期刊文献+
共找到98,677篇文章
< 1 2 250 >
每页显示 20 50 100
Interfacial Modification of NiO_(x)by Self-assembled Monolayer for Efficient and Stable Inverted Perovskite Solar Cells 被引量:1
1
作者 Xin Yu Yandong Wang +5 位作者 Liufei Li Shantao Zhang Shuang Gao Mao Liang Wen-Hua Zhang Shangfeng Yang 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2024年第4期553-562,I0080-I0091,I0095,共23页
NiO_(x)as a hole transport material for inverted perovskite solar cells has received great attention owing to its high transparency,low fabrication temperature,and superior stability.However,the mismatched energy leve... NiO_(x)as a hole transport material for inverted perovskite solar cells has received great attention owing to its high transparency,low fabrication temperature,and superior stability.However,the mismatched energy levels and possible redox reactions at the NiO_(x)/perovskite interface severely limit the performance of NiO_(x) based inverted perovskite solar cells.Herein,we introduce a p-type self-assembled monolayer between NiO_(x)and perovskite layers to modify the interface and block the undesirable redox reaction between perovskite and NiO_(x)The selfassembled monolayer molecules all contain phosphoric acid function groups,which can be anchored onto the NiOr surface and passivate the surface defect.Moreover,the introduction of self-assembled monolayers can regulate the energy level structure of NiO_(x),reduce the interfacial band energy offset,and hence promote the hole transport from perovskite to NiO_(x)layer.Consequently,the device performance is significantly enhanced in terms of both power conversion efficiency and stability. 展开更多
关键词 Perovskite solar cell NiO_(x) self-assembled monolayer Interfacial engineering Stability
下载PDF
Factors resisting protein adsorption on hydrophilic/hydrophobic self-assembled monolayers terminated with hydrophilic hydroxyl groups
2
作者 毛党新 吴园燕 涂育松 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期605-612,共8页
The hydroxyl-terminated self-assembled monolayer(OH-SAM),as a surface resistant to protein adsorption,exhibits substantial potential in applications such as ship navigation and medical implants,and the appropriate str... The hydroxyl-terminated self-assembled monolayer(OH-SAM),as a surface resistant to protein adsorption,exhibits substantial potential in applications such as ship navigation and medical implants,and the appropriate strategies for designing anti-fouling surfaces are crucial.Here,we employ molecular dynamics simulations and alchemical free energy calculations to systematically analyze the factors influencing resistance to protein adsorption on the SAMs terminated with single or double OH groups at three packing densities(∑=2.0 nm^(-2),4.5 nm^(-2),and 6.5 nm^(-2)),respectively.For the first time,we observed that the compactness and order of interfacial water enhance its physical barrier effect,subsequently enhancing the resistance of SAM to protein adsorption.Notably,the spatial hindrance effect of SAM leads to the embedding of protein into SAM,resulting in a lack of resistance of SAM towards protein.Furthermore,the number of hydroxyl groups per unit area of double OH-terminated SAM at ∑=6.5 nm^(-2) is approximately 2 to 3 times that of single OH-terminated SAM at ∑=6.5 nm^(-2) and 4.5 nm^(-2),consequently yielding a weaker resistance of double OH-terminated SAM towards protein.Meanwhile,due to the structure of SAM itself,i.e.,the formation of a nearly perfect ice-like hydrogen bond structure,the SAM exhibits the weakest resistance towards protein.This study will complement and improve the mechanism of OH-SAM resistance to protein adsorption,especially the traditional barrier effect of interfacial water. 展开更多
关键词 molecular dynamics simulation self-assembled monolayer resistance to protein adsorption hydrogen bond interfacial water
下载PDF
Layer by Layer Self-assembly Fiber-based Flexible Electrochemical Transistor
3
作者 谭艳 HAO Panpan +2 位作者 HE Yang ZHU Rufeng 王跃丹 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期937-944,共8页
