期刊文献+
共找到800篇文章
< 1 2 40 >
每页显示 20 50 100
Seismic Response Reduction for Fixed Offshore Platform by Tuned Liquid Damper 被引量:5
1
作者 Li, HN Ma, BC 《China Ocean Engineering》 SCIE EI 1997年第2期119-125,共7页
An approach to seismic response reduction for offshore platforms by the use of the tuned liquid damper is presented in this paper. First of all, the effects of the tuned frequency ratio and excited frequency ratio on ... An approach to seismic response reduction for offshore platforms by the use of the tuned liquid damper is presented in this paper. First of all, the effects of the tuned frequency ratio and excited frequency ratio on the seismic response reduction of the platform structure are investigated. Based on the results, a mechanical model and equation of motion for the TLD-platform system are established. And then effectiveness of the appraoch is verified by numerical calculation. 展开更多
关键词 fixed offshore platform tuned liquid damper vibration reduction
下载PDF
Ambient Ionic Liquids Used in the Reduction of Aldehydes and Ketones 被引量:3
2
作者 DanQianXU ShuPingLUO BaoYouLIU ZhenYuanXU YinChuSHEN 《Chinese Chemical Letters》 SCIE CAS CSCD 2004年第6期643-645,共3页
The sodium borohydride reduction of aldehydes and ketones to corresponding alcohols has been accomplished via the use of ionic liquids. The alcohols are easily obtained with excellent yields and the ionic liquid BMImB... The sodium borohydride reduction of aldehydes and ketones to corresponding alcohols has been accomplished via the use of ionic liquids. The alcohols are easily obtained with excellent yields and the ionic liquid BMImBF4 could be reused. 展开更多
关键词 Ionic liquids sodium borohydride reduction ALDEHYDE ketone.
下载PDF
CO_2 hydrogenation to methanol over Cu/Zn/Al/Zr catalysts prepared by liquid reduction 被引量:7
3
作者 Xiaosu Dong Feng Li +2 位作者 Ning Zhao Yisheng Tan Junwei Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第4期717-725,共9页
Cu/Zn/Al/Zr catalysts containing Cu in three valence states(Cu2+,Cu+and Cu0)were prepared usinga liquid reduction method and subsequently calcined at different temperatures.The effects of thecalcination temperature on... Cu/Zn/Al/Zr catalysts containing Cu in three valence states(Cu2+,Cu+and Cu0)were prepared usinga liquid reduction method and subsequently calcined at different temperatures.The effects of thecalcination temperature on the catalyst structure,interactions among components,reducibility anddispersion of Cu species,surface properties and exposed Cu surface area were systematically investigated.These materials were also applied to the synthesis of methanol via the hydrogenation ofCO2.The results show that a large exposed Cu surface area promotes catalytic CO2conversion andthat there is a close correlation between the Cu+/Cu0ratio and the selectivity for methanol.A calcinationtemperature of573K was found to produce a Cu/Zn/Al/Zr catalyst exhibiting the maximumactivity during the synthesis of methanol. 展开更多
关键词 liquid reduction method Cu/Zn/Al/Zr catalyst Carbon dioxide hydrogenation METHANOL
下载PDF
Folic Acid Self-Assembly Enabling Manganese Single-Atom Electrocatalyst for Selective Nitrogen Reduction to Ammonia 被引量:3
4
作者 Xuewan Wang Dan Wu +3 位作者 Suyun Liu Jiujun Zhang Xian-Zhu Fu Jing-Li Luo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第8期163-174,共12页
Efficient and robust single-atom catalysts(SACs)based on cheap and earth-abundant elements are highly desirable for electrochemical reduction of nitrogen to ammonia(NRR)under ambient conditions.Herein,for the first ti... Efficient and robust single-atom catalysts(SACs)based on cheap and earth-abundant elements are highly desirable for electrochemical reduction of nitrogen to ammonia(NRR)under ambient conditions.Herein,for the first time,a Mn-N-C SAC consisting of isolated manganese atomic sites on ultrathin carbon nanosheets is developed via a template-free folic acid self-assembly strategy.The spontaneous molecular partial dissociation enables a facile fabrication process without being plagued by metal atom aggregation.Thanks to well-exposed atomic Mn active sites anchored on two-dimensional conductive carbon matrix,the catalyst exhibits excellent activity for NRR with high activity and selectivity,achieving a high Faradaic efficiency of 32.02%for ammonia synthesis at−0.45 V versus reversible hydrogen electrode.Density functional theory calculations unveil the crucial role of atomic Mn sites in promoting N_(2) adsorption,activation and selective reduction to NH_(3) by the distal mechanism.This work provides a simple synthesis process for Mn-N-C SAC and a good platform for understanding the structure-activity relationship of atomic Mn sites. 展开更多
