The need for renewable energy access has led to the use of variable input converter approaches because renewable energy sources often generate electricity in an unpredictable manner. A high-performance multi-input boo...The need for renewable energy access has led to the use of variable input converter approaches because renewable energy sources often generate electricity in an unpredictable manner. A high-performance multi-input boost converter is developed to provide the necessary output voltage and power while accommodating variations in input sources. This converter is specifically designed for the efficient usage of renewable energy. The proposed architecture integrates three separate unidirectional input power sources: photovoltaics, fuel cells, and storage system batteries. The architecture has five switches, and the implementation of each switch in the converter is achieved by applying the calculated duty ratios in various operating states. The closed-loop response of the converter with a proportional-integral (PI) controller-based switching system is examined by analyzing the Matlab-Simulink model utilizing a proportional-integral derivative (PID) tuner. The controller can deliver the desired output voltage of 400 V and an average power of 2 kW while exhibiting low switching transient effects. Therefore, the proposed multi-input interleaved boost converter demonstrates robust results for real-time applications by effectively harnessing renewable power sources.展开更多
Image quality is one of the most important specifications of optical lithography tool and is affected notably by temperature, vibration, and contamination of projection lens(PL). Traditional method of local temperat...Image quality is one of the most important specifications of optical lithography tool and is affected notably by temperature, vibration, and contamination of projection lens(PL). Traditional method of local temperature control is easier to introduce vibration and contamination, so temperature control system with multi-closed loops is developed to control the temperature inside the PL, and to isolate the influence of vibration and contamination. A new remote indirect-temperature-control(RITC) method is proposed in which cooling water is circulated to perform indirect-temperature-control of the PL. Heater and cooler embedded temperature control unit(TCU) is used to condition the temperature of the cooling water, and the TCU must be kept away from the PL so that the influence of vibration and contamination can be avoided. A new multi-closed loops control structure incorporating an internal cascade control structure(CCS) and an external parallel cascade control structure(PCCS) is designed to prevent large inertia, multi-delay, and multi-disturbance of the RITC system. A nonlinear proportional-integral(PI) algorithm is applied to further enhance the convergence rate and precision of the control process. Contrast experiments of different control loops and algorithms were implemented to verify the impact on the control performance. It is shown that the temperature control system with multi-closed loops reaches a precision specification at ±0.006 ℃ with fast convergence rate, strong robustness, and self-adaptability. This method has been successfully used in an optical lithography tool which produces a pattern of 100 nm critical dimension(CD), and its performances are satisfactory.展开更多
In the strip rolling process, shape control system possesses the characteristics of nonlinearity, strong coupling, time delay and time variation. Based on self adapting Elman dynamic recursion network prediction model...In the strip rolling process, shape control system possesses the characteristics of nonlinearity, strong coupling, time delay and time variation. Based on self adapting Elman dynamic recursion network prediction model, the fuzzy control method was used to control the shape on four-high cold mill. The simulation results showed that the system can be applied to real time on line control of the shape.展开更多
Under the conditions of joint torque output dead-zone and external disturbance,the trajectory tracking and vibration suppression for a free-floating space robot(FFSR)system with elastic base and flexible links were di...Under the conditions of joint torque output dead-zone and external disturbance,the trajectory tracking and vibration suppression for a free-floating space robot(FFSR)system with elastic base and flexible links were discussed.First,using the Lagrange equation of the second kind,the dynamic model of the system was derived.Second,utilizing singular perturbation theory,a slow subsystem describing the rigid motion and a fast subsystem corresponding to flexible vibration were obtained.For the slow subsystem,when the width of deadzone is uncertain,a dead-zone pre-compensator was designed to eliminate the impact of joint torque output dead-zone,and an integral sliding mode neural network control was proposed.The integral sliding mode term can reduce the steady state error.For the fast subsystem,an optimal linear quadratic regulator(LQR)controller was adopted to damp out the vibration of the flexible links and elastic base simultaneously.Finally,computer simulations show the effectiveness of the compound control method.展开更多
In networked robot manipulators that deeply integrate control, communication and computation, the controller design needs to take into consideration the limited or costly system resources and the presence of disturban...In networked robot manipulators that deeply integrate control, communication and computation, the controller design needs to take into consideration the limited or costly system resources and the presence of disturbances/uncertainties. To cope with these requirements, this paper proposes a novel dynamic event-triggered robust tracking control method for a onedegree of freedom(DOF) link manipulator with external disturbance and system uncertainties via a reduced-order generalized proportional-integral observer(GPIO). By only using the sampled-data position signal, a new sampled-data robust output feedback tracking controller is proposed based on a reduced-order GPIO to attenuate the undesirable influence of the external disturbance and the system uncertainties. To save the communication resources, we propose a discrete-time dynamic event-triggering mechanism(DETM), where the estimates and the control signal are transmitted and computed only when the proposed discrete-time DETM is violated. It is shown that with the proposed control method, both tracking control properties and communication properties can be significantly improved. Finally, simulation results are shown to demonstrate the feasibility and efficacy of the proposed control approach.展开更多