Poly(3,4-ethylenedioxyethiophene)-polystyrene sulfonic acid(PEDOT:PSS)/polyallyl dimethyl ammonium chloride modified reduced graphene oxide(PDDA-rGO)was layer by layer self-assembled on the cotton fiber.The surface mo... Poly(3,4-ethylenedioxyethiophene)-polystyrene sulfonic acid(PEDOT:PSS)/polyallyl dimethyl ammonium chloride modified reduced graphene oxide(PDDA-rGO)was layer by layer self-assembled on the cotton fiber.The surface morphology and electric property was investigated.The results confirmed the dense membrane of PEDOT:PSS and the lamellar structure of PDDA-rGO on the fibers.It has excellent electrical conductivity and mechanical properties.The fiber based electrochemical transistor(FECTs)prepared by the composite conductive fiber has a maximum output current of 8.7 mA,a transconductance peak of 10 mS,an on time of 1.37 s,an off time of 1.6 s and excellent switching stability.Most importantly,the devices by layer by layer self-assembly technology opens a path for the true integration of organic electronics with traditional textile technologies and materials,laying the foundation for their later widespread application. 展开更多
关键词 layer by layer self-assemblY fiber based organic electrochemical transistor reduced graphene oxide PEDOT:PSS
下载PDF
Chitosan/Sodium Alginate Multilayer pH-Sensitive Films Based on Layer-by-Layer Self-Assembly for Intelligent Packaging
4
作者 Mingxuan He Yahui Zheng +4 位作者 Jiaming Shen Jiawei Shi Yongzheng Zhang Yinghong Xiao Jianfei Che 《Journal of Renewable Materials》 EI CAS 2024年第2期215-233,共19页
The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium... The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium alginate-based multilayer film is fabricated via a layer-by-layer(LBL)self-assembly method.With the help of superior interaction between the layers,the multilayer film possesses excellent mechanical properties(with a tensile strength of 50 MPa).Besides,the film displays outstanding water retention property(blocking moisture of 97.56%)and ultraviolet blocking property.Anthocyanin is introduced into the film to detect the food quality since it is one natural plant polyphenol that is sensitive to the pH changes ranging from 1 to 13 in food when spoilage occurs.It is noted that the film is also bacteriostatic which is desired for food packaging.This study describes a simple technique for the development of advanced multifunctional and fully biodegradable food packaging film and it is a sustainable alternative to plastic packaging. 展开更多
关键词 CHITOSAN ALGINATE layer-by-layer self-assembly PH-SENSITIVE multilayer films
下载PDF
Role of self-assembled molecules’anchoring groups for surface defect passivation and dipole modulation in inverted perovskite solar cells
5
作者 Xiaoyu Wang Muhammad Faizan +3 位作者 Kun Zhou Xinjiang Wang Yuhao Fu Lijun Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期108-115,共8页
Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication,low hysteresis effects,and high stability.Despite these advantages,their efficiency is currently limited b... Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication,low hysteresis effects,and high stability.Despite these advantages,their efficiency is currently limited by excessive defects and poor carrier transport at the perovskite-electrode interface,particularly at the buried interface between the perovskite and transparent conductive oxide(TCO).Recent efforts in the perovskite community have focused on designing novel self-assembled molecules(SAMs)to improve the quality of the buried interface.However,a notable gap remains in understanding the regulation of atomic-scale interfacial properties of SAMs between the perovskite and TCO interfaces.This understanding is crucial,particularly in terms of identifying chemically active anchoring groups.In this study,we used the star SAM([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)as the base structure to investigate the defect passivation effects of eight common anchoring groups at the perovskite-TCO interface.Our findings indicate that the phosphonic and boric acid groups exhibit notable advantages.These groups fulfill three key criteria:they provide the greatest potential for defect passivation,exhibit stable adsorption with defects,and exert significant regulatory effects on interface dipoles.Ionized anchoring groups exhibit enhanced passivation capabilities for defect energy levels due to their superior Lewis base properties,which effectively neutralize local charges near defects.Among various defect types,iodine vacancies are the easiest to passivate,whereas iodine-substituted lead defects are the most challenging to passivate.Our study provides comprehensive theoretical insights and inspiration for the design of anchoring groups in SAMs,contributing to the ongoing development of more efficient inverted perovskite solar cells. 展开更多