关键词 Folic acid self-assembly N-doped carbon sheet Manganese single-atom catalyst ELECTROCATALYSIS Nitrogen reduction
下载PDF
CFD simulation of effect of anode configuration on gas–liquid flow and alumina transport process in an aluminum reduction cell 被引量:3
5
作者 詹水清 李茂 +2 位作者 周孑民 杨建红 周益文 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2482-2492,共11页
Numerical simulations of gas–liquid two-phase flow and alumina transport process in an aluminum reduction cell were conducted to investigate the effects of anode configurations on the bath flow, gas volume fraction a... Numerical simulations of gas–liquid two-phase flow and alumina transport process in an aluminum reduction cell were conducted to investigate the effects of anode configurations on the bath flow, gas volume fraction and alumina content distributions. An Euler–Euler two-fluid model was employed coupled with a species transport equation for alumina content. Three different anode configurations such as anode without a slot, anode with a longitudinal slot and anode with a transversal slot were studied in the simulation. The simulation results clearly show that the slots can reduce the bath velocity and promote the releasing of the anode gas, but can not contribute to the uniformity of the alumina content. Comparisons of the effects between the longitudinal and transversal slots indicate that the longitudinal slot is better in terms of gas–liquid flow but is disadvantageous for alumina mixing and transport process due to a decrease of anode gas under the anode bottom surface. It is demonstrated from the simulations that the mixing and transfer characteristics of alumina are controlled to great extent by the anode gas forces while the electromagnetic forces(EMFs) play the second role. 展开更多
关键词 aluminum reduction cell anode configuration gas–liquid flow alumina transport process simulation alumina content distribution
下载PDF
The 3D Simulation of Liquid Core Change of Cylinder Steel Rolling Forming on Soft-reduction Continuous Casting Process
6
作者 LUO Jian~(1.2) WANG Ying~1 LI Ainong~1 HUA Lin~1 1.Department of Material Science and Engineering,Wuhan University of Technology,Wuhan 430070,China 2.State Key Laboratory of Plastic Forming Simulation and Die & Mould Technology,Wuhan 430074,China 《武汉理工大学学报》 CAS CSCD 北大核心 2006年第S2期637-639,共3页
Using ABAQUS FEM software,the Elastic-plastic with isotropic hardening model is applied to simulate 3D cylinder slab rolling forming in continuous casting (CC),the change of liquid core before slab solidification comp... Using ABAQUS FEM software,the Elastic-plastic with isotropic hardening model is applied to simulate 3D cylinder slab rolling forming in continuous casting (CC),the change of liquid core before slab solidification completely on soft re- duction process is studied,the analyse result shows the soft reduction technique can change the liquid core size,which is useful to cylinder slab forming in CC. 展开更多
关键词 continuous CASTING liquid CORE SOFT reduction simulation
下载PDF
Numerical simulation of liquid core reduction in thin-slab continuous casting
7
作者 WANG Yingchun ZHANG Li XU Rongjun XU Hongwei 《Baosteel Technical Research》 CAS 2009年第1期15-21,共7页
