Immune checkpoint inhibitors(ICIs)therapy targeting programmed cell death ligand 1(PD-L1)and programmed death protein 1(PD-1)had exhibited significant clinical benefits for cancer treatment such as triple negative bre...Immune checkpoint inhibitors(ICIs)therapy targeting programmed cell death ligand 1(PD-L1)and programmed death protein 1(PD-1)had exhibited significant clinical benefits for cancer treatment such as triple negative breast cancer(TNBC).However,the relatively low anti-tumor immune response rate and ICIs drug resistance highlight the necessity of developing ICIs combination therapy strategies to improve the anti-tumor effect of immunotherapy.Herein,the immunomodulator epigallocatechin gallate palmitate(PEGCG)and the immunoadjuvant metformin(MET)self-assembled into tumor-targeted micelles via hydrogen bond and electrostatic interaction,which encapsulated the therapeutic agents doxorubicin(DOX)-loaded PEGCG-MET micelles(PMD)and combined with ICIs(anti-PD-1 antibody)as therapeutic strategy to reduce the endogenous expression of PD-L1 and improve the tumor immunosuppressive microenvironment.The results presented that PMD integrated chemotherapy and immunotherapy to enhance antitumor efficacy in vitro and in vivo,compared with DOX or anti-PD-1 antibody for the therapy of TNBC.PMD micelles might be a potential candidate,which could remedy the shortcomings of antibody-based ICIs and provide synergistic effect to enhance the antitumor effects of ICIs in tumor therapy.展开更多
Affibody molecules are small nonimmunoglobulin affinity proteins,which can precisely target to some cancer cells with specific overexpressed molecular signatures.However,the relatively short in vivo half-life of them ...Affibody molecules are small nonimmunoglobulin affinity proteins,which can precisely target to some cancer cells with specific overexpressed molecular signatures.However,the relatively short in vivo half-life of them seriously limited their application in drug targeted delivery for cancer therapy.Here an amphiphilic affibody-drug conjugate is self-assembled into nanomicelles to prolong circulation time for targeted cancer therapy.As an example of the concept,the nanoagent was prepared through molecular self-assembly of the amphiphilic conjugate of Z_(HHR2:342)-Cys with auristatin E derivate,where the affibody used is capable of binding to the human epidermal growth factor receptor 2(HER2).Such a nanodrug not only increased the blood circulation time,but also enhanced the tumor targeting capacity(abundant affibody arms on the nanoagent surface) and the drug accumulation in tumor.As a result,this affibody-based nanoagent showed excellent antitumor activity in vivo to HER2-positive ovary and breast tumor models,which nearly eradicated both small solid tumors(about 100 mm^(3)) and large established tumors(exceed 500 mm^(3)).The relative tumor proliferation inhibition ratio reaches 99.8% for both models.展开更多
NiO_(x)as a hole transport material for inverted perovskite solar cells has received great attention owing to its high transparency,low fabrication temperature,and superior stability.However,the mismatched energy leve...NiO_(x)as a hole transport material for inverted perovskite solar cells has received great attention owing to its high transparency,low fabrication temperature,and superior stability.However,the mismatched energy levels and possible redox reactions at the NiO_(x)/perovskite interface severely limit the performance of NiO_(x) based inverted perovskite solar cells.Herein,we introduce a p-type self-assembled monolayer between NiO_(x)and perovskite layers to modify the interface and block the undesirable redox reaction between perovskite and NiO_(x)The selfassembled monolayer molecules all contain phosphoric acid function groups,which can be anchored onto the NiOr surface and passivate the surface defect.Moreover,the introduction of self-assembled monolayers can regulate the energy level structure of NiO_(x),reduce the interfacial band energy offset,and hence promote the hole transport from perovskite to NiO_(x)layer.Consequently,the device performance is significantly enhanced in terms of both power conversion efficiency and stability.展开更多
Reported here is fabrication of optically active micelles with broad range of morphologies in water, such as spheres, cylinders, and vesicles, from self-assembly of poly(ethylene glycol) monomethyl ether-b-poly- (m...Reported here is fabrication of optically active micelles with broad range of morphologies in water, such as spheres, cylinders, and vesicles, from self-assembly of poly(ethylene glycol) monomethyl ether-b-poly- (methacryloyl-L-leucine methyl ester) (MPEG-b-PMALM) copolymer, which was prepared via atom transfer radical polymerization (ATRP) from vinyl monomer bearing chiral amino acid moieties, N-methacryloyl L-leucine methyl ester (MALM), using bromine (Br) end-capped poly(ethylene golycol) monomethylether (MPEG-Br) as macroinitiator in the presence of CuBr/Me6TREN as catalytic system.展开更多
Supercapacitors based on two-dimensional MXene(Ti_(3)C_(2)T_(z))have shown extraordinary performance in ultrathin electrodes with low mass loading,but usually there is a significant reduction in high-rate performance ...Supercapacitors based on two-dimensional MXene(Ti_(3)C_(2)T_(z))have shown extraordinary performance in ultrathin electrodes with low mass loading,but usually there is a significant reduction in high-rate performance as the thickness increases,caused by increasing ion diffusion limitation.Further limitations include restacking of the nanosheets,which makes it challenging to realize the full potential of these electrode materials.Herein,we demonstrate the design of a vertically aligned MXene hydrogel composite,achieved by thermal-assisted self-assembled gelation,for high-rate energy storage.The highly interconnected MXene network in the hydrogel architecture provides very good electron transport properties,and its vertical ion channel structure facilitates rapid ion transport.The resulting hydrogel electrode show excellent performance in both aqueous and organic electrolytes with respect to high capacitance,stability,and high-rate capability for up to 300μm thick electrodes,which represents a significant step toward practical applications.展开更多
The liquid-liquid extraction method using reverse micelles can simultaneously extract lipid and protein of oilseeds,which have become increasingly popular in recent years.However,there are few studies on mass transfer...The liquid-liquid extraction method using reverse micelles can simultaneously extract lipid and protein of oilseeds,which have become increasingly popular in recent years.However,there are few studies on mass transfer processes and models,which are helpful to better control the extraction process of oils and proteins.In this paper,mass transfer process of peanut protein extracted by bis(2-ethylhexyl)sodium sulfosuccinate(AOT)/isooctane reverse micelles was investigated.The effects of stirring speed(0,70,140,and 210 r/min),temperature of extraction(30,35,40,45,and 50℃),peanut flour particle size(0.355,0.450,0.600,and 0.900 mm)and solidliquid ratio(0.010,0.0125,0.015,0.0175,and 0.020 g/mL)on extraction rate were examined.The results showed that extraction rate increased with temperature rising,particle size reduction as well as solid-liquid ratio increase respectively,while little effect of stirring speed(P>0.05)was observed.The apparent activation energy of extraction process was calculated as 10.02 kJ/mol and Arrhenius constant(A)was 1.91 by Arrhenius equation.There was a linear relationship between reaction rate constant and the square of the inverse of initial particle radius(1/r_(0)^(2))(P<0.05).This phenomenon and this shrinking core model were anastomosed.In brief,the extraction process was controlled by the diffusion of protein from the virgin zone interface of particle through the reacted zone and it was in line with the first order reaction.Mass transfer kinetics of peanut protein extracted by reverse micelles was established and it was verified by experimental results.The results provide an important theoretical guidance for industrial production of peanut protein separation and purification.展开更多