Vector control schemes have recently been used to drive linear induction motors(LIM)in high-performance applications.This trend promotes the development of precise and efficient control schemes for individual motors.T...Vector control schemes have recently been used to drive linear induction motors(LIM)in high-performance applications.This trend promotes the development of precise and efficient control schemes for individual motors.This research aims to present a novel framework for speed and thrust force control of LIM using space vector pulse width modulation(SVPWM)inverters.The framework under consideration is developed in four stages.To begin,MATLAB Simulink was used to develop a detailed mathematical and electromechanical dynamicmodel.The research presents a modified SVPWM inverter control scheme.By tuning the proportional-integral(PI)controller with a transfer function,optimized values for the PI controller are derived.All the subsystems mentioned above are integrated to create a robust simulation of the LIM’s precise speed and thrust force control scheme.The reference speed values were chosen to evaluate the performance of the respective system,and the developed system’s response was verified using various data sets.For the low-speed range,a reference value of 10m/s is used,while a reference value of 100 m/s is used for the high-speed range.The speed output response indicates that themotor reached reference speed in amatter of seconds,as the delay time is between 8 and 10 s.The maximum amplitude of thrust achieved is less than 400N,demonstrating the controller’s capability to control a high-speed LIM with minimal thrust ripple.Due to the controlled speed range,the developed system is highly recommended for low-speed and high-speed and heavy-duty traction applications.展开更多
Conventional PID controllers are widely used in fin stabilizer control systems, but they have time-variations, nonlinearity, and uncertainty influencing their control effects. A lift feedback fuzzy-PID control method ...Conventional PID controllers are widely used in fin stabilizer control systems, but they have time-variations, nonlinearity, and uncertainty influencing their control effects. A lift feedback fuzzy-PID control method was developed to better deal with these problems, and this lift feedback fin stabilizer system was simulated under different sea condition. Test results showed the system has better anti-rolling performance than traditional fin-angle PID control systems.展开更多
This paper presents a comparative study of different decoupling control schemes for a two-input, two-output(TITO) binary distillation column via proportional-integral(PI)controller. The key idea behind this paper is d...This paper presents a comparative study of different decoupling control schemes for a two-input, two-output(TITO) binary distillation column via proportional-integral(PI)controller. The key idea behind this paper is designing two novel fuzzy decoupling schemes that depend on human knowledge,instead of the system mathematical model used in conventional decoupling schemes. Based on conventional and inverted decoupling schemes, fuzzy and inverted fuzzy decoupling schemes are developed. The control effect is compared using simulation results for the proposed two schemes with conventional decoupling and inverted decoupling. The proposed fuzzy decoupling schemes are easy to realize and simple to design, besides they have a good decoupling capability. Two methods are used to prove asymptotic stability of each loop and the entire closed-loop system by applying the proposed fuzzy decoupling-based PI controller.The Wood and Berry model of a binary distillation column is used to illustrate the applicability of the proposed schemes.展开更多
This paper considers the problem of stabilizing multiple time delayed processes using proportional integral(PI) controller.The presented approach is based on finding all possible values of control parameters which wil...This paper considers the problem of stabilizing multiple time delayed processes using proportional integral(PI) controller.The presented approach is based on finding all possible values of control parameters which will result in pure imaginary roots of closed loop characteristic equation under all process parameters fixed.The ergodic search of three PI control parameters are converted from the range of infinity to finite range by introducing trigonometric tangent function.After all possible stability boundaries are obtained,the Nyquist stability method is used to determine the actual stability region of the controller parameters.This method also permits design for simultaneous minimum gain and phase margin requirement.An illustrative example case is also presented.展开更多
This paper focuses on the comparative study of analog and digital control techniques for Negative Output Superlift Luo converter (NOSLC). NOSLC is a high gain converter in which the positive source voltage is converte...This paper focuses on the comparative study of analog and digital control techniques for Negative Output Superlift Luo converter (NOSLC). NOSLC is a high gain converter in which the positive source voltage is converted into a negative load voltage. Though the negative load voltage is produced effectively, there is lot of non-linearities that affects the voltage level. To overcome this, analog controllers like Proportional-integral (PI), fuzzy PI and a sliding mode controller (SMC) were proposed for NOSLC. However PI controller does not respond to changes in operating point, fuzzy PI is based on the systematic approach and proved to be a trial and error oriented method and SMC brings an oscillation in the duty cycle. Therefore, to overcome these drawbacks, a digital control technique using PIC microcontroller is proposed in this paper which provides high versatility and programmability approach. Simulation studies are carried out in MATLAB and the performances of these controllers have been investigated for the proposed DC-DC converter. A prototype of the NOSLC converter is built by employing digital control and the results are verified experimentally.展开更多