Thin-slab continuous casting and rolling technology is a process integrating casting and plastic deformation. In this study,targeting actions such as slab deformation and liquid core flows during the process of liquid... Thin-slab continuous casting and rolling technology is a process integrating casting and plastic deformation. In this study,targeting actions such as slab deformation and liquid core flows during the process of liquid core reduction on thin-slab continuous casting, suggests the fluid-solid coupling method should be used to research the characteristic and patterns of slab deformation during the liquid core reduction process, as well as research liquid core backflows. A material model of the slab shell was obtained through the high-temperature compression test of the cast steel. The analysis of the fluid-solid coupling simulation for liquid core reduction shows that slab deformation concentrates on the narrow side due to the existence of the liquid core. Meanwhile,the stress and strain increases with the increase of the reduction rate and slab thickness. The changing trends of stress and strain are identical under various conditions. The results demonstrate that using greater reduction at the upper part of the slab, which has a higher temperature and thinner slab,is beneficial to the quality of the slab. Moreover,the liquid core is extruded as the reduction is implemented. The quantity of the extrusion increases with the increase of reduction rate and the thickness of thinner shell, which leads to fluctuation of the mould level, making the operation more difficult. 展开更多
关键词 thin-slab casting liquid core reduction fluid-solid coupling slab deformation liquid core backflow
下载PDF
Preparation and characterization of Mo-Cu nanocomposite powders by chemical liquid reduction process
8
作者 李翼 王德志 孙翱魁 《Journal of Central South University》 SCIE EI CAS 2013年第3期587-591,共5页
A novel chemical liquid reduction process was employed to prepare nanosized Mo-Cu powders. The precipitates were first obtained by adding ammonium heptamolybdate ((NH4)6Mo7024·4H2O) solution into excess hydra... A novel chemical liquid reduction process was employed to prepare nanosized Mo-Cu powders. The precipitates were first obtained by adding ammonium heptamolybdate ((NH4)6Mo7024·4H2O) solution into excess hydrazine hydrate solution, and then mixed the copper chloride solution. The precipitates were subsequently washed, dried, followed by reducing in H2 atmosphere to convert into Mo-Cu composite powders. The composition, morphology and particle size of the Mo-Cu composite powders were characterized by the XRD, SEM and TEM. The effects of the chemical reaction temperature and the magnetic stirring on the morphology of the Mo-Cu powders were also studied. The results show that Mo-Cu powders produced by the chemical liquid reduction process are nearly spherical shape and dispersive distribution state, with particle size ranging from 50 to 100 nm. The chemical reaction temperature and magnetic stirring will change the particle feature of the powders. Because of the Cu3M0209, the reduction process in H2 is the one-stage reduction from the precipitates to the Mo-Cu composite powders. 展开更多
关键词 Mo-Cu powder NANOCOMPOSITE liquid reduction MICROSTRUCTURE
下载PDF
Two dimensional deformation characteristics of bloom CC with liquid core reduction
9
作者 Guosen ZhiyuanShi 《Journal of University of Science and Technology Beijing》 CSCD 2002年第5期334-337,共4页
A two-dimensional model was applied to simulate the liquid core reduction (LCR) technology of bloom CC using ANSYS software. The deformation characteristics of bloom under different liquid fraction and reducing amount... A two-dimensional model was applied to simulate the liquid core reduction (LCR) technology of bloom CC using ANSYS software. The deformation characteristics of bloom under different liquid fraction and reducing amount are obtained. The results indicate that the main deformation condition of bloom shell is compressive strain, mainly undertaken by the liquid core, which increases with the enhancement of reducing amount. Solidified shell takes minor deformation. The longitudinal section of bloom appears sunken and the narrow side bulges, which grow serious when the liquid fraction increases. 展开更多
关键词 liquid core reduction numerical simulation BLOOM continuously casting (CC)
下载PDF
Photo-Induced Reduction Reaction of Methylene Blue in an Ionic Liquid
10
作者 Jun-ichi Kadokawa Hironori Izawa +2 位作者 Tomoya Ohta Satoshi Wakizono Kazuya Yamamoto 《International Journal of Organic Chemistry》 2011年第4期158-161,共4页