Compared with physical drug-loaded nanocarriers,polymeric prodrug micelles have many advantages such as high drug loading and enhanced stability in blood,so they have great potential in cancer therapy.However,these mi...Compared with physical drug-loaded nanocarriers,polymeric prodrug micelles have many advantages such as high drug loading and enhanced stability in blood,so they have great potential in cancer therapy.However,these micelles have a big disadvantage,which cannot achieve long-term circulation in vivo and high absorption of tumor cells simultaneously,resulting in low administration efficiency and poor therapeutic effect on cancer.To solve problems of traditional polymeric prodrug micelles,novel polymeric micelles with tumor microenvironment response were designed in this work.The prodrug formed by covalently linking D-α-tocopherol polyethylene glycol succinate(TPGS_(3350)),peptide(Pep),and doxorubicin(DOX)(TPGS_(3350)-Pep-DOX)was self-assembled into micelles by encapsulating DOX physically.When the micelles entered the tumor tissue,the long-chain polyethylene glycol(PEG)was sensitively cut by the matrix metalloproteinase 2/9(MMP2/9)enzyme,exposing the targeting molecule folate,then it entered the cell through the endocytic pathway mediated by the folate receptor.The drug loading content,encapsulation efficiency,critical micelle concentration,and invitro release of the micelles invented in this study were measured to characterize their properties.The particle size and zeta potential of micelles were characterized by dynamic light scattering.Images were scanned by transmission electron microscopes.In vitro cytotoxicity,cellular uptake,and in vivo antitumor effect evaluation experiments were measured to show that smart micelles have made much progress in material chemistry and drug delivery,making it possible to apply a stimulus-response carrier drug delivery system in clinical application.展开更多
Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication,low hysteresis effects,and high stability.Despite these advantages,their efficiency is currently limited b...Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication,low hysteresis effects,and high stability.Despite these advantages,their efficiency is currently limited by excessive defects and poor carrier transport at the perovskite-electrode interface,particularly at the buried interface between the perovskite and transparent conductive oxide(TCO).Recent efforts in the perovskite community have focused on designing novel self-assembled molecules(SAMs)to improve the quality of the buried interface.However,a notable gap remains in understanding the regulation of atomic-scale interfacial properties of SAMs between the perovskite and TCO interfaces.This understanding is crucial,particularly in terms of identifying chemically active anchoring groups.In this study,we used the star SAM([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)as the base structure to investigate the defect passivation effects of eight common anchoring groups at the perovskite-TCO interface.Our findings indicate that the phosphonic and boric acid groups exhibit notable advantages.These groups fulfill three key criteria:they provide the greatest potential for defect passivation,exhibit stable adsorption with defects,and exert significant regulatory effects on interface dipoles.Ionized anchoring groups exhibit enhanced passivation capabilities for defect energy levels due to their superior Lewis base properties,which effectively neutralize local charges near defects.Among various defect types,iodine vacancies are the easiest to passivate,whereas iodine-substituted lead defects are the most challenging to passivate.Our study provides comprehensive theoretical insights and inspiration for the design of anchoring groups in SAMs,contributing to the ongoing development of more efficient inverted perovskite solar cells.展开更多
The hydroxyl-terminated self-assembled monolayer(OH-SAM),as a surface resistant to protein adsorption,exhibits substantial potential in applications such as ship navigation and medical implants,and the appropriate str...The hydroxyl-terminated self-assembled monolayer(OH-SAM),as a surface resistant to protein adsorption,exhibits substantial potential in applications such as ship navigation and medical implants,and the appropriate strategies for designing anti-fouling surfaces are crucial.Here,we employ molecular dynamics simulations and alchemical free energy calculations to systematically analyze the factors influencing resistance to protein adsorption on the SAMs terminated with single or double OH groups at three packing densities(∑=2.0 nm^(-2),4.5 nm^(-2),and 6.5 nm^(-2)),respectively.For the first time,we observed that the compactness and order of interfacial water enhance its physical barrier effect,subsequently enhancing the resistance of SAM to protein adsorption.Notably,the spatial hindrance effect of SAM leads to the embedding of protein into SAM,resulting in a lack of resistance of SAM towards protein.Furthermore,the number of hydroxyl groups per unit area of double OH-terminated SAM at ∑=6.5 nm^(-2) is approximately 2 to 3 times that of single OH-terminated SAM at ∑=6.5 nm^(-2) and 4.5 nm^(-2),consequently yielding a weaker resistance of double OH-terminated SAM towards protein.Meanwhile,due to the structure of SAM itself,i.e.,the formation of a nearly perfect ice-like hydrogen bond structure,the SAM exhibits the weakest resistance towards protein.This study will complement and improve the mechanism of OH-SAM resistance to protein adsorption,especially the traditional barrier effect of interfacial water.展开更多
Bio-based cyclodextrins(CDs)are a common research object in supramolecular chemistry.The special cavity structure of CDs can form supramolecular self-assemblies such as vesicles and microcrystals through weak interact...Bio-based cyclodextrins(CDs)are a common research object in supramolecular chemistry.The special cavity structure of CDs can form supramolecular self-assemblies such as vesicles and microcrystals through weak interaction with guest molecules.The different forms of supramolecular self-assemblies can be transformed into each other under certain conditions.The regulation of supramolecular self-assembly is not only helpful to understand the self-assembly principle,but also beneficial to its application.In the present study,the self-assembly behavior of epoxy-β-cyclodextrin(EP-β-CD)and mixed anionic and cationic surfactant system(sodium dodecyl sulfate/dodecyltrimethylammonium bromide,SDS/DTAB)in aqueous solution was studied.Morphological and particle size characterization found that the SDS/DTAB@EP-β-CD complex,as the basic building unit,self-assembled into worm-like micelles at lower temperatures and vesicles at higher temperatures.Nuclear magnetic resonance(NMR)and Fourier transform infrared spectroscopy(FT-IR)analysis revealed that the driving force for the formation of vesicles and worm-like micelles was the hydrogen bonds between EP-β-CD molecules,while water molecules played an important role in promoting vesicle formation between SDS/DTAB@EP-β-CD units.Herein,the mechanism of the morphologic transformation of SDS/DTAB@EP-β-CD supramolecular aggregates induced by temperature was elucidated by exploring the self-assembly process,which may provide an excellent basis for the development of delivery carriers.展开更多