The alternative energy resources, like solar, are always complementary due to environmental changes. Energy generation with the sources such as solar and wind is gaining importance and of that photovoltaic conversion ...The alternative energy resources, like solar, are always complementary due to environmental changes. Energy generation with the sources such as solar and wind is gaining importance and of that photovoltaic conversion is the main focus of researches due to its promising potential as the electrical source. This paper presents the constant voltage method of control where the output of the converter is maintained constant irrespective of the variations in the irradiance with the high step-up isolated efficient single switch DC-DC converter for the solar PV systems. Constant voltage method of control uses the array of photovoltaic systems as its energy source. The output of the Solar PV systems is nonlinear and has its dependency on temperature and irradiance by which the panel voltage and current varies with the variation in irradiance. Constant voltage control method always operates in such a way that the converter voltage is tried to be maintained constantly to the reference voltage which is set by the user. The system used here utilizes high step single switch isolated DC-DC converter and monitors the voltage continuously by varying the duty cycle to maintain the converter voltage always constant. As a way of improving the performance, both the open and closed loop analysis is done where the closed loop analysis uses the PI controller for its performance. The model is implemented in MATLAB and it accepts the irradiance as the input and outputs the constant voltage from the converter and the feasibility of the proposed converter topology is confirmed with experimental results of the prototype model.展开更多
This work proposes a novel nature-inspired algorithm called Ant Lion Optimizer (ALO). The ALO algorithm mimics the search mechanism of antlions in nature. A time domain based objective function is established to tune ...This work proposes a novel nature-inspired algorithm called Ant Lion Optimizer (ALO). The ALO algorithm mimics the search mechanism of antlions in nature. A time domain based objective function is established to tune the parameters of the PI controller based LFC, which is solved by the proposed ALO algorithm to reach the most convenient solutions. A three-area interconnected power system is investigated as a test system under various loading conditions to confirm the effectiveness of the suggested algorithm. Simulation results are given to show the enhanced performance of the developed ALO algorithm based controllers in comparison with Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Bat Algorithm (BAT) and conventional PI controller. These results represent that the proposed BAT algorithm tuned PI controller offers better performance over other soft computing algorithms in conditions of settling times and several performance indices.展开更多
In this paper, the design of a proportional integral controller (PIC) plus fuzzy logic controller (FLC) for the negative output elementary super lift Luo converter (NOESLLC) operated in discontinuous conduction mode (...In this paper, the design of a proportional integral controller (PIC) plus fuzzy logic controller (FLC) for the negative output elementary super lift Luo converter (NOESLLC) operated in discontinuous conduction mode (DCM) is presented. In spite of the many benefits viz. the high voltage transfer gain, the high efficiency, and the reduced inductor current and the capacitor voltage ripples, it natured with non-minimum phase. This characteristic makes the control of NOESLLC cumbersome. Any attempt of direct controlling the output voltage may erupt to instability. To overcome this problem, indirect regulation of the output voltage based on the two-loop controller is devised. The savvy in the inductor current control improves the dynamic response of the output voltage. The FLC is designed for the outer (voltage) loop while the inner (current) loop is controlled by the PIC. For the developed ?19.6 V NOESLLC, the dynamic performances for different perturbations (line, load and component variations) are obtained for PIC plus FLC and compared with PIC plus PIC. The study of two cases is performed at various operating regions by developing the MATLAB/Simulink model.展开更多
This paper proposes a sliding mode controller based on robust model reference adaptive proportional-integral(RMRA-PI)control for a stand-alone voltage source inverter(SA-VSI).The proposed controller has two control lo...This paper proposes a sliding mode controller based on robust model reference adaptive proportional-integral(RMRA-PI)control for a stand-alone voltage source inverter(SA-VSI).The proposed controller has two control loops where the coefficients of PI controller are regulated by the adaptive sliding law.This method is used to regulate the output voltage of the inverter under different load conditions and uncertainty,and adapts the output to the reference model to reduce the total harmonic distortion(THD).In this paper,the stability of the proposed controller is proven by using Lyapunov's theory and Barbalet’s lemma.The proposed controller performs well in voltage regulation such as low THD under sudden load change and uncertainty.Also,the results of the proposed controller are compared with PI controller to show the effectiveness of the presented control system.展开更多
