The effects of the water-cement ratio and the molding temperature on the hydration heat of cement were investigated with semi-adiabatic calorimetry.The specimens were prepared with water-cement ratios of 0.31,0.38,and...The effects of the water-cement ratio and the molding temperature on the hydration heat of cement were investigated with semi-adiabatic calorimetry.The specimens were prepared with water-cement ratios of 0.31,0.38,and 0.45,and the molding temperature was specified at 10 and 20℃.The experimental results show that,as the water-binder ratio increases,the value of the second temperature peak on the temperature curve of the cement paste decreases,and the age at which the peak appears is delayed.The higher the water-cement ratio,the higher the hydration heat release in the early period of cement hydration,but this trend reverses in the late period.There are intersection points of the total hydration heat curve of the cement pastes under the influence of the water-cement ratio,and this law can be observed at both molding temperatures.With the increase in the molding temperature,the age of the second temperature peak on the temperature curve of the cement paste will advance,but the temperature peak will decrease.The higher the molding temperature,the earlier the acceleration period of the cement hydration began,and the larger the hydration heat of the cement in the early stage,but the smaller the total heat in the late period.A subsection function calculation model of the hydration heat,which was based on the existing models,was proposed in order to predict the heat of the hydration of the concrete.展开更多
Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review ...Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review discusses the driving forces behind the self-assembly process of perovskite NCs,and the commonly used self-assembly methods and different self-assembly structures are detailed.Subsequently,we summarize the collective optoelectronic properties and application areas of perovskite superlattice structures.Finally,we conclude with an outlook on the potential issues and future challenges in developing perovskite NCs.展开更多
The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with th...The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with the lignin oligomers,were adopted to study their effects during solvent shifting process for LNPs’production.The lignin oligomers with widely distributed molecular weight and abundant guaiacyl units were extracted from wood waste(mainly consists of pine wood),exerting outstanding self-assembly capability.Uniform and spherical LNPs were generated in H_(2)O-n-propanol cosolvent,whereas irregular LNPs were obtained in H_(2)O-methanol cosolvent.The unsatisfactory self-assembly performance of the lignin oligomers in H_(2)O-methanol cosolvent could be attributed to two aspects.On one hand,for the initial dissolution state,the distinguishing Hansen solubility parameter and polarity between methanol solvent and lignin oligomers resulted in the poor dispersion of the lignin oligomers.On the other hand,strong hydrogen bonds between methanol solvent and lignin oligomers during solvent shifting process,hindered the interactions among the lignin oligomers for self-assembly.展开更多
The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium...The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium alginate-based multilayer film is fabricated via a layer-by-layer(LBL)self-assembly method.With the help of superior interaction between the layers,the multilayer film possesses excellent mechanical properties(with a tensile strength of 50 MPa).Besides,the film displays outstanding water retention property(blocking moisture of 97.56%)and ultraviolet blocking property.Anthocyanin is introduced into the film to detect the food quality since it is one natural plant polyphenol that is sensitive to the pH changes ranging from 1 to 13 in food when spoilage occurs.It is noted that the film is also bacteriostatic which is desired for food packaging.This study describes a simple technique for the development of advanced multifunctional and fully biodegradable food packaging film and it is a sustainable alternative to plastic packaging.展开更多
Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their mac...Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their macroscopic assembly.The present study employed a gentle and direct self-assembly technique,wherein controlled growth of CNT sheaths occurred on the metal wire’s surface,followed by etching of the remaining metal to obtain the hollow tubes composed of CNTs.By controlling the growth time and temperature,it is possible to alter the thickness of the CNTs sheath.After immersing in a solution containing 1 g/L of CNTs at 60℃ for 24 h,the resulting CNTs layer achieved a thickness of up to 60μm.These hollow CNTs tubes with varying inner diameters were prepared through surface reinforcement using polymers and sacrificing metal wires,thereby exhibiting exceptional attributes such as robustness,flexibility,air tightness,and high adsorption capacity that effectively capture CO_(2) from the gas mixture.展开更多