Reduction of methylene blue (MB) occurred by photo irradiation at 280 - 370 nm wavelengths to a solution of MB in an ionic liquid, 1-butyl-3-methylimidazolium chloride (BMIMCl), which was confirmed by color change and... Reduction of methylene blue (MB) occurred by photo irradiation at 280 - 370 nm wavelengths to a solution of MB in an ionic liquid, 1-butyl-3-methylimidazolium chloride (BMIMCl), which was confirmed by color change and UV-Vis measurement of the solution. Furthermore, the reduced MB was oxidized again by standing the solution under the conditions of light shielding at 50?C. The fluorescence spectra of the solution excited at 350 nm suggested that the photo-induced reduction probably took place via electron-transfer from BMIMCl to MB. 展开更多
关键词 METHYLENE BLUE IONIC liquid reduction PHOTO IRRADIATION
下载PDF
The effect of temperature on ionic liquid modified Fe-N-C catalysts for alkaline oxygen reduction reaction
11
作者 Thomas Wolker Kai Brunnengräber +4 位作者 Ioanna Martinaiou Nick Lorenz Gui-Rong Zhang Ulrike I.Kramm Bastian J.M.Etzold 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期324-329,共6页
Modifying solid catalysts with an ionic liquid layer is an effective approach for boosting the performance of both Pt-based and non-precious metal catalysts toward the oxygen reduction reaction. While most studies ope... Modifying solid catalysts with an ionic liquid layer is an effective approach for boosting the performance of both Pt-based and non-precious metal catalysts toward the oxygen reduction reaction. While most studies operated at room temperature it remains unclear whether the IL-associated boosting effect can be maintained at elevated temperature, which is of high relevance for practical applications in low temperature fuel cells. Herein, Fe-N-C catalysts were modified by introducing small amounts of hydrophobic ionic liquid, resulting in boosted electrocatalytic activity towards the alkaline oxygen reduction reaction at room temperature. It is demonstrated that the boosting effect can be maintained and even strengthened when increasing the electrolyte temperature up to 70℃. These findings show for the first time that the incorporation of ionic liquid is a suited method to obtain advanced noble metal-free electrocatalysts that can be applied at operating temperature condition. 展开更多
关键词 Oxygen reduction reaction Non-precious metal catalyst Ionic liquid Fe-N-C catalyst Temperature effect
下载PDF
Self-assembly and UV-curing Property of Polymerized Lyotropic Liquid Crystal Monomer of Sodium 3,4,5-tris(ll-acryloxyundecyloxy)benzoate 被引量:1
12
作者 白玉勤 郭金宝 +1 位作者 王影 魏杰 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第1期95-101,I0004,共8页
A polymerized lyotropic liquid crystal monomer of sodium 3,4,5-tris(11-acryloxyundecyloxy)- benzoate was synthesized by a convenient route starting from 3,4,5-trihydroxybenzoic acid via esterification followed by et... A polymerized lyotropic liquid crystal monomer of sodium 3,4,5-tris(11-acryloxyundecyloxy)- benzoate was synthesized by a convenient route starting from 3,4,5-trihydroxybenzoic acid via esterification followed by etherification, acylation and finally neutralization. The chemi- cal structure was confirmed by Fourier transform infrared (FT-IR) and 1H nuclear magnetic resonance spectral analysis. The self-organization behavior of the monomer with deionized water in methanol at room temperature was also demonstrated. The assemblies were char- acterized by polarized optical microscope and X-ray diffraction. The results show that a solution containing 80:20 of the monomer to water was found to be able to self-organize into Lamellar (La) phase and 92:8 with inverted hexagonal (H]I) phase, which was in ac- cordance with the theoretical calculation of critical packing parameter. It suggests that the concentration of the monomer was the key factor to influence assembly structure. Addi- tionally, the acrylate conversion with different photoinitiators and nanostructure retention after polymerization were investigated. The research shows that the acrylate conversion of the monomer with Darocur2959 could reach up to 78% when irradiated by 30 mW/cm2 UV light of 365 nm for 30 min characterized by Real-time FT-IR as well as the sol-gel method. Meanwhile, the La and HII phase nanostructures were both retained after polymerization. 展开更多