Once an asymmetrical fault occurs on the AC side of the receiving-end of a high-voltage direct current(HVDC)transmission system,the current reference will be affected by the control regulation on the DC inverter side ...Once an asymmetrical fault occurs on the AC side of the receiving-end of a high-voltage direct current(HVDC)transmission system,the current reference will be affected by the control regulation on the DC inverter side and the commutation voltage asymmetry.In this case,the advance firing angle will fluctuate periodically,causing security threats to the system.If the fault cannot be cleared in time,the effect may be even more serious.However,the traditional proportional-integral(PI)controller cannot effectively suppress the periodic components in the input error signal,which is an important cause of continuous commutation failure.Thus,the system requires more time to recover from the fault.Motivated by this,a selfadaptive auto-disturbance rejection PI controller is proposed in this study.The controller has the advantages of fast response speed and strong anti-interference ability of the auto-disturbance rejection controller.On one hand,it can automatically adjust PI,and the parameters can maintain the system’s adaptive ability.On the other hand,the discretization process satisfies the computer simulation requirements.By applying the proposed controller to a system under constant current control and extinction angle control,the dynamic response speed can be improved and the robust performance of the system can be ensured when dealing with a wide range of perturbations.Finally,simulation results show that the proposed algorithm can effectively suppress the continuous commutation failure of DC transmission systems.展开更多
Approximate Dynamic Inversion (ADI) is basically an approximation of exact dynamic inversionor feedback linearisation, which converts a nonlinear system to an equivalent linear structure.This method can be widely appl...Approximate Dynamic Inversion (ADI) is basically an approximation of exact dynamic inversionor feedback linearisation, which converts a nonlinear system to an equivalent linear structure.This method can be widely applied for controlling minimum phase, nonaffine-in-control systems.For applying the ADI method, a fast dynamic subsystem for deriving explicit inversion of thenonaffine equation is required. With full state feedback, ADI may be expressed in the same way asa Proportional Integral (PI) controller with only knowledge of the sign of control effectiveness andalso without any approximation. The Model Reference Adaptive Controller (MRAC) augmentedwith the PI method is an adaptive control technique where the PI parameters are updated/tunedas per the control methodology based on the MRAC-Massachusetts Institute of Technology (MIT)rule so that the plant is capable to follow the reference model. The main objective of this paperis to find the relationship between ADI and MRAC augmented with a PI controller.展开更多
The oscillation phenomena associated with the control of voltage source converters(VSCs)are concerning,making it crucial to locate the sources of such oscillations and suppress the oscillations.Therefore,this paper pr...The oscillation phenomena associated with the control of voltage source converters(VSCs)are concerning,making it crucial to locate the sources of such oscillations and suppress the oscillations.Therefore,this paper presents a location scheme based on the energy structure and nonlinearity detection.The energy structure,which conforms to the principle of the energy-based method and dissipativity theory,is developed to describe the transient energy flow for VSCs,based on which a defined characteristic quantity is implemented to narrow the scope for locating the sources of oscillations.Moreover,based on the self-sustained oscillation characteristics of VsCs,an index for nonlinearity detection is applied to locate the VSCs that produce the oscillation energy.The combination of the energy structure and nonlinearity detection distinguishes the contribu-tions of different VSCs to the oscillation.The results of a case study implemented by the PSCAD/EMTDC simulation validate theproposed scheme.展开更多
This paper investigates the impact of electric vehicle(EV)aggregator with communication time delay on stability regions and stability delay margins of a single-area load frequency control(LFC)system.Primarily,a graphi...This paper investigates the impact of electric vehicle(EV)aggregator with communication time delay on stability regions and stability delay margins of a single-area load frequency control(LFC)system.Primarily,a graphical method characterizing stability boundary locus is implemented.For a given time delay,the method computes all the stabilizing proportional-integral(PI)controller gains,which constitutes a stability region in the parameter space of PI controller.Secondly,in order to complement the stability regions,a frequency-domain exact method is used to calculate stability delay margins for various values of PI controller gains.The qualitative impact of EV aggregator on both stability regions and stability delay margins is thoroughly analyzed and the results are authenticated by time-domain simulations and quasi-polynomial mapping-based root finder(QPmR)algorithm.展开更多
This paper presents the development of improved synergetic current control for the injected current of an inverter in the grid-connected microgrid and the distributed generation system(DGS). This paper introduces new ...This paper presents the development of improved synergetic current control for the injected current of an inverter in the grid-connected microgrid and the distributed generation system(DGS). This paper introduces new formulas of the macro-variable functions for integral synergetic control(SC)and integral fast terminal SC, which both have an integral term to guarantee zero steady-state error. The proposed integral SC and integral fast terminal SC achieve a seamless performance such as the fast convergence, minimal overshoot, zero steady-state error, and chattering-free operation. To demonstrate the meritorious performance of the proposed scheme for injected current control, it is compared with the performance of a proportional-integral(PI) controller and advanced exponential sliding mode control(SMC). Finally, the practicality of the proposed scheme is justified by experimental results obtained through rapid control prototyping(RCP) using the dSPACESCALEXIO platform.展开更多
