenarios.
文摘This paper proposes a multi-band speech enhancement algorithm exploiting iterative processing for enhancement of single channel speech. In the proposed algorithm, the output of the multi-band spectral subtraction (MBSS) algorithm is used as the input signal again for next iteration process. As after the first MBSS processing step, the additive noise transforms to the remnant noise, the remnant noise needs to be further re-estimated. The proposed algorithm reduces the remnant musical noise further by iterating the enhanced output signal to the input again and performing the operation repeatedly. The newly estimated remnant noise is further used to process the next MBSS step. This procedure is iterated a small number of times. The proposed algorithm estimates noise in each iteration and spectral over-subtraction is executed independently in each band. The experiments are conducted for various types of noises. The performance of the proposed enhancement algorithm is evaluated for various types of noises at different level of SNRs using, 1) objective quality measures: signal-to-noise ratio (SNR), segmental SNR, perceptual evaluation of speech quality (PESQ);and 2) subjective quality measure: mean opinion score (MOS). The results of proposed enhancement algorithm are compared with the popular MBSS algorithm. Experimental results as well as the objective and subjective quality measurement test results confirm that the enhanced speech obtained from the proposed algorithm is more pleasant to listeners than speech enhanced by classical MBSS algorithm.
基金supported by Department of Science and Technology of Jilin Province of China(Nos.YDZJ202301 ZYTS481,202202901032GX,and 20230402068GH)。
文摘Only a small amount of spectral information is collected because the collection solid angle of the optical fiber probe and lens is very limited when collecting spectral information.To overcome this limitation,this study presents a novel method for acquiring plasma spectral information from various spatial directions.A parabolic-shaped plasma spectral collection device(PSCD)is employed to effectively collect more spectral information into the spectrometer,thereby enhancing the overall spectral intensity.The research objects in this study were soil samples containing different concentrations of heavy metals Pb,Cr,and Cd.The results indicate that the PSCD significantly enhances the spectral signal,with an enhancement rate of up to 45%.Moreover,the signal-to-noise ratio also increases by as much as 36%.Simultaneously,when compared to the absence of a device,it is found that there is no significant variation in plasma temperature when the PSCD is utilized.This observation eliminates the impact of the spatial effect caused by the PSCD on the spectral intensity.Consequently,a concentrationspectral intensity relationship curve is established under the PSCD.The results revealed that the linear fitting R^(2)for Pb,Cr,and Cd increased by 0.011,0.001,and 0.054,respectively.Additionally,the limit of detection(LOD)decreased by 0.361 ppm,0.901 ppm,and 0.602 ppm,respectively.These findings indicate that the spectral enhancement rate elevates with the increase in heavy metal concentration.Hence,the PSCD can effectively enhance the spectral intensity and reduce the detection limit of heavy metals in soil.
文摘Recently,image-enhanced endoscopy(IEE) has been used to diagnose gastrointestinal tumors.This method is a change from conventional white-light(WL) endoscopy without dyeing solution,requiring only the push of a button.In IEE,there are many advantages in diagnosis of neoplastic tumors,evaluation of invasion depth for cancerous lesions,and detection of neoplastic lesions.In narrow band imaging(NBI) systems(Olympus Medical Co.,Tokyo,Japan),optical filters that allow narrow-band light to pass at wavelengths of 415 and 540 nm are used.Mucosal surface blood vessels are seen most clearly at 415 nm,which is the wavelength that corresponds to the hemoglobin absorption band,while vessels in the deep layer of the mucosa can be detected at 540 nm.Thus,NBI also can detect pit-like structures named surface pattern.The flexible spectral imaging color enhancement(FICE) system(Fujifilm Medical Co.,Tokyo,Japan) is also an IEE but different to NBI.FICE depends on the use of spectral-estimation technology to reconstruct images at different wavelengths based on WL images.FICE can enhance vascular and surface patterns.The autofluorescence imaging(AFI) video endoscope system(Olympus Medical Co.,Tokyo,Japan) is a new illumination method that uses the difference in intensity of autofluorescence between the normal area and neoplastic lesions.AFI light comprises a blue light for emitting and a green light for hemoglobin absorption.The aim of this review is to highlight the efficacy of IEE for diagnosis of colorectal tumors for endoscopic treatment.
基金National Natural Sci ence Foundation of China(No.41476081)the Major Research and Development Project in Shandong Province(No.2019GHY112027)the Shandong Provincial Natural Science Foundation(No.ZR2020MF121).