关键词 Polymerized lyotropic liquid crystal self-assemblY La phase HII phase UV-CURING
下载PDF
Zinc Borohydride-Ionic Liquid: Stable and Efficient System for Reductive Reaction of Aldehydes with Primary Amines to Corresponding Secondary Amines 被引量:3
13
作者 NIAN Bao-yi XU Gang +1 位作者 WU Jiang-ping YANG Li-rong 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2008年第1期120-122,共3页
Ionic liquids(ILs) are attracting much attention in various fields of chemical synthesis, electrochemical applications, liquid-liquid extractions, as well as biotransformations. Among those fields, the application o... Ionic liquids(ILs) are attracting much attention in various fields of chemical synthesis, electrochemical applications, liquid-liquid extractions, as well as biotransformations. Among those fields, the application of ILs as the potential green solvent for a wide variety of synthetic processes is an area of intense researches. High yield, high selectivity, and good catalytic charac-teristics have usually been achieved. After the isolation of products, ILs can usually be recovered and recycled many times by simple treating procedures, such as, filtration, extraction, and dryness. 展开更多
关键词 Ionic liquid Zinc borohydride reductive arnination BMImBF4
下载PDF
Structural engineering of 3D hierarchical Cd0.8Zn0.2S for selective photocatalytic CO2 reduction 被引量:12
14
作者 Lei Cheng Dainan Zhang +2 位作者 Yulong Liao Jiajie Fan Quanjun Xiang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第1期131-140,共10页
The solar-driven catalytic conversion of CO2 to useful chemical fuels is regarded as an environmentally friendly approach to reduce the consumption of fossil fuels and mitigate the greenhouse effect.However,it is high... The solar-driven catalytic conversion of CO2 to useful chemical fuels is regarded as an environmentally friendly approach to reduce the consumption of fossil fuels and mitigate the greenhouse effect.However,it is highly intriguing and challenging to promote the selectivity and efficiency of visible-light-responsive photocatalysts that favor the adsorption of CO2 in photoreduction processes.In this work,three-dimensional hierarchical Cd0.8Zn0.2S flowers(C8Z2S-F)with ultrathin petals were successfully synthesized through an in-situ self-assembly growth process using sodium citrate as a morphology director.The flower-like Cd0.8Zn0.2S solid solution exhibited remarkable photocatalytic performance in the reduction of CO2,generating CO up to 41.4μmol g^−1 under visible-light illumination for 3 h;this was nearly three times greater than that of Cd0.8Zn0.2S nanoparticles(C8Z2S-NP)(14.7μmol g^−1).Particularly,a comparably high selectivity of 89.9%for the conversion of CO2 to CO,with a turnover number of 39.6,was obtained from the solar-driven C8Z2S-F system in the absence of any co-catalyst or sacrificial agent.Terahertz time-domain spectroscopy indicated that the introduction of flower structures enhanced the light-harvesting capacity of C8Z2S-F.The in situ diffuse reflectance infrared Fourier transform spectroscopy unveiled the existence of surface-adsorbed species and the conversion of photoreduction intermediates during the photocatalytic process.Empirical characterizations and predictions of the photocatalytic mechanism demonstrated that the flower-like Cd0.8Zn0.2S solid solution possessed desirable CO2 adsorption properties and an enhanced charge-transfer capability,thus providing a highly effective photocatalytic reduction of CO2. 展开更多
关键词 Cd0.8Zn0.2S flowers self-assembly growth Photocatalytic CO2 reduction High selectivity Visible-light irradiation
下载PDF
Hierarchically skeletal multi-layered Pt-Ni nanocrystals for highly efficient oxygen reduction and methanol oxidation reactions 被引量:6
15
作者 Shibo Li Zhi Qun Tian +5 位作者 Yang Liu Zheng Jang Syed Waqar Hasan Xingfa Chen Panagiotis Tsiakaras Pei Kang Shen 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第4期648-657,共10页
