Credit risk is the core issue of supply chain finance. In the supply chain, problems happened in different enterprises can influent the whole to different degrees through transferring, thus statuses of all enterprises...Credit risk is the core issue of supply chain finance. In the supply chain, problems happened in different enterprises can influent the whole to different degrees through transferring, thus statuses of all enterprises and their different influences should be considered when evaluating the supply chain’s credit risk. We examine the characters of supply chain network and complex network, use the local growing complex network to simulate the real supply chain, use cluster analysis to classify the company into several levels;Introducing each level’s self-adaption weight formula according to the company’s quantity and degrees of this level and use the weight to improve the credit evaluation method. The research results indicate that complex network can be used to simulate the supply chain. The credit risk evaluation (CRE) of an enterprise level with bigger note degrees has a greater weight in the supply chain system’s CRE, thus has greater effect on the whole chain. Considering different influences of different enterprise levels can improve credit risk evaluation method’s sensitivity.展开更多
There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced se...There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced self-adaptiveevolutionary algorithm (ESEA) to overcome the demerits above. In the ESEA, four evolutionary operators are designed to enhance the evolutionary structure. Besides, the ESEA employs four effective search strategies under the framework of the self-adaptive learning. Four groups of the experiments are done to find out the most suitable parameter values for the ESEA. In order to verify the performance of the proposed algorithm, 26 state-of-the-art test functions are solved by the ESEA and its competitors. The experimental results demonstrate that the universality and robustness of the ESEA out-perform its competitors.展开更多
In this paper, the problem of optimum allocation of repairable and replaceable components in a system is formulated as a Bi-objective stochastic non linear programming problem. The system maintenance time and cost are...In this paper, the problem of optimum allocation of repairable and replaceable components in a system is formulated as a Bi-objective stochastic non linear programming problem. The system maintenance time and cost are random variable and has gamma and normal distribution respectively. A Bi-criteria optimization technique, weighted Tchebycheff is used to obtain the optimum allocation for a system. A numerical example is also presented to illustrate the computational details.展开更多
Weighted total least squares(WTLS)have been regarded as the standard tool for the errors-in-variables(EIV)model in which all the elements in the observation vector and the coefficient matrix are contaminated with rand...Weighted total least squares(WTLS)have been regarded as the standard tool for the errors-in-variables(EIV)model in which all the elements in the observation vector and the coefficient matrix are contaminated with random errors.However,in many geodetic applications,some elements are error-free and some random observations appear repeatedly in different positions in the augmented coefficient matrix.It is called the linear structured EIV(LSEIV)model.Two kinds of methods are proposed for the LSEIV model from functional and stochastic modifications.On the one hand,the functional part of the LSEIV model is modified into the errors-in-observations(EIO)model.On the other hand,the stochastic model is modified by applying the Moore-Penrose inverse of the cofactor matrix.The algorithms are derived through the Lagrange multipliers method and linear approximation.The estimation principles and iterative formula of the parameters are proven to be consistent.The first-order approximate variance-covariance matrix(VCM)of the parameters is also derived.A numerical example is given to compare the performances of our proposed three algorithms with the STLS approach.Afterwards,the least squares(LS),total least squares(TLS)and linear structured weighted total least squares(LSWTLS)solutions are compared and the accuracy evaluation formula is proven to be feasible and effective.Finally,the LSWTLS is applied to the field of deformation analysis,which yields a better result than the traditional LS and TLS estimations.展开更多
Variation of reservoir physical properties can cause changes in its elastic parameters. However, this is not a simple linear relation. Furthermore, the lack of observations, data overlap, noise interference, and ideal...Variation of reservoir physical properties can cause changes in its elastic parameters. However, this is not a simple linear relation. Furthermore, the lack of observations, data overlap, noise interference, and idealized models increases the uncertainties of the inversion result. Thus, we propose an inversion method that is different from traditional statistical rock physics modeling. First, we use deterministic and stochastic rock physics models considering the uncertainties of elastic parameters obtained by prestack seismic inversion and introduce weighting coefficients to establish a weighted statistical relation between reservoir and elastic parameters. Second, based on the weighted statistical relation, we use Markov chain Monte Carlo simulations to generate the random joint distribution space of reservoir and elastic parameters that serves as a sample solution space of an objective function. Finally, we propose a fast solution criterion to maximize the posterior probability density and obtain reservoir parameters. The method has high efficiency and application potential.展开更多