文摘To realize the fast and accurate quantitative analysis of the mixture of polycyclic aromatic hydrocarbons(PAHs),surface-enhanced Raman spectroscopy(SERS)coupled with multivariate calibrations were employed.In this study,three kinds of calibration algorithms were used to quantitative analysis of the mixture of naphthalene(Nap),phenanthrene(Phe),and pyrene(Pyr).Firstly,partial least squares(PLS)algorithm was used to select characteristic variables,then the global search capability of genetic algorithm(GA)was used for the determining of the initial weights and thresholds of back propagation(BP)neural network so that local minima was avoided.The PLS-GA-BP model exhibited superiority to quantify PAHs mixture,which achieved R2=0.9975,0.9710,0.9643,ARE=10.07%,19.28%,16.72%and RMSE=13.10,5.40,5.10 nmol L−1 for Nap,Phe,Pyr(in the PAHs mixture)concentration prediction respectively.The forecast error,ARE and RMSE have been reduced more than 50%and 60%respectively compared with the whole spectral BP model.The study indicates that accurate quantitative spectroscopic analysis of the mixture of PAHs samples can be achieved through the combination of SERS technique and PLS-GA-BP algorithm.
文摘Histogram of collinear gradient-enhanced coding (HCGEC), a robust key point descriptor for multi-spectral image matching, is proposed. The HCGEC mainly encodes rough structures within an image and suppresses detailed textural information, which is desirable in multi-spectral image matching. Experiments on two multi-spectral data sets demonstrate that the proposed descriptor can yield significantly better results than some state-of- the-art descriptors.
文摘Surface-enhanced resonance Raman scattering (SERRS) of Rhodamine 6G (R6G) adsorbed on colloidal silver clusters has been studied. Based on the great enhancement of the Raman signal and the quench of the fluorescence, the SERRS spectra of R6G were recorded for the samples of dye colloidal solution with different concentrations. Spectral inhomogeneity behaviours from single molecules in the dried sample films were observed with complementary evidences, such as spectral polarization, spectral diffusion, intensity fluctuation of vibrational lines and even "breathing" of the molecules. Sequential spectra observed from a liquid sample with an average of 0.3 dye molecules in the probed volume exhibited the expected Poisson distribution for actually measuring 0, 1 or 2 molecules. Difference between the SERRS spectra of R6G excited by linearly and circularly polarized light were experimentally measured.
基金Project supported by the National Key Research and Development Program of China(Grant No.2019YFA0307701)the National Natural Science Foundation of China(Grant Nos.11674128,11674124,and 11974138)the Jilin Provincial Scientific and Technological Development Program,China(Grant No.20170101063JC)。
文摘A combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy is investigated.Depositing Au nanoparticles at the surface of a brass target can enhance the coupling of the target and the laser.More atoms in the brass sample are excited.As a secondary excitation source,spark discharge reheats the generated plasma,which further amplifies the enhancement results of nanoparticles.The spectral intensity with the spark discharge increases more obviously with nanoparticle concentration increasing than without the spark discharge.Also,plasma temperature and electron density are calculated by the Boltzmann plot and Stark broadening.The changes in the plasma temperature and electron density are consistent with the spectral emission changes.
文摘Direct-comb spectroscopy techniques uses optical frequency combs(OFCs)as spectroscopic light source.They deliver high sensitivity,high frequency resolution and precision in a broad spectral range.Due to these features,the field has burgeoned in recent years.In this work we constructed an OFC-based cavity-enhanced Fourier-transform spectrometer in the nearinfrared region and used it for a line-shape study of rovibrational transitions of CO perturbed by Ar.The highly sensitive measurements spanned the wavenumber range from 6270 cm^-1 to 6410 cm^-1,which covered both P and R branch of the second overtone band of CO.The spectrometer delivers high-resolution surpassing the Fourier-transform resolution limit determined by interferogram length,successfully removing ringing and broadening effects caused by instrumental line shape function.The instrumental-line-shape-free method and high signal-to-noise ratio in the measurement allowed us to observe collisional effects beyond those described by the Voigt profile.We retrieved collisional line-shape parameters by fitting the speed-dependent Voigt profile and found good agreement with the values given by precise cavity ring-down spectroscopy measurements that used a continuous-wave laser referenced to a stabilized OFC.The results demonstrate that OFC-based cavity-enhanced Fouriertransform spectroscopy is a strong tool for accurate line-shape studies that will be crucial for future spectral databases.
文摘The paper presents a number of signal processing approaches for the spectral interferometric interrogation of extrinsic Fabry-Perot interferometers(EFPIs). The analysis of attainable microdisplacement resolution is performed and the analytical equations describing the dependence of resolution on parameters of the interrogation setup are derived. The efficiency of the proposed signal processing approaches and the validity of analytical derivations are supported by experiments. The proposed approaches allow the interrogation of up to four multiplexed sensors with attained resolution between 30 pm and 80 pm, up to three times improvement of microdisplacement resolution of a single sensor by means of using the reference interferometer and noisecompensating approach, and ability to register signals with frequencies up to 1 kHz in the case of 1 Hz spectrum acquisition rate. The proposed approaches can be used for various applications, including biomedical, industrial inspection, and others, amongst the microdisplacement measurement.