Pt based materials are the most efficient electrocatalysts for the oxygen reduction reaction(ORR)and methanol oxidation reaction(MOR)in fuel cells.Maximizing the utilization of Pt based materials by modulating their m... Pt based materials are the most efficient electrocatalysts for the oxygen reduction reaction(ORR)and methanol oxidation reaction(MOR)in fuel cells.Maximizing the utilization of Pt based materials by modulating their morphologies to expose more active sites is a fundamental objective for the practical application of fuel cells.Herein,we report a new class of hierarchically skeletal Pt-Ni nanocrystals(HSNs)with a multi-layered structure,prepared by an inorganic acid-induced solvothermal method.The addition of H_(2)SO_(4)to the synthetic protocol provides a critical trigger for the successful growth of Pt-Ni nanocrystals with the desired structure.The Pt-Ni HSNs synthesized by this method exhibit enhanced mass activity of 1.25 A mgpt−1 at 0.9 V(versus the reversible hydrogen electrode)towards ORR in 0.1-M HClO_(4),which is superior to that of Pt-Ni multi-branched nanocrystals obtained by the same method in the absence of inorganic acid;it is additionally 8.9-fold higher than that of the commercial Pt/C catalyst.Meanwhile,it displays enhanced stability,with only 21.6%mass activity loss after 10,000 cycles(0.6–1.0 V)for ORR.Furthermore,the Pt-Ni HSNs show enhanced activity and anti-toxic ability in CO for MOR.The superb activity of the Pt-Ni HSNs for ORR and MOR is fully attributed to an extensively exposed electrochemical surface area and high intrinsic activity,induced by strain effects,provided by the unique hierarchically skeletal alloy structure.The novel open and hierarchical structure of Pt-Ni alloy provides a promising approach for significant improvements of the activity of Pt based alloy electrocatalysts. 展开更多
关键词 Hierarchically skeletal Pt-Ni NANOCRYSTALS self-assemblY Solvent thermal method Oxygen reduction reaction Methanol oxidation reaction Fuel cells ACTIVITY
下载PDF
Distributed TLDs in RC floors and their vibration reduction efficiency
16
作者 叶列平 陆新征 +1 位作者 曲 哲 侯建群 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2008年第1期107-112,共6页
A novel distributed tuned liquid damper (DTLD) for reducing vibration in structures is proposed in this paper. The basic working principle of the DTLDs is to fill the empty space inside the pipes or boxes of cast-in... A novel distributed tuned liquid damper (DTLD) for reducing vibration in structures is proposed in this paper. The basic working principle of the DTLDs is to fill the empty space inside the pipes or boxes of cast-in-situ hollow reinforced concrete (RC) floor slabs with water or other liquid. The pipes or boxes then work as a series of small TLDs inside the structure, to increase the damping ratio of the entire structural system. Numerical simulation that accounts for the fluid- structure conpling effect is carried out to evaluate the vibration-reduction efficiency of the DTLDs. The results show that the DTLDs are able to considerably increase the damping of the structure and thus reduce its vibration. An additional benefit is that the DTLDs do not require architectural space to be added to the structure. 展开更多
关键词 distributed tuned liquid damper (DTLD) fluid-structure interaction (FSI) vibration reduction hollow floor slab
下载PDF
Asymmetric Reductive Amination of Carbonyl Compounds by Using<i>N,N,N</i>-Tributylpropanaminium Based Novel Chiral Ionic Liquid
17
作者 Boyina Rupini Sharda Pasricha Brijesh Rathi 《International Journal of Organic Chemistry》 2013年第3期190-193,共4页
Asymmetric reductive amination of carbonyl compounds was carried out using a novel class of aliphatic quarternary ammonium based chiral ionic liquid. S-(+)-2,3-dihydroxy-N,N,N-tributylpropanaminum bromide chiral ionic... Asymmetric reductive amination of carbonyl compounds was carried out using a novel class of aliphatic quarternary ammonium based chiral ionic liquid. S-(+)-2,3-dihydroxy-N,N,N-tributylpropanaminum bromide chiral ionic liquid has been synthesized, characterized and used for asymmetric reductive amination of carbonyl compounds in the presence of sodium borohydride. These preliminary results are encouraging and advocate dual role of novel ionic liquid as a medium and reducing agent for proficient conversion of ketones to amines, however, reductive amination reaction needs to be established for other substituents. 展开更多