关键词 inverted perovskite solar cell defect passivation self-assembled molecule interface engineering first-principles calculation
下载PDF
Morphological Evolution of Self-Assembled Sodium Dodecyl Sulfate/Dodecyltrimethylammonium Bromide@Epoxy-β-Cyclodextrin Supramolecular Aggregates Induced by Temperature
6
作者 Qingran Meng Wenwen Xu +2 位作者 Zuobing Xiao Qinfei Ke Xingran Kou 《Journal of Renewable Materials》 EI CAS 2024年第4期629-641,共13页
Bio-based cyclodextrins(CDs)are a common research object in supramolecular chemistry.The special cavity structure of CDs can form supramolecular self-assemblies such as vesicles and microcrystals through weak interact... Bio-based cyclodextrins(CDs)are a common research object in supramolecular chemistry.The special cavity structure of CDs can form supramolecular self-assemblies such as vesicles and microcrystals through weak interaction with guest molecules.The different forms of supramolecular self-assemblies can be transformed into each other under certain conditions.The regulation of supramolecular self-assembly is not only helpful to understand the self-assembly principle,but also beneficial to its application.In the present study,the self-assembly behavior of epoxy-β-cyclodextrin(EP-β-CD)and mixed anionic and cationic surfactant system(sodium dodecyl sulfate/dodecyltrimethylammonium bromide,SDS/DTAB)in aqueous solution was studied.Morphological and particle size characterization found that the SDS/DTAB@EP-β-CD complex,as the basic building unit,self-assembled into worm-like micelles at lower temperatures and vesicles at higher temperatures.Nuclear magnetic resonance(NMR)and Fourier transform infrared spectroscopy(FT-IR)analysis revealed that the driving force for the formation of vesicles and worm-like micelles was the hydrogen bonds between EP-β-CD molecules,while water molecules played an important role in promoting vesicle formation between SDS/DTAB@EP-β-CD units.Herein,the mechanism of the morphologic transformation of SDS/DTAB@EP-β-CD supramolecular aggregates induced by temperature was elucidated by exploring the self-assembly process,which may provide an excellent basis for the development of delivery carriers. 展开更多
关键词 Epoxy-β-cyclodextrin SDS/DTAB self-assemblY TEMPERATURE morphological evolution
下载PDF
Intelligent responsive self-assembled micro-nanocapsules:Used to delay gel gelation time
7
作者 Chuan-Hong Kang Ji-Xiang Guo +1 位作者 Dong-Tao Fei Wyclif Kiyingi 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2433-2443,共11页
In the application of polymer gels to profile control and water shutoff,the gelation time will directly determine whether the gel can"go further"in the formation,but the most of the methods for delaying gel ... In the application of polymer gels to profile control and water shutoff,the gelation time will directly determine whether the gel can"go further"in the formation,but the most of the methods for delaying gel gelation time are complicated or have low responsiveness.There is an urgent need for an effective method for delaying gel gelation time with intelligent response.Inspired by the slow-release effect of drug capsules,this paper uses the self-assembly effect of gas-phase hydrophobic SiO_(2) in aqueous solution as a capsule to prepare an intelligent responsive self-assembled micro-nanocapsules.The capsule slowly releases the cross-linking agent under the stimulation of external conditions such as temperature and pH value,thus delaying gel gelation time.When the pH value is 2 and the concentration of gas-phase hydrophobic SiO_(2) particles is 10%,the gelation time of the capsule gel system at 30,60,90,and 120℃is12.5,13.2,15.2,and 21.1 times longer than that of the gel system without containing capsule,respectively.Compared with other methods,the yield stress of the gel without containing capsules was 78 Pa,and the yield stress after the addition of capsules was 322 Pa.The intelligent responsive self-assembled micronanocapsules prepared by gas-phase hydrophobic silica nanoparticles can not only delay the gel gelation time,but also increase the gel strength.The slow release of cross-linking agent from capsule provides an effective method for prolongating the gelation time of polymer gels. 展开更多
关键词 Profile control and water shutoff Polymer gel Delayed gelation time Intelligent response self-assembled Micro-nanocapsules
下载PDF