Bone metastasis secondary to breast cancer negatively impacts patient quality of life and survival.The treatment of bone metastases is challenging since many anticancer drugs are not effectively delivered to the bone ...Bone metastasis secondary to breast cancer negatively impacts patient quality of life and survival.The treatment of bone metastases is challenging since many anticancer drugs are not effectively delivered to the bone to exert a therapeutic effect.To improve the treatment efficacy,we developed Pluronic P123(P123)-based polymeric micelles dually decorated with alendronate(ALN)and cancer-specific phage protein DMPGTVLP(DP-8)for targeted drug delivery to breast cancer bone metastases.Doxorubicin(DOX)was selected as the anticancer drug and was encapsulated into the hydrophobic core of the micelles with a high drug loading capacity(3.44%).The DOX-loaded polymeric micelles were spherical,123 nm in diameter on average,and exhibited a narrow size distribution.The in vitro experiments demonstrated that a pH decrease from 7.4 to 5.0 markedly accelerated DOX release.The micelles were well internalized by cultured breast cancer cells and the cell death rate of micelle-treated breast cancer cells was increased compared to that of free DOX-treated cells.Rapid binding of the micelles to hydroxyapatite(HA)microparticles indicated their high affinity for bone.P123-ALN/DP-8@DOX inhibited tumor growth and reduced bone resorption in a 3D cancer bone metastasis model.In vivo experiments using a breast cancer bone metastasis nude model demonstrated increased accumulation of the micelles in the tumor region and considerable antitumor activity with no organ-specific histological damage and minimal systemic toxicity.In conclusion,our study provided strong evidence that these pH-sensitive dual ligand-targeted polymeric micelles may be a successful treatment strategy for breast cancer bone metastasis.展开更多
In the application of polymer gels to profile control and water shutoff,the gelation time will directly determine whether the gel can"go further"in the formation,but the most of the methods for delaying gel ...In the application of polymer gels to profile control and water shutoff,the gelation time will directly determine whether the gel can"go further"in the formation,but the most of the methods for delaying gel gelation time are complicated or have low responsiveness.There is an urgent need for an effective method for delaying gel gelation time with intelligent response.Inspired by the slow-release effect of drug capsules,this paper uses the self-assembly effect of gas-phase hydrophobic SiO_(2) in aqueous solution as a capsule to prepare an intelligent responsive self-assembled micro-nanocapsules.The capsule slowly releases the cross-linking agent under the stimulation of external conditions such as temperature and pH value,thus delaying gel gelation time.When the pH value is 2 and the concentration of gas-phase hydrophobic SiO_(2) particles is 10%,the gelation time of the capsule gel system at 30,60,90,and 120℃is12.5,13.2,15.2,and 21.1 times longer than that of the gel system without containing capsule,respectively.Compared with other methods,the yield stress of the gel without containing capsules was 78 Pa,and the yield stress after the addition of capsules was 322 Pa.The intelligent responsive self-assembled micronanocapsules prepared by gas-phase hydrophobic silica nanoparticles can not only delay the gel gelation time,but also increase the gel strength.The slow release of cross-linking agent from capsule provides an effective method for prolongating the gelation time of polymer gels.展开更多
Polyelectrolyte complex micelles were prepared by self-assembly of polypeptide-based triblock copolymer as a new drug carrier for cancer chemotherapy.The triblock copolymer,poly(L-aspartic acid)-b-poly(ethylene glycol...Polyelectrolyte complex micelles were prepared by self-assembly of polypeptide-based triblock copolymer as a new drug carrier for cancer chemotherapy.The triblock copolymer,poly(L-aspartic acid)-b-poly(ethylene glycol)-b-poly(L-aspartic acid)(PLD-b-PEG-b-PLD),spontaneously self-assembled with doxorubicin(DOX)via electrostatic interactions to form spherical micelles with a particle size of 60e80 nm(triblock ionomer complexes micelles,TBIC micelles).These micelles exhibited a high loading capacity of 70%(w/w)at a drug/polymer ratio of 0.5 at pH 7.0.They showed pH-responsive release patterns,with higher release at acidic pH than at physiological pH.Furthermore,DOX-loaded TBIC micelles exerted less cytotoxicity than free DOX in the A-549 human lung cancer cell line.Confocal microscopy in A-549 cells indicated that DOX-loaded TBIC micelles were transported into lysosomes via endocytosis.These micelles possessed favorable pharmacokinetic characteristics and showed sustained DOX release in rats.Overall,these findings indicate that PLDb-PEG-b-PLD polypeptide micelles are a promising approach for anti-cancer drug delivery.展开更多
Amphiphilic block copolymers,poly(ethylene oxide)-b-poly(N-acryloxysuccinimide) (PEO-b-PNAS) with various molecular weights have been successfully synthesized by atom transfer radical polymerization (ATRP) of NAS usin...Amphiphilic block copolymers,poly(ethylene oxide)-b-poly(N-acryloxysuccinimide) (PEO-b-PNAS) with various molecular weights have been successfully synthesized by atom transfer radical polymerization (ATRP) of NAS using functionalized PEO (PEO-Br) as ATRP macroinitiator.The self-assembling of the block copolymers in water,which is a good solvent for PEO and a non-solvent for PNAS.yielded spherical core-shell micelles with PNAS as core and PEO as shell.The cross-linked reaction of oxysuccinimide in PNAS chain...展开更多
Numerous reports have suggested that the performance of organic optoelectronic devices based on organicfieldeffect transistors(OFETs)is largely dependent on their interfaces.Self-assembled monolayers(SAMs)have been com...Numerous reports have suggested that the performance of organic optoelectronic devices based on organicfieldeffect transistors(OFETs)is largely dependent on their interfaces.Self-assembled monolayers(SAMs)have been commonly used to engineer the interfaces of high-performance devices,particularly due to their well-defined structures and simple operation process through simple chemical adsorption growth.In this review,the structures of OFETs and SAM-modified OFETs are described,while different SAMs have been characterized.Furthermore,recent advances in the interface engineering of OFETs are described,the applicability of SAMs in functional devices of OFETs is reviewed,and existing problems and future developments in thisfield have been identified.展开更多