As far as the minimal spanning tree problem for the digraph with asymmetric weightsis concerned, an explicit integer programming model is proposed, which could be solved successfullyusing the integer programming packa...As far as the minimal spanning tree problem for the digraph with asymmetric weightsis concerned, an explicit integer programming model is proposed, which could be solved successfullyusing the integer programming packages such as LINDO, and furthermore this model is extendedinto the stochastic version, that is, the minimal spanning tree problem for the digraph with theweights is not constant but random variables. Several algorithms are also developed to solve themodels. Finally, a numerical demonstration is given.展开更多
Let (X, ∑, μ) be a σ-finite measure space, P : LI → L1 be a Markov operator, and Qt = ∑n=0 ∞ qn(t)Pn, where {qn(t)} be a sequence satisfying:i) qn(t) ≥ 0 and ∑n=0 ∞ qn(t)=1 for all t >0;ii)lim (q0(t) + ∑n...Let (X, ∑, μ) be a σ-finite measure space, P : LI → L1 be a Markov operator, and Qt = ∑n=0 ∞ qn(t)Pn, where {qn(t)} be a sequence satisfying:i) qn(t) ≥ 0 and ∑n=0 ∞ qn(t)=1 for all t >0;ii)lim (q0(t) + ∑n=1 ∞ |qn(t) -qn-1(t)|) = 0.t→∞f ∈ L1, it is proved that Qt(f) convergent strongly to a fixed point of P as t → 0 if and only if {Qt(f)}t>0 is precompact. Qt(f) is convergent if and only if the ergodic mean operator An(f) is convergent, and they have the same limit. If P is a double stochastic operator then lim Qtf = E(f|∑0) for all f ∈ L1, where ∑0 is the invariant σ-algebra ofP. Some related results are also given.展开更多
To improve the performance of extended particle swarm optimizer, a novel means of stochastic weight deployment is proposed for the iterative equation of velocity updation. In this scheme, one of the weights is specifi...To improve the performance of extended particle swarm optimizer, a novel means of stochastic weight deployment is proposed for the iterative equation of velocity updation. In this scheme, one of the weights is specified to a random number within the range of [0, 1] and the other two remain constant configurations. The simulations show that this weight strategy outperforms the previous deterministic approach with respect to success rate and convergence speed. The experiments also reveal that if the weight for global best neighbor is specified to a stochastic number, extended particle swarm optimizer achieves high and robust performance on the given multi-modal function.展开更多
This paper carries out stochastic comparisons on the total capacity of weighted k-out-of-n sys-tems with heterogeneous components.The expectation order,the increasing convex/concave order and the usual stochastic orde...This paper carries out stochastic comparisons on the total capacity of weighted k-out-of-n sys-tems with heterogeneous components.The expectation order,the increasing convex/concave order and the usual stochastic order are employed to investigate stochastic behaviours of sys-tem capacity.Sufficient conditions are established in terms of majorisation-type orders between the vectors of component lifetime distribution parameters and the vectors of weights.Some examples are also provided as illustrations.展开更多
文摘Credit risk is the core issue of supply chain finance. In the supply chain, problems happened in different enterprises can influent the whole to different degrees through transferring, thus statuses of all enterprises and their different influences should be considered when evaluating the supply chain’s credit risk. We examine the characters of supply chain network and complex network, use the local growing complex network to simulate the real supply chain, use cluster analysis to classify the company into several levels;Introducing each level’s self-adaption weight formula according to the company’s quantity and degrees of this level and use the weight to improve the credit evaluation method. The research results indicate that complex network can be used to simulate the supply chain. The credit risk evaluation (CRE) of an enterprise level with bigger note degrees has a greater weight in the supply chain system’s CRE, thus has greater effect on the whole chain. Considering different influences of different enterprise levels can improve credit risk evaluation method’s sensitivity.
基金supported by the Aviation Science Funds of China(2010ZC13012)the Fund of Jiangsu Innovation Program for Graduate Education (CXLX11 0203)
文摘There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced self-adaptiveevolutionary algorithm (ESEA) to overcome the demerits above. In the ESEA, four evolutionary operators are designed to enhance the evolutionary structure. Besides, the ESEA employs four effective search strategies under the framework of the self-adaptive learning. Four groups of the experiments are done to find out the most suitable parameter values for the ESEA. In order to verify the performance of the proposed algorithm, 26 state-of-the-art test functions are solved by the ESEA and its competitors. The experimental results demonstrate that the universality and robustness of the ESEA out-perform its competitors.
文摘In this paper, the problem of optimum allocation of repairable and replaceable components in a system is formulated as a Bi-objective stochastic non linear programming problem. The system maintenance time and cost are random variable and has gamma and normal distribution respectively. A Bi-criteria optimization technique, weighted Tchebycheff is used to obtain the optimum allocation for a system. A numerical example is also presented to illustrate the computational details.