关键词 Ionic liquid ASYMMETRIC reductive Amination Chiral CARBONYL Compounds
下载PDF
Cu nanoparticles supported on graphitic carbon nitride as an efficient electrocatalyst for oxygen reduction reaction
18
作者 Henan Li Yanan Xu +3 位作者 Hansinee Sitinamaluwa Kimal Wasalathilake Dilini Galpaya Cheng Yan 《Chinese Journal of Catalysis》 EI CSCD 北大核心 2017年第6期1006-1010,共5页
High active and cost‐effective electrocatalysts for the oxygen reduction reaction(ORR)are essential components of renewable energy technologies,such as fuel cells and metal/air batteries.Herein,we propose that ORR ac... High active and cost‐effective electrocatalysts for the oxygen reduction reaction(ORR)are essential components of renewable energy technologies,such as fuel cells and metal/air batteries.Herein,we propose that ORR active Cu/graphitic carbon nitride(Cu/g‐CN)electrocatalyst can be prepared via a facile hydrothermal reaction in the present of the ionic liquid(IL)bis(1‐hexadecyl‐3‐methylimidazolium)tetrachlorocuprate[(C16mim)2CuCl4]and protonated g‐CN.The as‐prepared Cu/g‐CN showed an impressive ORR catalytic activity that a99mV positive shift of the onset potential and2times kinetic current density can be clearly observed,comparing with the pure g‐CN.In addition,the Cu/g‐CN revealed better stability and methanol tolerance than commercial Pt/C(HiSPECTM3000,20%).Therefore,the proposed Cu/g‐CN,as the inexpensive and efficient ORR electrocatalyst,would be a potential candidate for application in fuel cells. 展开更多
关键词 Oxygen reduction reaction Graphitic carbon nitride NANOPARTICLE ELECTROCATALYST Ionic liquid
下载PDF
Innovative strategies toward challenges in PV-powered electrochemical CO_(2)reduction
19
作者 Siraj Sultan Jin Hyun Kim +2 位作者 Seung Hyeon Kim Youngkook Kwon Jae Sung Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期410-416,共7页
The solar energy-driven electrochemical CO_(2)reduction to value-added fuels or chemicals is considered as an attractive path to store renewable energy in the form of chemical energy to close the carbon cycle.However,... The solar energy-driven electrochemical CO_(2)reduction to value-added fuels or chemicals is considered as an attractive path to store renewable energy in the form of chemical energy to close the carbon cycle.However,CO_(2)reduction suffers from a number of challenges including slow reaction rates,low selectivity,and low energy conversion efficiency.Recently,innovative strategies have been developed to mitigate this challenges.Especially the development of flow cell reactors with a gas diffusion electrode,ionic liquid electrolytes,and new electrocatalysts have dramatically improved the reaction rates and selectivity to desired products.In this perspective,we highlight the key recent developments and challenges in PVpowered electrochemical CO_(2)reduction and propose effective strategies to improve the reaction kinetics,to minimize the electrical energy losses,and to tune the selectivity of the catalysts for desired products,and then suggest future direction of research and development. 展开更多
关键词 Electrochemical CO_(2)reduction Photovoltaic cell Ionic liquid electrolytes Flow cell electrolyzers Gas diffusion electrode
下载PDF
多元(U,Zr, Nb)C燃料制备技术与性能机理研究
20
作者 吴学志 魏国良 郭骁 《原子能科学技术》 EI CSCD 北大核心 2024年第1期166-174,共9页
多元(U,Zr, Nb)C燃料因具有熔点高、热导率高、低裂变气体释放率及优异的高温力学性能等优点,是目前大功率空间核推进反应堆选用燃料之一。本文采用碳热还原和液相烧结相结合的粉末冶金工艺制备多元(U,Zr, Nb)C燃料芯块,研究了工艺参数... 多元(U,Zr, Nb)C燃料因具有熔点高、热导率高、低裂变气体释放率及优异的高温力学性能等优点,是目前大功率空间核推进反应堆选用燃料之一。本文采用碳热还原和液相烧结相结合的粉末冶金工艺制备多元(U,Zr, Nb)C燃料芯块,研究了工艺参数对烧结芯块反应动力学、相结构、导热性能和微观结构的作用机制和影响规律。结果表明:在1 800℃、50 MPa和1 h的烧结条件下,通过添加0.5%金属铀形成的液相烧结工艺制备得到芯块密度可达95.5%TD;当原料M/C(M为金属元素总量)摩尔比为1∶6.5时,可制备得到M/C比为1的正化学计量碳化物燃料;(U0.2,Zr, Nb)C的晶格常数比(U0.1,Zr, Nb)C的晶格常数略高;多元(U,Zr, Nb)C碳化物燃料芯块热导率与相成分、密度和温度均有关;芯块气孔分布较均匀,没有联通的开气孔存在,气孔尺寸在1~3μm。 展开更多
关键词 多元 核推进 燃料 碳热还原 液相烧结
下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部