Self-assembled monolayers(SAMs)have recently emerged as excellent hole transport materials in inverted perovskite solar cells(PSCs)owing to their ability to minimize parasitic absorption,regulate energy level alignmen...Self-assembled monolayers(SAMs)have recently emerged as excellent hole transport materials in inverted perovskite solar cells(PSCs)owing to their ability to minimize parasitic absorption,regulate energy level alignment,and passivate perovskite defects.Herein,we design and synthesize a novel dimethyl acridinebased SAM,[2-(9,10-dihydro-9,9-dimethylacridine-10-yl)ethyl]phosphonic acid(2PADmA),and employ it as a hole-transporting layer in inverted PSCs.Experimental results show that the 2PADmA SAM can modulate perovskite crystallization,facilitate carrier transport,passivate perovskite defects,and reduce nonradiative recombination.Consequently,the 2PADmA-based device achieves an enhanced power conversion efficiency(PCE)of 24.01%and an improved fill factor(FF)of 83.92%compared to the commonly reported[2-(9H-carbazol-9-yl)ethyl]phosphonic acid(2PACz)-based control device with a PCE of 22.32%and FF of 78.42%,while both devices exhibit comparable open-circuit voltage and short-circuit current density.In addition,2PADmA-based devices exhibit outstanding dark storage and thermal stabilities,retaining approximately~98%and 87%of their initial PCEs after 1080 h of dark storage and 400 h of heating at 85°C,respectively,both considerably superior to the control device.展开更多
The mechanism for the self-assembly of hollow micelles from rod-coil diblock copolymers is proposed. In a coilselective solvent, the diblock copolymers self-assemble into a layered structure. It is assumed that the ri...The mechanism for the self-assembly of hollow micelles from rod-coil diblock copolymers is proposed. In a coilselective solvent, the diblock copolymers self-assemble into a layered structure. It is assumed that the rigid rods form an elastic shell whose properties are dictated by a bending energy. For a hollow micelle, the coils outside the micelle form a brush, while the coils inside the micelle can be in two different states, a brush or an adsorption layer, corresponding to symmetric or asymmetric configurations, respectively. The total energy density of a hollow micelle is calculated by combining the interfacial energy, elastic bending energy and the stretching energy of the brushes. For the asymmetric configuration with a polymer brush on one side, the competition between the elastic bending energy and the brush stretching energy leads to a finite spontaneous curvature, stabilizing hollow spherical micelles. Comparison of the free energy density for different geometries demonstrates that transitions for the different geometry micelles are controlled by the degree of polymerization of the coils and the length of the rods. These results are in agreement with the experimental results.展开更多
In this paper, pod-like supramicelles with multicompartment hydrophobic cores were prepared by selfassembly of amphiphilic N-phthaloylchitosan-g-poly(N-vinylcaprolactam)(PHCS-g-PNVCL) in aqueous medium. The employed b...In this paper, pod-like supramicelles with multicompartment hydrophobic cores were prepared by selfassembly of amphiphilic N-phthaloylchitosan-g-poly(N-vinylcaprolactam)(PHCS-g-PNVCL) in aqueous medium. The employed biocompatible amphiphilic polymer was synthesized by grafting the carboxyl terminated poly(N-vinylcaprolactam)(PNVCL-COOH) chains onto N-phthaloylchitosan(PHCS) backbone.~1H NMR and FTIR results confirmed the molecular structure of the copolymers. The morphology of the supramicelles assembled by PHCS-g-PNVCL was revealed by means of TEM and polarized light microscope. In solution, the supramicelles were very stable as monitored by DLS and zeta potential measurements. Temperature and p H presented significant influences on the size and size distribution of the supramicelles. These supramicelles with multicompartment hydrophobic cores should be ideal biomimetic systems with promising applications in drug delivery.展开更多
Taking a widely contaminated yet abundant waste,such as poultry feathers,and extracting keratin from this struc-ture appears to be a real challenge whenever the preservation of the secondary structure of the protein i...Taking a widely contaminated yet abundant waste,such as poultry feathers,and extracting keratin from this struc-ture appears to be a real challenge whenever the preservation of the secondary structure of the protein is desired.This process would allow exploiting it in ways(e.g.,in the biomedicalfield)that are inspired by a structure that is primarily designed forflight,therefore capable specifically of withstandingflexure and lateral buckling,also with very low thicknesses.The preservation of the structure is based on disulfide crosslinks,and it is offered with pre-ference by some chemical treatments,mainly those based on ionic liquid and on a reduction process.However,the degree of preservation cannot always be precisely assessed;however,beyond chemical characterization,the forma-tion of homogeneous gels can also suggest that the process was successful in this sense.An extraction respectful of nature’s intentions,considering that the secondary structure builds up according to the very function of the feath-ers in the animal,can be deemed to be biomimetic.In particular,biomimetic extractions comply with the very characteristics the protein was designed for to serve in the specific environmental and mechanical situation in which it is inserted.This review tries to elucidate in which cases this aim is achieved and for which specific appli-cations a chicken feather keratin that has preserved its secondary structure can be suited.展开更多
Self-assembled monolayers (SAMs) of (3-mercaptopropy) trimethoxysilane (3-MtrF) chemisorbed on silver surfaces were chemically "modified by 1-octadecanethiol to form self-assembled mixed-monolayers (SAMM) and...Self-assembled monolayers (SAMs) of (3-mercaptopropy) trimethoxysilane (3-MtrF) chemisorbed on silver surfaces were chemically "modified by 1-octadecanethiol to form self-assembled mixed-monolayers (SAMM) and the co-polymer of N-vinylcarbazole and methyl methacrylate ester (to form complex selfassembled film (CSAF)). The oxidation resistance of these barriers on silver surfaces and some influential factors concerned processes were analyzed by electrochemical impedance spectroscopy (EIS) in a 10% NaOH aqueous solution at oxidation potential. X-ray diffraction (XRD) spectroscopy shows that the oxidation occurring on the silver surface may be restrained effectively due to the coating barrier, and CSAF(Ⅱ) is the best one. Studies also reveal that oxide processes of bare silver and a series of modified silver electrodes in a 10% NaOH aqueous solution are of more than two relaxation time constants.展开更多
基金the projects of the National Key Research and Development Program(No.2021YFA0716702)the National Natural Science Foundation of China(Nos.61805122,22022404 and 22074050)+5 种基金Green Industry Science and Technology Leading Project of Hubei University of Technology(No.XJ2021003301)the National Natural Science Foundation of Hubei Province(No.2022CFA033)supported by Chinese Society of Clinical Oncology(CSCO)supported by Jiangsu Hengrui Cancer Research Foundation(No.YHR2019–0325)supported by the Fundamental Research Funds for the Central Universities(No.CCNU22QN007)supported by the Opening Fund from the Jiangsu Key Laboratory of Medical Optics,Suzhou Institute of Biomedical Engineering and Technology(No.JKLMO202203)supported by the Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science,MO(No.M2022–5).