One of the most critical factors affecting boiler efficiency and hazardous-gas-emission reduction is the volume of excess air mixed with fuel.A knowledge-based approach is proposed to model the efficiency of a 320-MW ...One of the most critical factors affecting boiler efficiency and hazardous-gas-emission reduction is the volume of excess air mixed with fuel.A knowledge-based approach is proposed to model the efficiency of a 320-MW natural-gas-fired steam power plant in Isfahan,Iran by applying fuzzy-modelling techniques to control the boiler efficiency.This model is based on fuel and air entering the boiler.First,the fuzzy-model structure is identified by applying the fuzzy rules obtained from an experienced human operator.The proposed method is then optimized using a genetic algorithm to increase the fuzzy-model accuracy.The results indicate that,by applying a genetic algorithm,the precision of the proposed fuzzy model increases.The error between the actual efficiency of the plant and the output efficiency of the proposed model is low.This model is developed by applying the fuzzy rules and modelling-related calculations.Finally,to optimize the efficiency of the boiler,a fuzzy proportional-integral controller is designed.The closed-loop control simulations are run by applying both the proposed controller and the manual controller to demonstrate the influence of the suggested method.The simulation outcomes indicate that the recommended controller adjusts the excess-air percentage correctly and increases the unit efficiency by 0.70%,significantly reducing fuel consumption.展开更多
文摘The need for renewable energy access has led to the use of variable input converter approaches because renewable energy sources often generate electricity in an unpredictable manner. A high-performance multi-input boost converter is developed to provide the necessary output voltage and power while accommodating variations in input sources. This converter is specifically designed for the efficient usage of renewable energy. The proposed architecture integrates three separate unidirectional input power sources: photovoltaics, fuel cells, and storage system batteries. The architecture has five switches, and the implementation of each switch in the converter is achieved by applying the calculated duty ratios in various operating states. The closed-loop response of the converter with a proportional-integral (PI) controller-based switching system is examined by analyzing the Matlab-Simulink model utilizing a proportional-integral derivative (PID) tuner. The controller can deliver the desired output voltage of 400 V and an average power of 2 kW while exhibiting low switching transient effects. Therefore, the proposed multi-input interleaved boost converter demonstrates robust results for real-time applications by effectively harnessing renewable power sources.
基金supported by National Hi-tech Research and Development Program of China(863 Program, Grant No. 2002AA4Z300)National Basic Research Program of China (973 Program, Grant No. 2009CB724205)
文摘Image quality is one of the most important specifications of optical lithography tool and is affected notably by temperature, vibration, and contamination of projection lens(PL). Traditional method of local temperature control is easier to introduce vibration and contamination, so temperature control system with multi-closed loops is developed to control the temperature inside the PL, and to isolate the influence of vibration and contamination. A new remote indirect-temperature-control(RITC) method is proposed in which cooling water is circulated to perform indirect-temperature-control of the PL. Heater and cooler embedded temperature control unit(TCU) is used to condition the temperature of the cooling water, and the TCU must be kept away from the PL so that the influence of vibration and contamination can be avoided. A new multi-closed loops control structure incorporating an internal cascade control structure(CCS) and an external parallel cascade control structure(PCCS) is designed to prevent large inertia, multi-delay, and multi-disturbance of the RITC system. A nonlinear proportional-integral(PI) algorithm is applied to further enhance the convergence rate and precision of the control process. Contrast experiments of different control loops and algorithms were implemented to verify the impact on the control performance. It is shown that the temperature control system with multi-closed loops reaches a precision specification at ±0.006 ℃ with fast convergence rate, strong robustness, and self-adaptability. This method has been successfully used in an optical lithography tool which produces a pattern of 100 nm critical dimension(CD), and its performances are satisfactory.
基金ItemSponsored by Provincial Natural Science Foundation of Hebei Province of China (E2004000206)
文摘In the strip rolling process, shape control system possesses the characteristics of nonlinearity, strong coupling, time delay and time variation. Based on self adapting Elman dynamic recursion network prediction model, the fuzzy control method was used to control the shape on four-high cold mill. The simulation results showed that the system can be applied to real time on line control of the shape.
基金Supported by the National Natural Science Foundation of China(11372073,11072061)Industrial Robot Basic Component Technology Research and Development Platform,Fujian,China(2014H21010011)。
文摘Under the conditions of joint torque output dead-zone and external disturbance,the trajectory tracking and vibration suppression for a free-floating space robot(FFSR)system with elastic base and flexible links were discussed.First,using the Lagrange equation of the second kind,the dynamic model of the system was derived.Second,utilizing singular perturbation theory,a slow subsystem describing the rigid motion and a fast subsystem corresponding to flexible vibration were obtained.For the slow subsystem,when the width of deadzone is uncertain,a dead-zone pre-compensator was designed to eliminate the impact of joint torque output dead-zone,and an integral sliding mode neural network control was proposed.The integral sliding mode term can reduce the steady state error.For the fast subsystem,an optimal linear quadratic regulator(LQR)controller was adopted to damp out the vibration of the flexible links and elastic base simultaneously.Finally,computer simulations show the effectiveness of the compound control method.