We consider the inverse problem of finding guiding pattern shapes that result in desired self-assembly morphologies of block copolymer melts.Specifically,we model polymer selfassembly using the self-consistent field t...We consider the inverse problem of finding guiding pattern shapes that result in desired self-assembly morphologies of block copolymer melts.Specifically,we model polymer selfassembly using the self-consistent field theory and derive,in a non-parametric setting,the sensitivity of the dissimilarity between the desired and the actual morphologies to arbitrary perturbations in the guiding pattern shape.The sensitivity is then used for the optimization of the confining pattern shapes such that the dissimilarity between the desired and the actual morphologies is minimized.The efficiency and robustness of the proposed gradient-based algorithm are demonstrated in a number of examples related to templating vertical interconnect accesses(VIA).展开更多
Designing high-performance and low-cost electrocatalysts for oxygen evolu-tion reaction(OER)is critical for the conversion and storage of sustainable energy technologies.Inspired by the biomineralization process,we ut...Designing high-performance and low-cost electrocatalysts for oxygen evolu-tion reaction(OER)is critical for the conversion and storage of sustainable energy technologies.Inspired by the biomineralization process,we utilized the phosphorylation sites of collagen molecules to combine with cobalt-based mononuclear precursors at the molecular level and built a three-dimensional(3D)porous hierarchical material through a bottom-up biomimetic self-assembly strategy to obtain single-atom catalysts confined on carbonized biomimetic self-assembled carriers(Co SACs/cBSC)after subsequent high-temperature annealing.In this strategy,the biomolecule improved the anchoring efficiency of the metal precursor through precise functional groups;meanwhile,the binding-then-assembling strategy also effectively suppressed the nonspecific adsorption of metal ions,ultimately preventing atomic agglomeration and achieving strong electronic metal-support interactions(EMSIs).Experimental characterizations confirm that binding forms between cobalt metal and carbonized self-assembled substrate(Co–O_(4)–P).Theoretical calculations disclose that the local environment changes significantly tailored the Co d-band center,and optimized the binding energy of oxygenated intermediates and the energy barrier of oxygen release.As a result,the obtained Co SACs/cBSC catalyst can achieve remarkable OER activity and 24 h durability in 1 M KOH(η10 at 288 mV;Tafel slope of 44 mV dec-1),better than other transition metal-based catalysts and commercial IrO_(2).Overall,we presented a self-assembly strategy to prepare transition metal SACs with strong EMSIs,providing a new avenue for the preparation of efficient catalysts with fine atomic structures.展开更多
Effectiveness and safety of a sports mouthguard depend on its thickness and material, and the thermoforming process affects these. The purpose of this study was to clarify the effects of differences in molding mechani...Effectiveness and safety of a sports mouthguard depend on its thickness and material, and the thermoforming process affects these. The purpose of this study was to clarify the effects of differences in molding mechanisms on the lower molding temperature limit and molding time in dental thermoforming. Ethylene vinyl acetate resin mouthguard sheet and two thermoforming machines;vacuum blower molding machine and vacuum ejector/pressure molding machine were used. The molding pressures for suction molding were −0.018 MPa for vacuum blower molding and −0.090 MPa for vacuum ejector molding, and for pressure molding was set to 0.090 MPa or 0.450 MPa. Based on the manufacturer’s standard molding temperature of 95˚C, the molding temperature was lowered in 2.5˚C increments to determine the lower molding temperature limit at which no molding defects occurred. In order to investigate the difference in molding time depending on the molding mechanism, the duration of molding pressure was adjusted in each molding machine, and the molding time required to obtain a sample without molding defects was measured. The molding time of each molding machine were compared using one-way analysis of variance. The lower molding temperature limit was 90.0˚C for the vacuum blower machine, 77.5˚C for the vacuum ejector machine, 77.5˚C for the pressure molding machine at 0.090 MPa, and 67.5˚C for the pressure molding machine at 0.45 MPa. The lower molding temperature limit was higher for lower absolute values of molding pressure. The molding time was shorter for pressure molding than for suction molding. Significant differences were observed between all conditions except between the pressure molding machine at 0.090 MPa and 0.45 MPa (P < 0.01). A comparison of the differences in lower molding temperature limit and molding time due to molding mechanisms in dental thermoforming revealed that the lower molding temperature limit depends on the molding pressure and that the molding time is longer for suction molding than for pressure molding.展开更多