文摘Immune checkpoint inhibitors(ICIs)therapy targeting programmed cell death ligand 1(PD-L1)and programmed death protein 1(PD-1)had exhibited significant clinical benefits for cancer treatment such as triple negative breast cancer(TNBC).However,the relatively low anti-tumor immune response rate and ICIs drug resistance highlight the necessity of developing ICIs combination therapy strategies to improve the anti-tumor effect of immunotherapy.Herein,the immunomodulator epigallocatechin gallate palmitate(PEGCG)and the immunoadjuvant metformin(MET)self-assembled into tumor-targeted micelles via hydrogen bond and electrostatic interaction,which encapsulated the therapeutic agents doxorubicin(DOX)-loaded PEGCG-MET micelles(PMD)and combined with ICIs(anti-PD-1 antibody)as therapeutic strategy to reduce the endogenous expression of PD-L1 and improve the tumor immunosuppressive microenvironment.The results presented that PMD integrated chemotherapy and immunotherapy to enhance antitumor efficacy in vitro and in vivo,compared with DOX or anti-PD-1 antibody for the therapy of TNBC.PMD micelles might be a potential candidate,which could remedy the shortcomings of antibody-based ICIs and provide synergistic effect to enhance the antitumor effects of ICIs in tumor therapy.
基金Research and Development Plan of China(No.2016YFA0201500,2020YFA0907702)National Facility for Translational Medi-cine(Shanghai)(No.TMST-2020-001)for financial support.
文摘Affibody molecules are small nonimmunoglobulin affinity proteins,which can precisely target to some cancer cells with specific overexpressed molecular signatures.However,the relatively short in vivo half-life of them seriously limited their application in drug targeted delivery for cancer therapy.Here an amphiphilic affibody-drug conjugate is self-assembled into nanomicelles to prolong circulation time for targeted cancer therapy.As an example of the concept,the nanoagent was prepared through molecular self-assembly of the amphiphilic conjugate of Z_(HHR2:342)-Cys with auristatin E derivate,where the affibody used is capable of binding to the human epidermal growth factor receptor 2(HER2).Such a nanodrug not only increased the blood circulation time,but also enhanced the tumor targeting capacity(abundant affibody arms on the nanoagent surface) and the drug accumulation in tumor.As a result,this affibody-based nanoagent showed excellent antitumor activity in vivo to HER2-positive ovary and breast tumor models,which nearly eradicated both small solid tumors(about 100 mm^(3)) and large established tumors(exceed 500 mm^(3)).The relative tumor proliferation inhibition ratio reaches 99.8% for both models.
文摘NiO_(x)as a hole transport material for inverted perovskite solar cells has received great attention owing to its high transparency,low fabrication temperature,and superior stability.However,the mismatched energy levels and possible redox reactions at the NiO_(x)/perovskite interface severely limit the performance of NiO_(x) based inverted perovskite solar cells.Herein,we introduce a p-type self-assembled monolayer between NiO_(x)and perovskite layers to modify the interface and block the undesirable redox reaction between perovskite and NiO_(x)The selfassembled monolayer molecules all contain phosphoric acid function groups,which can be anchored onto the NiOr surface and passivate the surface defect.Moreover,the introduction of self-assembled monolayers can regulate the energy level structure of NiO_(x),reduce the interfacial band energy offset,and hence promote the hole transport from perovskite to NiO_(x)layer.Consequently,the device performance is significantly enhanced in terms of both power conversion efficiency and stability.
基金support by the National Natural Science Foundation of China(No.20474068)the support from the Outstanding Overseas Chinese Scholars Funds of the Chinese Academy of Sciences.
文摘Reported here is fabrication of optically active micelles with broad range of morphologies in water, such as spheres, cylinders, and vesicles, from self-assembly of poly(ethylene glycol) monomethyl ether-b-poly- (methacryloyl-L-leucine methyl ester) (MPEG-b-PMALM) copolymer, which was prepared via atom transfer radical polymerization (ATRP) from vinyl monomer bearing chiral amino acid moieties, N-methacryloyl L-leucine methyl ester (MALM), using bromine (Br) end-capped poly(ethylene golycol) monomethylether (MPEG-Br) as macroinitiator in the presence of CuBr/Me6TREN as catalytic system.
基金financed by the National Natural Science Foundation of China(52103212)Jiangxi Provincial Natural Science Foundation(20224BAB214022)+7 种基金the SSF Synergy Program(EM16-0004)Swedish Energy Agency(EM 42033-1)the Knut and Alice Wal enberg(KAW)Foundation through a Fellowship Grant and a Project Grant(KAW2020.0033)Support from the National Natural Science Foundation of China(61774077)the Youth Projects of Joint Fund of Basic and Applied Basic Research Fund of Guangdong Province(2020A1515110738)the Key Projects of Joint Fund of Basic and Applied Basic Research Fund of Guangdong Province(2019B1515120073)the High-End Foreign Experts Project(G20200019046)the Guangzhou Key laboratory of Vacuum Coating Technologies and New Energy Materials Open Projects Fund(KFVE20200006)
文摘Supercapacitors based on two-dimensional MXene(Ti_(3)C_(2)T_(z))have shown extraordinary performance in ultrathin electrodes with low mass loading,but usually there is a significant reduction in high-rate performance as the thickness increases,caused by increasing ion diffusion limitation.Further limitations include restacking of the nanosheets,which makes it challenging to realize the full potential of these electrode materials.Herein,we demonstrate the design of a vertically aligned MXene hydrogel composite,achieved by thermal-assisted self-assembled gelation,for high-rate energy storage.The highly interconnected MXene network in the hydrogel architecture provides very good electron transport properties,and its vertical ion channel structure facilitates rapid ion transport.The resulting hydrogel electrode show excellent performance in both aqueous and organic electrolytes with respect to high capacitance,stability,and high-rate capability for up to 300μm thick electrodes,which represents a significant step toward practical applications.
基金This study was supported by the National Natural Science Foundation of China(No.U21A20270 and 32202079)Postdoctoral Science and Technology Project of Henan,Grant No.HN2022046+2 种基金Science and Technology Project of Henan Province(232103810064)the Innovative Funds Plan of Henan University of Technology(2021ZKCJ03)the Key Scientific Research Projects of Colleges and Universities of Henan(23A550012).