Au@Ag Core-shell Nanorods Self-assembled on Polyelectrolyte Multilayers for Ultra-High Sensitivity SERS Fiber Probes
8
作者 王文博 XIONG Wenhao +1 位作者 LONG Yuting 李宏 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期505-513,共9页
We demonstrated a chemical process in the fabrication of a SERS fiber probe with an ultrahigh sensitivity.The synthesis was carried out by preparing Au@Ag core-shell nanorods (Au@Ag-NRs) selfassembled on polyelectroly... We demonstrated a chemical process in the fabrication of a SERS fiber probe with an ultrahigh sensitivity.The synthesis was carried out by preparing Au@Ag core-shell nanorods (Au@Ag-NRs) selfassembled on polyelectrolyte (PE) multilayers,for which Au@Ag-NRs were controlled by adjusting the silver layer thickness.The effect of silver layer thickness of Au@Ag-NRs on the SERS performance of the fiber probe was investigated.The SERS fiber probe shows the best performance when the silver layer thickness is controlled at 8.57 nm.Under the condition of optimizing silver layer thickness,the fiber probe exhibits ultra-high sensitivity (i e,10^(-10) M crystalline violet,CV),good reproducibility (i e,RSD of 3.5%) and stability.Besides,electromagnetic field distribution of the SERS fiber probe was also investigated.The strongest enhancement is found within the core of fiber,whereas a weakened electromagnetic field exists in the fiber cladding layer.The SERS fiber probe can be a good candidate in ultra-trace detection for biomedical and environmental areas. 展开更多
关键词 surface-enhanced Raman scattering(SERS) optical fiber probe self-assembly Au@Ag core-shell nanorods(Au@Ag-NRs) polyelectrolyte multilayers
下载PDF
Dielectric Properties of Self-assembled Monolayers of Dithiols
9
作者 罗江龙 夏晨 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2006年第6期515-518,共4页
Dielectric properties of dithiol self-assemble monolayers (SAMs) under ac electric field were presented, Using a Hg-SAM/SAM-Ⅱg junction, the ac impedances of dithiol SAMs were measured using a sinusoidal perturbati... Dielectric properties of dithiol self-assemble monolayers (SAMs) under ac electric field were presented, Using a Hg-SAM/SAM-Ⅱg junction, the ac impedances of dithiol SAMs were measured using a sinusoidal perturbation of 30 mV (peak to-peak) with the frequency ranging from 1 Hz to 1 MHz at zero bias. The contributions from dithiol SAMs and solvent interlayers were separated due to their different behaviors at ac impedance. The peak position in the loss spectra (the plot; of tgδ vs. frequency) moves to low frequcney with the incrcase of chain length of dithiols. Using a correlation of peak position with the chain length, the active energies of 23-39 meV for dithiol SAMs of C6-C10 under an ac electric field were derived, 展开更多
关键词 Dithiol self-assembled monolayers AC impedance Loss spectra
下载PDF
Self-Assembled Porous-Reinforcement Microstructure-Based Flexible Triboelectric Patch for Remote Healthcare 被引量:2
10
作者 Hao Lei Haifeng Ji +9 位作者 Xiaohan Liu Bohan Lu Linjie Xie Eng Gee Lim Xin Tu Yina Liu Peixuan Zhang Chun Zhao Xuhui Sun Zhen Wen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期324-336,共13页
Realizing real-time monitoring of physiological signals is vital for preventing and treating chronic diseases in elderly individuals. However,wearable sensors with low power consumption and high sensitivity to both we... Realizing real-time monitoring of physiological signals is vital for preventing and treating chronic diseases in elderly individuals. However,wearable sensors with low power consumption and high sensitivity to both weak physiological signals and large mechanical stimuli remain challenges.Here, a flexible triboelectric patch(FTEP) based on porous-reinforcement microstructures for remote health monitoring has been reported. The porousreinforcement microstructure is constructed by the self-assembly of silicone rubber adhering to the porous framework of the PU sponge. The mechanical properties of the FTEP can be regulated by the concentrations of silicone rubber dilution. For pressure sensing, its sensitivity can be effectively improved fivefold compared to the device with a solid dielectric layer, reaching 5.93 kPa^(-1) under a pressure range of 0–5 kPa. In addition, the FTEP has a wide detection range up to 50 kPa with a sensitivity of 0.21 kPa^(-1). The porous microstructure makes the FTEP ultra-sensitive to external pressure, and the reinforcements endow the device with a greater deformation limit in a wide detection range. Finally, a novel concept of the wearable Internet of Healthcare(Io H) system for real-time physiological signal monitoring has been proposed, which could provide real-time physiological information for ambulatory personalized healthcare monitoring. 展开更多