基金supported in part by the National Natural Science Foundation of China(61473080,61573099,61973080,61750110525,61633003)。
文摘In networked robot manipulators that deeply integrate control, communication and computation, the controller design needs to take into consideration the limited or costly system resources and the presence of disturbances/uncertainties. To cope with these requirements, this paper proposes a novel dynamic event-triggered robust tracking control method for a onedegree of freedom(DOF) link manipulator with external disturbance and system uncertainties via a reduced-order generalized proportional-integral observer(GPIO). By only using the sampled-data position signal, a new sampled-data robust output feedback tracking controller is proposed based on a reduced-order GPIO to attenuate the undesirable influence of the external disturbance and the system uncertainties. To save the communication resources, we propose a discrete-time dynamic event-triggering mechanism(DETM), where the estimates and the control signal are transmitted and computed only when the proposed discrete-time DETM is violated. It is shown that with the proposed control method, both tracking control properties and communication properties can be significantly improved. Finally, simulation results are shown to demonstrate the feasibility and efficacy of the proposed control approach.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under grant number(RGP.2/111/43).
文摘Vector control schemes have recently been used to drive linear induction motors(LIM)in high-performance applications.This trend promotes the development of precise and efficient control schemes for individual motors.This research aims to present a novel framework for speed and thrust force control of LIM using space vector pulse width modulation(SVPWM)inverters.The framework under consideration is developed in four stages.To begin,MATLAB Simulink was used to develop a detailed mathematical and electromechanical dynamicmodel.The research presents a modified SVPWM inverter control scheme.By tuning the proportional-integral(PI)controller with a transfer function,optimized values for the PI controller are derived.All the subsystems mentioned above are integrated to create a robust simulation of the LIM’s precise speed and thrust force control scheme.The reference speed values were chosen to evaluate the performance of the respective system,and the developed system’s response was verified using various data sets.For the low-speed range,a reference value of 10m/s is used,while a reference value of 100 m/s is used for the high-speed range.The speed output response indicates that themotor reached reference speed in amatter of seconds,as the delay time is between 8 and 10 s.The maximum amplitude of thrust achieved is less than 400N,demonstrating the controller’s capability to control a high-speed LIM with minimal thrust ripple.Due to the controlled speed range,the developed system is highly recommended for low-speed and high-speed and heavy-duty traction applications.
基金the "Ship Control Engineering" emphasis project of 211 Engineering in the tenth five-year plan.
文摘Conventional PID controllers are widely used in fin stabilizer control systems, but they have time-variations, nonlinearity, and uncertainty influencing their control effects. A lift feedback fuzzy-PID control method was developed to better deal with these problems, and this lift feedback fin stabilizer system was simulated under different sea condition. Test results showed the system has better anti-rolling performance than traditional fin-angle PID control systems.
文摘This paper presents a comparative study of different decoupling control schemes for a two-input, two-output(TITO) binary distillation column via proportional-integral(PI)controller. The key idea behind this paper is designing two novel fuzzy decoupling schemes that depend on human knowledge,instead of the system mathematical model used in conventional decoupling schemes. Based on conventional and inverted decoupling schemes, fuzzy and inverted fuzzy decoupling schemes are developed. The control effect is compared using simulation results for the proposed two schemes with conventional decoupling and inverted decoupling. The proposed fuzzy decoupling schemes are easy to realize and simple to design, besides they have a good decoupling capability. Two methods are used to prove asymptotic stability of each loop and the entire closed-loop system by applying the proposed fuzzy decoupling-based PI controller.The Wood and Berry model of a binary distillation column is used to illustrate the applicability of the proposed schemes.
基金National Natural Science Foundation of China (No.60674088)
文摘This paper considers the problem of stabilizing multiple time delayed processes using proportional integral(PI) controller.The presented approach is based on finding all possible values of control parameters which will result in pure imaginary roots of closed loop characteristic equation under all process parameters fixed.The ergodic search of three PI control parameters are converted from the range of infinity to finite range by introducing trigonometric tangent function.After all possible stability boundaries are obtained,the Nyquist stability method is used to determine the actual stability region of the controller parameters.This method also permits design for simultaneous minimum gain and phase margin requirement.An illustrative example case is also presented.
文摘This paper focuses on the comparative study of analog and digital control techniques for Negative Output Superlift Luo converter (NOSLC). NOSLC is a high gain converter in which the positive source voltage is converted into a negative load voltage. Though the negative load voltage is produced effectively, there is lot of non-linearities that affects the voltage level. To overcome this, analog controllers like Proportional-integral (PI), fuzzy PI and a sliding mode controller (SMC) were proposed for NOSLC. However PI controller does not respond to changes in operating point, fuzzy PI is based on the systematic approach and proved to be a trial and error oriented method and SMC brings an oscillation in the duty cycle. Therefore, to overcome these drawbacks, a digital control technique using PIC microcontroller is proposed in this paper which provides high versatility and programmability approach. Simulation studies are carried out in MATLAB and the performances of these controllers have been investigated for the proposed DC-DC converter. A prototype of the NOSLC converter is built by employing digital control and the results are verified experimentally.