文摘The liquid-liquid extraction method using reverse micelles can simultaneously extract lipid and protein of oilseeds,which have become increasingly popular in recent years.However,there are few studies on mass transfer processes and models,which are helpful to better control the extraction process of oils and proteins.In this paper,mass transfer process of peanut protein extracted by bis(2-ethylhexyl)sodium sulfosuccinate(AOT)/isooctane reverse micelles was investigated.The effects of stirring speed(0,70,140,and 210 r/min),temperature of extraction(30,35,40,45,and 50℃),peanut flour particle size(0.355,0.450,0.600,and 0.900 mm)and solidliquid ratio(0.010,0.0125,0.015,0.0175,and 0.020 g/mL)on extraction rate were examined.The results showed that extraction rate increased with temperature rising,particle size reduction as well as solid-liquid ratio increase respectively,while little effect of stirring speed(P>0.05)was observed.The apparent activation energy of extraction process was calculated as 10.02 kJ/mol and Arrhenius constant(A)was 1.91 by Arrhenius equation.There was a linear relationship between reaction rate constant and the square of the inverse of initial particle radius(1/r_(0)^(2))(P<0.05).This phenomenon and this shrinking core model were anastomosed.In brief,the extraction process was controlled by the diffusion of protein from the virgin zone interface of particle through the reacted zone and it was in line with the first order reaction.Mass transfer kinetics of peanut protein extracted by reverse micelles was established and it was verified by experimental results.The results provide an important theoretical guidance for industrial production of peanut protein separation and purification.
基金the National Natural Science Foundation of China(22078246,81673027)Tianjin Natural Science Fund for Distinguished Young Scholars(17JCJQJC46400)CAMS Innovation Fund for Medical Sciences(CAMS-I2M-3-026).
文摘Compared with physical drug-loaded nanocarriers,polymeric prodrug micelles have many advantages such as high drug loading and enhanced stability in blood,so they have great potential in cancer therapy.However,these micelles have a big disadvantage,which cannot achieve long-term circulation in vivo and high absorption of tumor cells simultaneously,resulting in low administration efficiency and poor therapeutic effect on cancer.To solve problems of traditional polymeric prodrug micelles,novel polymeric micelles with tumor microenvironment response were designed in this work.The prodrug formed by covalently linking D-α-tocopherol polyethylene glycol succinate(TPGS_(3350)),peptide(Pep),and doxorubicin(DOX)(TPGS_(3350)-Pep-DOX)was self-assembled into micelles by encapsulating DOX physically.When the micelles entered the tumor tissue,the long-chain polyethylene glycol(PEG)was sensitively cut by the matrix metalloproteinase 2/9(MMP2/9)enzyme,exposing the targeting molecule folate,then it entered the cell through the endocytic pathway mediated by the folate receptor.The drug loading content,encapsulation efficiency,critical micelle concentration,and invitro release of the micelles invented in this study were measured to characterize their properties.The particle size and zeta potential of micelles were characterized by dynamic light scattering.Images were scanned by transmission electron microscopes.In vitro cytotoxicity,cellular uptake,and in vivo antitumor effect evaluation experiments were measured to show that smart micelles have made much progress in material chemistry and drug delivery,making it possible to apply a stimulus-response carrier drug delivery system in clinical application.
基金supported by the National Natural Science Foundation of China(Grant Nos.62321166653,22090044,and 12350410372).Calculations were performed in part at the high-performance computing center of Jilin University.
文摘Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication,low hysteresis effects,and high stability.Despite these advantages,their efficiency is currently limited by excessive defects and poor carrier transport at the perovskite-electrode interface,particularly at the buried interface between the perovskite and transparent conductive oxide(TCO).Recent efforts in the perovskite community have focused on designing novel self-assembled molecules(SAMs)to improve the quality of the buried interface.However,a notable gap remains in understanding the regulation of atomic-scale interfacial properties of SAMs between the perovskite and TCO interfaces.This understanding is crucial,particularly in terms of identifying chemically active anchoring groups.In this study,we used the star SAM([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)as the base structure to investigate the defect passivation effects of eight common anchoring groups at the perovskite-TCO interface.Our findings indicate that the phosphonic and boric acid groups exhibit notable advantages.These groups fulfill three key criteria:they provide the greatest potential for defect passivation,exhibit stable adsorption with defects,and exert significant regulatory effects on interface dipoles.Ionized anchoring groups exhibit enhanced passivation capabilities for defect energy levels due to their superior Lewis base properties,which effectively neutralize local charges near defects.Among various defect types,iodine vacancies are the easiest to passivate,whereas iodine-substituted lead defects are the most challenging to passivate.Our study provides comprehensive theoretical insights and inspiration for the design of anchoring groups in SAMs,contributing to the ongoing development of more efficient inverted perovskite solar cells.
基金Project supported by the National Natural Science Foundation of China (Grants No. 12075201)the Science and Technology Planning Project of Jiangsu Province, China (Grant No. BK20201428)+1 种基金the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX21 3193)the Special Program for Applied Research on Supercomputation of the NSFC–Guangdong Joint Fund (the second phase)。
文摘The hydroxyl-terminated self-assembled monolayer(OH-SAM),as a surface resistant to protein adsorption,exhibits substantial potential in applications such as ship navigation and medical implants,and the appropriate strategies for designing anti-fouling surfaces are crucial.Here,we employ molecular dynamics simulations and alchemical free energy calculations to systematically analyze the factors influencing resistance to protein adsorption on the SAMs terminated with single or double OH groups at three packing densities(∑=2.0 nm^(-2),4.5 nm^(-2),and 6.5 nm^(-2)),respectively.For the first time,we observed that the compactness and order of interfacial water enhance its physical barrier effect,subsequently enhancing the resistance of SAM to protein adsorption.Notably,the spatial hindrance effect of SAM leads to the embedding of protein into SAM,resulting in a lack of resistance of SAM towards protein.Furthermore,the number of hydroxyl groups per unit area of double OH-terminated SAM at ∑=6.5 nm^(-2) is approximately 2 to 3 times that of single OH-terminated SAM at ∑=6.5 nm^(-2) and 4.5 nm^(-2),consequently yielding a weaker resistance of double OH-terminated SAM towards protein.Meanwhile,due to the structure of SAM itself,i.e.,the formation of a nearly perfect ice-like hydrogen bond structure,the SAM exhibits the weakest resistance towards protein.This study will complement and improve the mechanism of OH-SAM resistance to protein adsorption,especially the traditional barrier effect of interfacial water.
基金China Postdoctoral Science Foundation(2020M681125)National Natural Science Foundation of China(32272254,31901618)Collaborative Innovation Center of Fragrance Flavour and Cosmetics.