关键词 Pressure sensor Triboelectric nanogenerator Porous dielectric layer Physiological signals Internet of Healthcare
下载PDF
Tunneling Electron Induced Fluorescence from Single Porphyrin Molecules Decoupled by Striped-Phase Octanethiol Self-assembled Monolayer
11
作者 邝艳敏 郁杰 +4 位作者 骆阳 朱嘉哲 廖源 张杨 董振超 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第2期157-160,I0001,共5页
We investigate tunneling electron induced luminescence from isolated single porphyrin molecules that are decoupled by striped-phase self-assembled monolayer of octanethiol from the underneath Au(111) substrate. Intr... We investigate tunneling electron induced luminescence from isolated single porphyrin molecules that are decoupled by striped-phase self-assembled monolayer of octanethiol from the underneath Au(111) substrate. Intrinsic single-molecule electroluminescence has been realized by such decoupling at both bias polarities. The photon emission intensity acquired from the molecular lobe is found stronger than that from the molecular center. These re- sults provide useful information on the understanding of electroluminescent behavior and mechanism in molecular tunnel junctions. 展开更多
关键词 Scanning tunneling microscope induced luminescence PLASMONICS PORPHYRIN Octanethiol self-assembled monolayer Striped-phase
下载PDF
Self-Assembled Film of Tb^(3+) and Poly(3- Thiophene Acetic Acid) via Layer-by-Layer Complexation Technique and Its Photoluminescence 被引量:1
12
作者 辛颢 李富友 +1 位作者 黄岩谊 黄春辉 《Journal of Rare Earths》 SCIE EI CAS CSCD 2002年第5期333-338,共6页
The layer by layer complexation technique of polymer and metal ion was successfully utilized to fabricate the ultrathin multilayer film of poly(3 thiophene acetic acid (PTAA) and Tb 3+ ion by dipping the subst... The layer by layer complexation technique of polymer and metal ion was successfully utilized to fabricate the ultrathin multilayer film of poly(3 thiophene acetic acid (PTAA) and Tb 3+ ion by dipping the substrates alternatively in polymer and Tb 3+ ion aqueous solutions. UV-vis measurement revealed that the absorbance has linearity with the bilayer number from layer to layer and the X ray photoelectron spectrum (XPS) confirmed the existence of Tb 3+ ion. The pH of both the polymer and TbCl 3 solutions influence the thickness dramatically while the concentration of the solutions is not so sensitive. The luminescent spectrum of the complex film shows the characteristic emission of Tb 3+ ion as well as the ligand indicating the formation of the complex. 展开更多
关键词 rare earths self assembly TERBIUM COMPLEXATION layer by layer PHOTOLUMINESCENCE
下载PDF
High‑Entropy Layered Oxide Cathode Enabling High‑Rate for Solid‑State Sodium‑Ion Batteries 被引量:3
13
作者 Tianxun Cai Mingzhi Cai +5 位作者 Jinxiao Mu Siwei Zhao Hui Bi Wei Zhao Wujie Dong Fuqiang Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期160-171,共12页
Na-ion O3-type layered oxides are prospective cathodes for Na-ion batteries due to high energy density and low-cost.Nevertheless,such cathodes usually suffer from phase transitions,sluggish kinetics and air instabilit... Na-ion O3-type layered oxides are prospective cathodes for Na-ion batteries due to high energy density and low-cost.Nevertheless,such cathodes usually suffer from phase transitions,sluggish kinetics and air instability,making it difficult to achieve high performance solid-state sodium-ion batteries.Herein,the high-entropy design and Li doping strategy alleviate lattice stress and enhance ionic conductivity,achieving high-rate performance,air stability and electrochemically thermal stability for Na_(0.95)Li_(0.06)Ni_(0.25)Cu_(0.05)Fe_(0.15)Mn_(0.49)O_(2).This cathode delivers a high reversible capacity(141 mAh g^(−1)at 0.2C),excellent rate capability(111 mAh g^(−1)at 8C,85 mAh g^(−1)even at 20C),and long-term stability(over 85%capacity retention after 1000 cycles),which is attributed to a rapid and reversible O3–P3 phase transition in regions of low voltage and suppresses phase transition.Moreover,the compound remains unchanged over seven days and keeps thermal stability until 279℃.Remarkably,the polymer solid-state sodium battery assembled by this cathode provides a capacity of 92 mAh g^(−1)at 5C and keeps retention of 96%after 400 cycles.This strategy inspires more rational designs and could be applied to a series of O3 cathodes to improve the performance of solid-state Na-ion batteries. 展开更多