文摘The alternative energy resources, like solar, are always complementary due to environmental changes. Energy generation with the sources such as solar and wind is gaining importance and of that photovoltaic conversion is the main focus of researches due to its promising potential as the electrical source. This paper presents the constant voltage method of control where the output of the converter is maintained constant irrespective of the variations in the irradiance with the high step-up isolated efficient single switch DC-DC converter for the solar PV systems. Constant voltage method of control uses the array of photovoltaic systems as its energy source. The output of the Solar PV systems is nonlinear and has its dependency on temperature and irradiance by which the panel voltage and current varies with the variation in irradiance. Constant voltage control method always operates in such a way that the converter voltage is tried to be maintained constantly to the reference voltage which is set by the user. The system used here utilizes high step single switch isolated DC-DC converter and monitors the voltage continuously by varying the duty cycle to maintain the converter voltage always constant. As a way of improving the performance, both the open and closed loop analysis is done where the closed loop analysis uses the PI controller for its performance. The model is implemented in MATLAB and it accepts the irradiance as the input and outputs the constant voltage from the converter and the feasibility of the proposed converter topology is confirmed with experimental results of the prototype model.
文摘This work proposes a novel nature-inspired algorithm called Ant Lion Optimizer (ALO). The ALO algorithm mimics the search mechanism of antlions in nature. A time domain based objective function is established to tune the parameters of the PI controller based LFC, which is solved by the proposed ALO algorithm to reach the most convenient solutions. A three-area interconnected power system is investigated as a test system under various loading conditions to confirm the effectiveness of the suggested algorithm. Simulation results are given to show the enhanced performance of the developed ALO algorithm based controllers in comparison with Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Bat Algorithm (BAT) and conventional PI controller. These results represent that the proposed BAT algorithm tuned PI controller offers better performance over other soft computing algorithms in conditions of settling times and several performance indices.
文摘In this paper, the design of a proportional integral controller (PIC) plus fuzzy logic controller (FLC) for the negative output elementary super lift Luo converter (NOESLLC) operated in discontinuous conduction mode (DCM) is presented. In spite of the many benefits viz. the high voltage transfer gain, the high efficiency, and the reduced inductor current and the capacitor voltage ripples, it natured with non-minimum phase. This characteristic makes the control of NOESLLC cumbersome. Any attempt of direct controlling the output voltage may erupt to instability. To overcome this problem, indirect regulation of the output voltage based on the two-loop controller is devised. The savvy in the inductor current control improves the dynamic response of the output voltage. The FLC is designed for the outer (voltage) loop while the inner (current) loop is controlled by the PIC. For the developed ?19.6 V NOESLLC, the dynamic performances for different perturbations (line, load and component variations) are obtained for PIC plus FLC and compared with PIC plus PIC. The study of two cases is performed at various operating regions by developing the MATLAB/Simulink model.
文摘This paper proposes a sliding mode controller based on robust model reference adaptive proportional-integral(RMRA-PI)control for a stand-alone voltage source inverter(SA-VSI).The proposed controller has two control loops where the coefficients of PI controller are regulated by the adaptive sliding law.This method is used to regulate the output voltage of the inverter under different load conditions and uncertainty,and adapts the output to the reference model to reduce the total harmonic distortion(THD).In this paper,the stability of the proposed controller is proven by using Lyapunov's theory and Barbalet’s lemma.The proposed controller performs well in voltage regulation such as low THD under sudden load change and uncertainty.Also,the results of the proposed controller are compared with PI controller to show the effectiveness of the presented control system.
基金supported by the Science and Technology Project of State Grid Corporation of China(No.524608170147)
文摘Once an asymmetrical fault occurs on the AC side of the receiving-end of a high-voltage direct current(HVDC)transmission system,the current reference will be affected by the control regulation on the DC inverter side and the commutation voltage asymmetry.In this case,the advance firing angle will fluctuate periodically,causing security threats to the system.If the fault cannot be cleared in time,the effect may be even more serious.However,the traditional proportional-integral(PI)controller cannot effectively suppress the periodic components in the input error signal,which is an important cause of continuous commutation failure.Thus,the system requires more time to recover from the fault.Motivated by this,a selfadaptive auto-disturbance rejection PI controller is proposed in this study.The controller has the advantages of fast response speed and strong anti-interference ability of the auto-disturbance rejection controller.On one hand,it can automatically adjust PI,and the parameters can maintain the system’s adaptive ability.On the other hand,the discretization process satisfies the computer simulation requirements.By applying the proposed controller to a system under constant current control and extinction angle control,the dynamic response speed can be improved and the robust performance of the system can be ensured when dealing with a wide range of perturbations.Finally,simulation results show that the proposed algorithm can effectively suppress the continuous commutation failure of DC transmission systems.