Poly(3,4-ethylenedioxyethiophene)-polystyrene sulfonic acid(PEDOT:PSS)/polyallyl dimethyl ammonium chloride modified reduced graphene oxide(PDDA-rGO)was layer by layer self-assembled on the cotton fiber.The surface mo...Poly(3,4-ethylenedioxyethiophene)-polystyrene sulfonic acid(PEDOT:PSS)/polyallyl dimethyl ammonium chloride modified reduced graphene oxide(PDDA-rGO)was layer by layer self-assembled on the cotton fiber.The surface morphology and electric property was investigated.The results confirmed the dense membrane of PEDOT:PSS and the lamellar structure of PDDA-rGO on the fibers.It has excellent electrical conductivity and mechanical properties.The fiber based electrochemical transistor(FECTs)prepared by the composite conductive fiber has a maximum output current of 8.7 mA,a transconductance peak of 10 mS,an on time of 1.37 s,an off time of 1.6 s and excellent switching stability.Most importantly,the devices by layer by layer self-assembly technology opens a path for the true integration of organic electronics with traditional textile technologies and materials,laying the foundation for their later widespread application.展开更多
Darcy’s law is widely used to describe the flow in porous media in which there is a linear relationship between fluid velocity and pressure gradient. However, it has been found that for high numbers of Reynolds this ...Darcy’s law is widely used to describe the flow in porous media in which there is a linear relationship between fluid velocity and pressure gradient. However, it has been found that for high numbers of Reynolds this law ceases to be valid. In this work, the Ergun equation is employed to consider the non-linearity of air velocity with the pressure gradient in casting sands. The contribution of non-linearity to the total flow in terms of a variable defined as a non-Darcy flow fraction is numerically quantified. In addition, the influence of the shape factor of the sand grains on the non-linear flow fraction is analyzed. It is found that for values of the Reynolds number less or equal than 1, the contribution of non-linearity for spherical particles is around 1.15%.展开更多
Ferroptosis has emerged as a potent form of no-apoptotic cell death that offers a promising alternative to avoid the chemoresistance of apoptotic pathways and serves as a vulnerability of cancer.Herein,we have constru...Ferroptosis has emerged as a potent form of no-apoptotic cell death that offers a promising alternative to avoid the chemoresistance of apoptotic pathways and serves as a vulnerability of cancer.Herein,we have constructed a biomimetic self-assembly nano-prodrug system that enables the co-delivery of gefitinib(Gefi),ferrocene(Fc)and dihydroartemisinin(DHA)for the combined therapy of both ferroptosis and apoptosis.In the tumor microenvironment,this nano-prodrug is able to disassemble and trigger drug release under high levels of GSH.Interestingly,the released DHA can downregulate GPX4 level for the enhancement of intracellular ferroptosis from Fc,further executing tumor cell death with concomitant chemotherapy by Gefi.More importantly,this nano-prodrug provides highly homologous targeting ability by coating related cell membranes and exhibits outstanding inhibition of tumor growth and metastasis,as well as no noticeable side-effects during treatments.This simple small molecular self-assembled nano-prodrug provides a new reasonably designed modality for ferroptosis-combined chemotherapy.展开更多