关键词 High-entropy High-rate performance Li-TM interaction Air stability O3 layered oxide cathode
下载PDF
Significantly Improved High-Temperature Energy Storage Performance of BOPP Films by Coating Nanoscale Inorganic Layer 被引量:2
14
作者 Tiandong Zhang Hainan Yu +5 位作者 Young Hoon Jung Changhai Zhang Yu Feng Qingguo Chen Keon Jae Lee Qingguo Chi 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期30-38,共9页
Biaxially oriented polypropylene(BOPP)is one of the most commonly used commercial capacitor films,but its upper operating temperature is below 105℃due to the sharply increased electrical conduction loss at high tempe... Biaxially oriented polypropylene(BOPP)is one of the most commonly used commercial capacitor films,but its upper operating temperature is below 105℃due to the sharply increased electrical conduction loss at high temperature.In this study,growing an inorganic nanoscale coating layer onto the BOPP film's surface is proposed to suppress electrical conduction loss at high temperature,as well as increase its upper operating temperature.Four kinds of inorganic coating layers that have different energy band structure and dielectric property are grown onto the both surface of BOPP films,respectively.The effect of inorganic coating layer on the high-temperature energy storage performance has been systematically investigated.The favorable coating layer materials and appropriate thickness enable the BOPP films to have a significant improvement in high-temperature energy storage performance.Specifically,when the aluminum nitride(AIN)acts as a coating layer,the AIN-BOPP-AIN sandwich-structured films possess a discharged energy density of 1.5 J cm^(-3)with an efficiency of 90%at 125℃,accompanying an outstandingly cyclic property.Both the discharged energy density and operation temperature are significantly enhanced,indicating that this efficient and facile method provides an important reference to improve the high-temperature energy storage performance of polymer-based dielectric films. 展开更多
关键词 coating layer energy storage interfacial barrier polymer films
下载PDF
Influence of layer thickness on formation quality,microstructure,mechanical properties,and corrosion resistance of WE43 magnesium alloy fabricated by laser powder bed fusion 被引量:2
15
作者 Bangzhao Yin Jinge Liu +7 位作者 Bo Peng Mengran Zhou Bingchuan Liu Xiaolin Ma Caimei Wang Peng Wen Yun Tian Yufeng Zheng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1367-1385,共19页
Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not... Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not been studied for Mg alloys.In this study,WE43 Mg alloy bulk cubes,porous scaffolds,and thin walls with layer thicknesses of 10,20,30,and 40μm were fabricated.The required laser energy input increased with increasing layer thickness and was different for the bulk cubes and porous scaffolds.Porosity tended to occur at the connection joints in porous scaffolds for LT40 and could be eliminated by reducing the laser energy input.For thin wall parts,a large overhang angle or a small wall thickness resulted in porosity when a large layer thicknesses was used,and the porosity disappeared by reducing the layer thickness or laser energy input.A deeper keyhole penetration was found in all occasions with porosity,explaining the influence of layer thickness,geometrical structure,and laser energy input on the porosity.All the samples achieved a high fusion quality with a relative density of over 99.5%using the optimized laser energy input.The increased layer thickness resulted to more precipitation phases,finer grain sizes and decreased grain texture.With the similar high fusion quality,the tensile strength and elongation of bulk samples were significantly improved from 257 MPa and 1.41%with the 10μm layer to 287 MPa and 15.12%with the 40μm layer,in accordance with the microstructural change.The effect of layer thickness on the compressive properties of porous scaffolds was limited.However,the corrosion rate of bulk samples accelerated with increasing the layer thickness,mainly attributed to the increased number of precipitation phases. 展开更多