基金the financial support of the National Natural Science Foundation of China(Grant No.42074016,42104025,42274057and 41704007)Hunan Provincial Natural Science Foundation of China(Grant No.2021JJ30244)Scientific Research Fund of Hunan Provincial Education Department(Grant No.22B0496)。
文摘Weighted total least squares(WTLS)have been regarded as the standard tool for the errors-in-variables(EIV)model in which all the elements in the observation vector and the coefficient matrix are contaminated with random errors.However,in many geodetic applications,some elements are error-free and some random observations appear repeatedly in different positions in the augmented coefficient matrix.It is called the linear structured EIV(LSEIV)model.Two kinds of methods are proposed for the LSEIV model from functional and stochastic modifications.On the one hand,the functional part of the LSEIV model is modified into the errors-in-observations(EIO)model.On the other hand,the stochastic model is modified by applying the Moore-Penrose inverse of the cofactor matrix.The algorithms are derived through the Lagrange multipliers method and linear approximation.The estimation principles and iterative formula of the parameters are proven to be consistent.The first-order approximate variance-covariance matrix(VCM)of the parameters is also derived.A numerical example is given to compare the performances of our proposed three algorithms with the STLS approach.Afterwards,the least squares(LS),total least squares(TLS)and linear structured weighted total least squares(LSWTLS)solutions are compared and the accuracy evaluation formula is proven to be feasible and effective.Finally,the LSWTLS is applied to the field of deformation analysis,which yields a better result than the traditional LS and TLS estimations.
基金supported by the National Science and Technology Major Project(No.2011 ZX05007-006)the 973 Program of China(No.2013CB228604)the Major Project of Petrochina(No.2014B-0610)
文摘Variation of reservoir physical properties can cause changes in its elastic parameters. However, this is not a simple linear relation. Furthermore, the lack of observations, data overlap, noise interference, and idealized models increases the uncertainties of the inversion result. Thus, we propose an inversion method that is different from traditional statistical rock physics modeling. First, we use deterministic and stochastic rock physics models considering the uncertainties of elastic parameters obtained by prestack seismic inversion and introduce weighting coefficients to establish a weighted statistical relation between reservoir and elastic parameters. Second, based on the weighted statistical relation, we use Markov chain Monte Carlo simulations to generate the random joint distribution space of reservoir and elastic parameters that serves as a sample solution space of an objective function. Finally, we propose a fast solution criterion to maximize the posterior probability density and obtain reservoir parameters. The method has high efficiency and application potential.
文摘As far as the minimal spanning tree problem for the digraph with asymmetric weightsis concerned, an explicit integer programming model is proposed, which could be solved successfullyusing the integer programming packages such as LINDO, and furthermore this model is extendedinto the stochastic version, that is, the minimal spanning tree problem for the digraph with theweights is not constant but random variables. Several algorithms are also developed to solve themodels. Finally, a numerical demonstration is given.
基金Research is partially supported by the NSFC (60174048)
文摘Let (X, ∑, μ) be a σ-finite measure space, P : LI → L1 be a Markov operator, and Qt = ∑n=0 ∞ qn(t)Pn, where {qn(t)} be a sequence satisfying:i) qn(t) ≥ 0 and ∑n=0 ∞ qn(t)=1 for all t >0;ii)lim (q0(t) + ∑n=1 ∞ |qn(t) -qn-1(t)|) = 0.t→∞f ∈ L1, it is proved that Qt(f) convergent strongly to a fixed point of P as t → 0 if and only if {Qt(f)}t>0 is precompact. Qt(f) is convergent if and only if the ergodic mean operator An(f) is convergent, and they have the same limit. If P is a double stochastic operator then lim Qtf = E(f|∑0) for all f ∈ L1, where ∑0 is the invariant σ-algebra ofP. Some related results are also given.
基金the Natural Science Foundation of the Anhui Higher Education Institutions (KJ2008B151)Key Laboratory of Information Management and Information Economics, Ministry of Education (F0607-36)
文摘To improve the performance of extended particle swarm optimizer, a novel means of stochastic weight deployment is proposed for the iterative equation of velocity updation. In this scheme, one of the weights is specified to a random number within the range of [0, 1] and the other two remain constant configurations. The simulations show that this weight strategy outperforms the previous deterministic approach with respect to success rate and convergence speed. The experiments also reveal that if the weight for global best neighbor is specified to a stochastic number, extended particle swarm optimizer achieves high and robust performance on the given multi-modal function.
基金The author thanks the insightful and helpful comments of an Associate Editor and an anonymous reviewer,which have improved the presentation of the paper.The author acknowledges the start-up grant in Nankai University and the Fundamental Research Funds for the Central Universities,Nankai University(No.63201159)the financial support fromthe Natural Science Foundation of Tianjin(No.20JCQNJC01740).
文摘This paper carries out stochastic comparisons on the total capacity of weighted k-out-of-n sys-tems with heterogeneous components.The expectation order,the increasing convex/concave order and the usual stochastic order are employed to investigate stochastic behaviours of sys-tem capacity.Sufficient conditions are established in terms of majorisation-type orders between the vectors of component lifetime distribution parameters and the vectors of weights.Some examples are also provided as illustrations.