Lignin waste from the papermaking and biorefineries industry is a significantly promising renewable resource to prepare advanced carbon materials for diverse applications,such as the electrodes of supercapacitors;howe...Lignin waste from the papermaking and biorefineries industry is a significantly promising renewable resource to prepare advanced carbon materials for diverse applications,such as the electrodes of supercapacitors;however,the improvement of their energy density remains a challenge.Here,we design a green and universal approach to prepare the composite electrode material,which is composed of lignin-phenolformaldehyde resins derived hierarchical porous carbon(LR-HPC)as conductive skeletons and the self-assembly manganese cobaltite(MnCo_(2)O_(4))nanocrystals as active sites.The synthesized C@MnCo_(2)O_(4)composite has an abundant porous structure and superior electronic conductivity,allowing for more charge/electron mass transfer channels and active sites for the redox reactions.The composite shows excellent electrochemical performance,such as the maximum specific capacitance of~726 mF cm^(-2)at 0.5 mV s^(-1),due to the significantly enhanced interactive interface between LR-HPC and MnCo_(2)O_(4)crystals.The assembled all-solid-state asymmetric supercapacitor,with the LR-HPC and C@MnCo_(2)O_(4)as cathode and anode,respectively,exhibits the highest volumetric energy density of 0.68 mWh cm^(-3)at a power density of 8.2 mW cm^(-3).Moreover,this device shows a high capacity retention ratio of~87.6%at 5 mA cm^(-2)after 5000 cycles.展开更多
The successful manufacture of thick composites is challenging since the highly exothermic nature of thermoset resins and limited temperature control make avoiding the onset of detrimental thermal gradients within the ...The successful manufacture of thick composites is challenging since the highly exothermic nature of thermoset resins and limited temperature control make avoiding the onset of detrimental thermal gradients within the composite relatively difficult.This phenomenon is mainly caused by exothermic heat reactions.The so-called Michaud's model has been largely used in the literature to reduce the gap between experience and simulation with regard to the effective prediction of the temperature cycle in these processes.In this work,another solution is proposed to simulate the curing process for thick composites,namely preheating the resin to activate the curing reaction before resin injection into the mold.A good agreement between the experiment and the simulation is found.Moreover,in order to minimize the thermal gradient in the final composite,the thermophysical properties of the fiber and the torque(temperature,time)of the Plate have been varied leading to interesting results.展开更多
Traditional Chinese medicine decoction is a complex polydispersed phase system containing real solution,colloid solution,emulsion and suspension.The compound decoction of traditional Chinese medicine has complex compo...Traditional Chinese medicine decoction is a complex polydispersed phase system containing real solution,colloid solution,emulsion and suspension.The compound decoction of traditional Chinese medicine has complex components,including saponins,alkaloids,polysaccharides,flavonoids,amino acids and so on,which can be self-assembled to form gels,fibers,micelles,vesicles and so on.The self-assembled nano-phase not only neutralizes the single drug and reduces the toxicity and side effects,but also has its own pharmacological effects,which complement each other to achieve synergistic effect,so as to achieve the role of drug supplement,which is of research significance.The formation principle,solubilization and synergism principle and characterization method of multi-component self-assembly of traditional Chinese medicine compound decoction are discussed in this paper.展开更多
基金the National Natural Science Foundation of China(Nos.52368032 and 51808272)the China Postdoctoral Science Foundation(No.2023M741455)+1 种基金the Tianyou Youth Talent Lift Program of Lanzhou Jiaotong UniversityGansu Province Youth Talent Support Project(No.GXH20210611-10)。
文摘The effects of the water-cement ratio and the molding temperature on the hydration heat of cement were investigated with semi-adiabatic calorimetry.The specimens were prepared with water-cement ratios of 0.31,0.38,and 0.45,and the molding temperature was specified at 10 and 20℃.The experimental results show that,as the water-binder ratio increases,the value of the second temperature peak on the temperature curve of the cement paste decreases,and the age at which the peak appears is delayed.The higher the water-cement ratio,the higher the hydration heat release in the early period of cement hydration,but this trend reverses in the late period.There are intersection points of the total hydration heat curve of the cement pastes under the influence of the water-cement ratio,and this law can be observed at both molding temperatures.With the increase in the molding temperature,the age of the second temperature peak on the temperature curve of the cement paste will advance,but the temperature peak will decrease.The higher the molding temperature,the earlier the acceleration period of the cement hydration began,and the larger the hydration heat of the cement in the early stage,but the smaller the total heat in the late period.A subsection function calculation model of the hydration heat,which was based on the existing models,was proposed in order to predict the heat of the hydration of the concrete.