关键词 Magnesium alloy WE43 Laser powder bed fusion layer thickness Process optimization
下载PDF
Attachment of tyrosinase on mixed self-assembled monolayers for the construction of electrochemical biosensor 被引量:2
16
作者 Xue Ping Ji Xian Rui Li Na Wang Rui Xing Ni Xiao Hong Liu Hua Ai Xiong 《Chinese Chemical Letters》 SCIE CAS CSCD 2010年第10期1239-1242,共4页
A mixed self-assembled monolayers (SAMs) of thioctic acid (T-COOH) and thioctic acid amide (T-NH2) were used to immobilize tyrosinase for fabricating biosensor. The results showed that the mixed SAMs prepared fr... A mixed self-assembled monolayers (SAMs) of thioctic acid (T-COOH) and thioctic acid amide (T-NH2) were used to immobilize tyrosinase for fabricating biosensor. The results showed that the mixed SAMs prepared from solution at the ratio of 1:4 provided an excellent microenvironment for enzymatic reaction between tyrosinase and substrate. The biosensor exhibited a fast response and high sensitivity for sensing substrate. 展开更多
关键词 BIOSENSOR TYROSINASE CATECHOL self-assembled monolayers Gold electrode
下载PDF
Active straining engineering on self-assembled stacked Ni-based hybrid electrode for ultra-low overpotential
17
作者 Shujie Liu Rui-Ting Gao +3 位作者 Xianhu Liu Xueyuan Zhang Limin Wu Lei Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期217-226,I0006,共11页
Generating sufficient strains on metal surfaces are highly challenging owing to that most metals can deform plastically to relax the strains on the surfaces.In this work,we developed a facile but highly efficient stac... Generating sufficient strains on metal surfaces are highly challenging owing to that most metals can deform plastically to relax the strains on the surfaces.In this work,we developed a facile but highly efficient stacked deposition strategy to in situ activation and reconstruction of NiO/NiOOH on Ni matrix,following with the migration of Fe ions to NiOOH.The Fe sites on the Ni/NiO/NiOOH facilitate the formation of the stable*OH oxygenated intermediates,and the Ni matrix in the catalyst provides the catalyst excellent stability.The oxygen evolution reaction(OER)performance of the stacked NiFe-5 with compressive strain displays the strengthened binding to oxygenated intermediates and superior OER activity,the ultralow overpotentials of 162 versus reversible hydrogen electrode at 10 mA cm^(-2).On the other hand,the Ni-5 without the incorporation of Fe has shown an outstanding hydrogen evolution reaction(HER)activity,affording an overpotential of 47 mV at 10 mA cm^(-2).The NiFe-5‖Ni-5 enables the overall water splitting at a voltage of 1.508 V to achieve 20 mA cm^(-2) with remarkable durability.The stacked deposition strategy improves binding strength of Ni-based catalysts to oxygenated intermediates via generating compressive strain,causing high catalytic activities on OER and HER. 展开更多
关键词 Ni-based catalysts self-assembly stacked structure Ultra-low overpotential Water splitting
下载PDF
Investigation of anisotropic strength criteria for layered rock mass 被引量:1
18
作者 Shuling Huang Jinxin Zhang +4 位作者 Xiuli Ding Chuanqing Zhang Gang Han Guoqi Yu Lulu Qu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1289-1304,共16页
Layered rock mass is a type of engineering rock mass with sound mechanical anisotropy,which is generally unfavorable to the stability of underground works.To investigate the strength anisotropy of layered rock,the Moh... Layered rock mass is a type of engineering rock mass with sound mechanical anisotropy,which is generally unfavorable to the stability of underground works.To investigate the strength anisotropy of layered rock,the Mohr-Coulomb and Hoek-Brown criteria are introduced to establish the two transverse isotropic strength criteria based on Jaeger's single weak plane theory and maximum axial strain theory,and parameter determination methods.Furthermore,the sensitivity of strength parameters(K 1,K 2,and K 3)that are used to characterize the anisotropy strength of non-sliding failure involved in the strength criteria and confining pressure are investigated.The results demonstrate that strength parameters K 1 and K 2 affect the strength of layered rock samples at all bedding angles except for the bedding angle of 90°and the angle range that can cause the shear sliding failure along the bedding plane.The strength of samples at any bedding angle decreases with increasing K 1,whereas the opposite is for K 2.Except for bedding angles of 0°and 