文摘Bio-based cyclodextrins(CDs)are a common research object in supramolecular chemistry.The special cavity structure of CDs can form supramolecular self-assemblies such as vesicles and microcrystals through weak interaction with guest molecules.The different forms of supramolecular self-assemblies can be transformed into each other under certain conditions.The regulation of supramolecular self-assembly is not only helpful to understand the self-assembly principle,but also beneficial to its application.In the present study,the self-assembly behavior of epoxy-β-cyclodextrin(EP-β-CD)and mixed anionic and cationic surfactant system(sodium dodecyl sulfate/dodecyltrimethylammonium bromide,SDS/DTAB)in aqueous solution was studied.Morphological and particle size characterization found that the SDS/DTAB@EP-β-CD complex,as the basic building unit,self-assembled into worm-like micelles at lower temperatures and vesicles at higher temperatures.Nuclear magnetic resonance(NMR)and Fourier transform infrared spectroscopy(FT-IR)analysis revealed that the driving force for the formation of vesicles and worm-like micelles was the hydrogen bonds between EP-β-CD molecules,while water molecules played an important role in promoting vesicle formation between SDS/DTAB@EP-β-CD units.Herein,the mechanism of the morphologic transformation of SDS/DTAB@EP-β-CD supramolecular aggregates induced by temperature was elucidated by exploring the self-assembly process,which may provide an excellent basis for the development of delivery carriers.
基金supported by the National Natural Science Foundation of China(#81872220 and#81703437)Xinjiang Uygur Autonomous Region Science and Technology Support Project(#2020E0290)+4 种基金Basic Public Welfare Research Project of Zhejiang Province(#LGF18H160034,LGC21B050011 and#LGF20H300012),Science and Technology Bureau of Jiaxing(2020AY10021)Key Research and Development and Transformation project of Qinghai Province(2021-SF-C20)Dutch Cancer Foundation(KWF project#10666)a Zhejiang Provincial Foreign Expert Program Grant,Zhejiang Provincial Key Natural Science Foundation of China(#Z20H160031)and Jiaxing Key Laboratory of Oncological Photodynamic Therapy and Targeted Drug Research,and“Innovative Jiaxing·Excellent Talent Support Program”-Top Talents in Technological Innovation.
文摘Bone metastasis secondary to breast cancer negatively impacts patient quality of life and survival.The treatment of bone metastases is challenging since many anticancer drugs are not effectively delivered to the bone to exert a therapeutic effect.To improve the treatment efficacy,we developed Pluronic P123(P123)-based polymeric micelles dually decorated with alendronate(ALN)and cancer-specific phage protein DMPGTVLP(DP-8)for targeted drug delivery to breast cancer bone metastases.Doxorubicin(DOX)was selected as the anticancer drug and was encapsulated into the hydrophobic core of the micelles with a high drug loading capacity(3.44%).The DOX-loaded polymeric micelles were spherical,123 nm in diameter on average,and exhibited a narrow size distribution.The in vitro experiments demonstrated that a pH decrease from 7.4 to 5.0 markedly accelerated DOX release.The micelles were well internalized by cultured breast cancer cells and the cell death rate of micelle-treated breast cancer cells was increased compared to that of free DOX-treated cells.Rapid binding of the micelles to hydroxyapatite(HA)microparticles indicated their high affinity for bone.P123-ALN/DP-8@DOX inhibited tumor growth and reduced bone resorption in a 3D cancer bone metastasis model.In vivo experiments using a breast cancer bone metastasis nude model demonstrated increased accumulation of the micelles in the tumor region and considerable antitumor activity with no organ-specific histological damage and minimal systemic toxicity.In conclusion,our study provided strong evidence that these pH-sensitive dual ligand-targeted polymeric micelles may be a successful treatment strategy for breast cancer bone metastasis.
基金support and funding from the National Natural Science Foundation of China (No.52174047)Sinopec Project (No.P21063-3)。
文摘In the application of polymer gels to profile control and water shutoff,the gelation time will directly determine whether the gel can"go further"in the formation,but the most of the methods for delaying gel gelation time are complicated or have low responsiveness.There is an urgent need for an effective method for delaying gel gelation time with intelligent response.Inspired by the slow-release effect of drug capsules,this paper uses the self-assembly effect of gas-phase hydrophobic SiO_(2) in aqueous solution as a capsule to prepare an intelligent responsive self-assembled micro-nanocapsules.The capsule slowly releases the cross-linking agent under the stimulation of external conditions such as temperature and pH value,thus delaying gel gelation time.When the pH value is 2 and the concentration of gas-phase hydrophobic SiO_(2) particles is 10%,the gelation time of the capsule gel system at 30,60,90,and 120℃is12.5,13.2,15.2,and 21.1 times longer than that of the gel system without containing capsule,respectively.Compared with other methods,the yield stress of the gel without containing capsules was 78 Pa,and the yield stress after the addition of capsules was 322 Pa.The intelligent responsive self-assembled micronanocapsules prepared by gas-phase hydrophobic silica nanoparticles can not only delay the gel gelation time,but also increase the gel strength.The slow release of cross-linking agent from capsule provides an effective method for prolongating the gelation time of polymer gels.
基金This research was supported by the National Research Foundation of Korea(NRF)grant funded by the Ministry of Education,Science and Technology(No.2012R1A2A2A02044997 and No.2012R1A1A1039059).
文摘Polyelectrolyte complex micelles were prepared by self-assembly of polypeptide-based triblock copolymer as a new drug carrier for cancer chemotherapy.The triblock copolymer,poly(L-aspartic acid)-b-poly(ethylene glycol)-b-poly(L-aspartic acid)(PLD-b-PEG-b-PLD),spontaneously self-assembled with doxorubicin(DOX)via electrostatic interactions to form spherical micelles with a particle size of 60e80 nm(triblock ionomer complexes micelles,TBIC micelles).These micelles exhibited a high loading capacity of 70%(w/w)at a drug/polymer ratio of 0.5 at pH 7.0.They showed pH-responsive release patterns,with higher release at acidic pH than at physiological pH.Furthermore,DOX-loaded TBIC micelles exerted less cytotoxicity than free DOX in the A-549 human lung cancer cell line.Confocal microscopy in A-549 cells indicated that DOX-loaded TBIC micelles were transported into lysosomes via endocytosis.These micelles possessed favorable pharmacokinetic characteristics and showed sustained DOX release in rats.Overall,these findings indicate that PLDb-PEG-b-PLD polypeptide micelles are a promising approach for anti-cancer drug delivery.
基金the National Natural Science Foundation of China (Nos.50673086 and 50633010).
文摘Amphiphilic block copolymers,poly(ethylene oxide)-b-poly(N-acryloxysuccinimide) (PEO-b-PNAS) with various molecular weights have been successfully synthesized by atom transfer radical polymerization (ATRP) of NAS using functionalized PEO (PEO-Br) as ATRP macroinitiator.The self-assembling of the block copolymers in water,which is a good solvent for PEO and a non-solvent for PNAS.yielded spherical core-shell micelles with PNAS as core and PEO as shell.The cross-linked reaction of oxysuccinimide in PNAS chain...