文摘Approximate Dynamic Inversion (ADI) is basically an approximation of exact dynamic inversionor feedback linearisation, which converts a nonlinear system to an equivalent linear structure.This method can be widely applied for controlling minimum phase, nonaffine-in-control systems.For applying the ADI method, a fast dynamic subsystem for deriving explicit inversion of thenonaffine equation is required. With full state feedback, ADI may be expressed in the same way asa Proportional Integral (PI) controller with only knowledge of the sign of control effectiveness andalso without any approximation. The Model Reference Adaptive Controller (MRAC) augmentedwith the PI method is an adaptive control technique where the PI parameters are updated/tunedas per the control methodology based on the MRAC-Massachusetts Institute of Technology (MIT)rule so that the plant is capable to follow the reference model. The main objective of this paperis to find the relationship between ADI and MRAC augmented with a PI controller.
基金supported by the State Grid Guide Project(No.5108-202218030A-1-1-ZN).
文摘The oscillation phenomena associated with the control of voltage source converters(VSCs)are concerning,making it crucial to locate the sources of such oscillations and suppress the oscillations.Therefore,this paper presents a location scheme based on the energy structure and nonlinearity detection.The energy structure,which conforms to the principle of the energy-based method and dissipativity theory,is developed to describe the transient energy flow for VSCs,based on which a defined characteristic quantity is implemented to narrow the scope for locating the sources of oscillations.Moreover,based on the self-sustained oscillation characteristics of VsCs,an index for nonlinearity detection is applied to locate the VSCs that produce the oscillation energy.The combination of the energy structure and nonlinearity detection distinguishes the contribu-tions of different VSCs to the oscillation.The results of a case study implemented by the PSCAD/EMTDC simulation validate theproposed scheme.
基金This work was supported by the Project of Scientific and Technological Research Council of Turkey(TUBITAK)(No.118E744).
文摘This paper investigates the impact of electric vehicle(EV)aggregator with communication time delay on stability regions and stability delay margins of a single-area load frequency control(LFC)system.Primarily,a graphical method characterizing stability boundary locus is implemented.For a given time delay,the method computes all the stabilizing proportional-integral(PI)controller gains,which constitutes a stability region in the parameter space of PI controller.Secondly,in order to complement the stability regions,a frequency-domain exact method is used to calculate stability delay margins for various values of PI controller gains.The qualitative impact of EV aggregator on both stability regions and stability delay margins is thoroughly analyzed and the results are authenticated by time-domain simulations and quasi-polynomial mapping-based root finder(QPmR)algorithm.
基金supported by the University of Sharjah (No. 20020403142 and No. 21020403178)。
文摘This paper presents the development of improved synergetic current control for the injected current of an inverter in the grid-connected microgrid and the distributed generation system(DGS). This paper introduces new formulas of the macro-variable functions for integral synergetic control(SC)and integral fast terminal SC, which both have an integral term to guarantee zero steady-state error. The proposed integral SC and integral fast terminal SC achieve a seamless performance such as the fast convergence, minimal overshoot, zero steady-state error, and chattering-free operation. To demonstrate the meritorious performance of the proposed scheme for injected current control, it is compared with the performance of a proportional-integral(PI) controller and advanced exponential sliding mode control(SMC). Finally, the practicality of the proposed scheme is justified by experimental results obtained through rapid control prototyping(RCP) using the dSPACESCALEXIO platform.
文摘One of the most critical factors affecting boiler efficiency and hazardous-gas-emission reduction is the volume of excess air mixed with fuel.A knowledge-based approach is proposed to model the efficiency of a 320-MW natural-gas-fired steam power plant in Isfahan,Iran by applying fuzzy-modelling techniques to control the boiler efficiency.This model is based on fuel and air entering the boiler.First,the fuzzy-model structure is identified by applying the fuzzy rules obtained from an experienced human operator.The proposed method is then optimized using a genetic algorithm to increase the fuzzy-model accuracy.The results indicate that,by applying a genetic algorithm,the precision of the proposed fuzzy model increases.The error between the actual efficiency of the plant and the output efficiency of the proposed model is low.This model is developed by applying the fuzzy rules and modelling-related calculations.Finally,to optimize the efficiency of the boiler,a fuzzy proportional-integral controller is designed.The closed-loop control simulations are run by applying both the proposed controller and the manual controller to demonstrate the influence of the suggested method.The simulation outcomes indicate that the recommended controller adjusts the excess-air percentage correctly and increases the unit efficiency by 0.70%,significantly reducing fuel consumption.