90°and the bedding angle range that can cause the shear sliding along the bedding plane,K 3 has an impact on the strength of rock samples with other bedding angles that the specimens'strength increases with increase of K 3.In addition,the strength of the rock sample increases as confining pressure rises.Furthermore,the uniaxial and triaxial tests of chlorite schist samples were carried out to verify and evaluate the strength criteria proposed in the paper.It shows that the predicted strength is in good agreement with the experimental results.To test the applicability of the strength criterion,the strength data of several types of rock in the literature are compared.Finally,a comparison is made between the fitting effects of the two strength criteria and other available criteria for layered rocks. 展开更多
关键词 layered rock Strength anisotropy Strength criterion Experimental verification
下载PDF
Variation in the permafrost active layer over the Tibetan Plateau during 1980–2020 被引量:1
19
作者 Jinglong Huang Chaofan Li +2 位作者 Binghao Jia Chujie Gao Ruichao Li 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期34-39,共6页
The active layer,acting as an intermediary of water and heat exchange between permafrost and atmosphere,greatly influences biogeochemical cycles in permafrost areas and is notably sensitive to climate fluctuations.Uti... The active layer,acting as an intermediary of water and heat exchange between permafrost and atmosphere,greatly influences biogeochemical cycles in permafrost areas and is notably sensitive to climate fluctuations.Utilizing the Chinese Meteorological Forcing Dataset to drive the Community Land Model,version 5.0,this study simulates the spatial and temporal characteristics of active layer thickness(ALT)on the Tibetan Plateau(TP)from 1980 to 2020.Results show that the ALT,primarily observed in the central and western parts of the TP where there are insufficient station observations,exhibits significant interdecadal changes after 2000.The average thickness on the TP decreases from 2.54 m during 1980–1999 to 2.28 m during 2000–2020.This change is mainly observed in the western permafrost region,displaying a sharp regional inconsistency compared to the eastern region.A persistent increasing trend of ALT is found in the eastern permafrost region,rather than an interdecadal change.The aforementioned changes in ALT are closely tied to the variations in the surrounding atmospheric environment,particularly air temperature.Additionally,the area of the active layer on the TP displays a profound interdecadal change around 2000,arising from the permafrost thawing and forming.It consistently decreases before 2000 but barely changes after 2000.The regional variation in the permafrost active layer over the TP revealed in this study indicates a complex response of the contemporary climate under global warming. 展开更多
关键词 Active layer thickness PERMAFROST Tibetan plateau Climatological characteristics
下载PDF
Preparation and characterization of 3-mercaptopropyl trimethoxysilane self-assembled monolayers 被引量:5
20
作者 Tao Bai Xianhua Cheng 《Journal of University of Science and Technology Beijing》 CSCD 2008年第2期192-196,共5页
Silane coupling regent (3-mercaptopropyl trimethoxysilane (MPTS)) was prepared on the single-crystal silicon substrate to form 2-dimensional self-assembled monolayers (SAMs). The growth behavior of SAMs formed f... Silane coupling regent (3-mercaptopropyl trimethoxysilane (MPTS)) was prepared on the single-crystal silicon substrate to form 2-dimensional self-assembled monolayers (SAMs). The growth behavior of SAMs formed from 3-MPTS was investigated using atomic force microscopy (AFM), contact angle measurements, ellipsometry, and X-ray photoelectron spectroscopy (XPS). The formation behavior of MPTS SAMs was investigated by a series of AFM images and the roughness of MPTS SAMs on silicon substrates with the assembling time from 1 min to 24 h. The water contact angle measurements indicated the growth behavior of MPTS that correlated with the AFM measurements at different immersion times, too. The chemical states of the typical elements in the MPTS SAMs were analyzed using X-ray photoelectron spectroscopy. The results show that MPTS is self-assembled on the substrate. 展开更多
关键词 mercaptopropyl trimethoxysilane (MPTS) thin films self-assemblY CHARACTERIZATION atomic force microscopy (AFM)
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部