基金support from National Key Research and Development Program(2021YFA0717900)National Natural Science Foundation of China(62004138,52273190,52121002).
文摘Numerous reports have suggested that the performance of organic optoelectronic devices based on organicfieldeffect transistors(OFETs)is largely dependent on their interfaces.Self-assembled monolayers(SAMs)have been commonly used to engineer the interfaces of high-performance devices,particularly due to their well-defined structures and simple operation process through simple chemical adsorption growth.In this review,the structures of OFETs and SAM-modified OFETs are described,while different SAMs have been characterized.Furthermore,recent advances in the interface engineering of OFETs are described,the applicability of SAMs in functional devices of OFETs is reviewed,and existing problems and future developments in thisfield have been identified.
基金National Natural Science Foundation of China(Grant Nos.51925206,52302052)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB0450301)+1 种基金Yunnan Provincial Science and Technology Project at Southwest United Graduate School(Grant No.202302AO370013)Huacai Solar Co.,Ltd.
文摘Self-assembled monolayers(SAMs)have recently emerged as excellent hole transport materials in inverted perovskite solar cells(PSCs)owing to their ability to minimize parasitic absorption,regulate energy level alignment,and passivate perovskite defects.Herein,we design and synthesize a novel dimethyl acridinebased SAM,[2-(9,10-dihydro-9,9-dimethylacridine-10-yl)ethyl]phosphonic acid(2PADmA),and employ it as a hole-transporting layer in inverted PSCs.Experimental results show that the 2PADmA SAM can modulate perovskite crystallization,facilitate carrier transport,passivate perovskite defects,and reduce nonradiative recombination.Consequently,the 2PADmA-based device achieves an enhanced power conversion efficiency(PCE)of 24.01%and an improved fill factor(FF)of 83.92%compared to the commonly reported[2-(9H-carbazol-9-yl)ethyl]phosphonic acid(2PACz)-based control device with a PCE of 22.32%and FF of 78.42%,while both devices exhibit comparable open-circuit voltage and short-circuit current density.In addition,2PADmA-based devices exhibit outstanding dark storage and thermal stabilities,retaining approximately~98%and 87%of their initial PCEs after 1080 h of dark storage and 400 h of heating at 85°C,respectively,both considerably superior to the control device.
文摘The mechanism for the self-assembly of hollow micelles from rod-coil diblock copolymers is proposed. In a coilselective solvent, the diblock copolymers self-assemble into a layered structure. It is assumed that the rigid rods form an elastic shell whose properties are dictated by a bending energy. For a hollow micelle, the coils outside the micelle form a brush, while the coils inside the micelle can be in two different states, a brush or an adsorption layer, corresponding to symmetric or asymmetric configurations, respectively. The total energy density of a hollow micelle is calculated by combining the interfacial energy, elastic bending energy and the stretching energy of the brushes. For the asymmetric configuration with a polymer brush on one side, the competition between the elastic bending energy and the brush stretching energy leads to a finite spontaneous curvature, stabilizing hollow spherical micelles. Comparison of the free energy density for different geometries demonstrates that transitions for the different geometry micelles are controlled by the degree of polymerization of the coils and the length of the rods. These results are in agreement with the experimental results.
基金NSFC Grants(5140306251273063 and 20774030)+4 种基金China Postdoctoral Science Foundation(2013M541485)111 Project Grant(B08021)the Fundamental Research Funds for the Central Universitiesthe higher school specialized research fund for the doctoral program(20110074110003)the Open Project of Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan(2015BTRC001)for support of this work
文摘In this paper, pod-like supramicelles with multicompartment hydrophobic cores were prepared by selfassembly of amphiphilic N-phthaloylchitosan-g-poly(N-vinylcaprolactam)(PHCS-g-PNVCL) in aqueous medium. The employed biocompatible amphiphilic polymer was synthesized by grafting the carboxyl terminated poly(N-vinylcaprolactam)(PNVCL-COOH) chains onto N-phthaloylchitosan(PHCS) backbone.~1H NMR and FTIR results confirmed the molecular structure of the copolymers. The morphology of the supramicelles assembled by PHCS-g-PNVCL was revealed by means of TEM and polarized light microscope. In solution, the supramicelles were very stable as monitored by DLS and zeta potential measurements. Temperature and p H presented significant influences on the size and size distribution of the supramicelles. These supramicelles with multicompartment hydrophobic cores should be ideal biomimetic systems with promising applications in drug delivery.
文摘Taking a widely contaminated yet abundant waste,such as poultry feathers,and extracting keratin from this struc-ture appears to be a real challenge whenever the preservation of the secondary structure of the protein is desired.This process would allow exploiting it in ways(e.g.,in the biomedicalfield)that are inspired by a structure that is primarily designed forflight,therefore capable specifically of withstandingflexure and lateral buckling,also with very low thicknesses.The preservation of the structure is based on disulfide crosslinks,and it is offered with pre-ference by some chemical treatments,mainly those based on ionic liquid and on a reduction process.However,the degree of preservation cannot always be precisely assessed;however,beyond chemical characterization,the forma-tion of homogeneous gels can also suggest that the process was successful in this sense.An extraction respectful of nature’s intentions,considering that the secondary structure builds up according to the very function of the feath-ers in the animal,can be deemed to be biomimetic.In particular,biomimetic extractions comply with the very characteristics the protein was designed for to serve in the specific environmental and mechanical situation in which it is inserted.This review tries to elucidate in which cases this aim is achieved and for which specific appli-cations a chicken feather keratin that has preserved its secondary structure can be suited.
基金The National Natural Science Foundation of China(Nos.60371027,60171005).
文摘Self-assembled monolayers (SAMs) of (3-mercaptopropy) trimethoxysilane (3-MtrF) chemisorbed on silver surfaces were chemically "modified by 1-octadecanethiol to form self-assembled mixed-monolayers (SAMM) and the co-polymer of N-vinylcarbazole and methyl methacrylate ester (to form complex selfassembled film (CSAF)). The oxidation resistance of these barriers on silver surfaces and some influential factors concerned processes were analyzed by electrochemical impedance spectroscopy (EIS) in a 10% NaOH aqueous solution at oxidation potential. X-ray diffraction (XRD) spectroscopy shows that the oxidation occurring on the silver surface may be restrained effectively due to the coating barrier, and CSAF(Ⅱ) is the best one. Studies also reveal that oxide processes of bare silver and a series of modified silver electrodes in a 10% NaOH aqueous solution are of more than two relaxation time constants.