基金financially supported by the National Key Research and Development Program of China (2021YFB3600403)the Fundamental Research Funds for the Central Universities (000-0903069032)。
文摘Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review discusses the driving forces behind the self-assembly process of perovskite NCs,and the commonly used self-assembly methods and different self-assembly structures are detailed.Subsequently,we summarize the collective optoelectronic properties and application areas of perovskite superlattice structures.Finally,we conclude with an outlook on the potential issues and future challenges in developing perovskite NCs.
基金supported by the National Natural Science Foundation of China(22078211)the China Postdoctoral Science Foundation(2022M721115).
文摘The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with the lignin oligomers,were adopted to study their effects during solvent shifting process for LNPs’production.The lignin oligomers with widely distributed molecular weight and abundant guaiacyl units were extracted from wood waste(mainly consists of pine wood),exerting outstanding self-assembly capability.Uniform and spherical LNPs were generated in H_(2)O-n-propanol cosolvent,whereas irregular LNPs were obtained in H_(2)O-methanol cosolvent.The unsatisfactory self-assembly performance of the lignin oligomers in H_(2)O-methanol cosolvent could be attributed to two aspects.On one hand,for the initial dissolution state,the distinguishing Hansen solubility parameter and polarity between methanol solvent and lignin oligomers resulted in the poor dispersion of the lignin oligomers.On the other hand,strong hydrogen bonds between methanol solvent and lignin oligomers during solvent shifting process,hindered the interactions among the lignin oligomers for self-assembly.
基金National Undergraduate Training Program for Innovation and Entrepreneurship of China (Grant No.202210288027).
文摘The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium alginate-based multilayer film is fabricated via a layer-by-layer(LBL)self-assembly method.With the help of superior interaction between the layers,the multilayer film possesses excellent mechanical properties(with a tensile strength of 50 MPa).Besides,the film displays outstanding water retention property(blocking moisture of 97.56%)and ultraviolet blocking property.Anthocyanin is introduced into the film to detect the food quality since it is one natural plant polyphenol that is sensitive to the pH changes ranging from 1 to 13 in food when spoilage occurs.It is noted that the film is also bacteriostatic which is desired for food packaging.This study describes a simple technique for the development of advanced multifunctional and fully biodegradable food packaging film and it is a sustainable alternative to plastic packaging.
基金Project(ZCLTGS24B0101)supported by Zhejiang Provincial Natural Science Foundation of ChinaProject(Y202250501)supported by Scientific Research Fund of Zhejiang Provincial Education Department,ChinaProject supported by SRT Research Project of Jiaxing Nanhu University,China。
文摘Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their macroscopic assembly.The present study employed a gentle and direct self-assembly technique,wherein controlled growth of CNT sheaths occurred on the metal wire’s surface,followed by etching of the remaining metal to obtain the hollow tubes composed of CNTs.By controlling the growth time and temperature,it is possible to alter the thickness of the CNTs sheath.After immersing in a solution containing 1 g/L of CNTs at 60℃ for 24 h,the resulting CNTs layer achieved a thickness of up to 60μm.These hollow CNTs tubes with varying inner diameters were prepared through surface reinforcement using polymers and sacrificing metal wires,thereby exhibiting exceptional attributes such as robustness,flexibility,air tightness,and high adsorption capacity that effectively capture CO_(2) from the gas mixture.
文摘We consider the inverse problem of finding guiding pattern shapes that result in desired self-assembly morphologies of block copolymer melts.Specifically,we model polymer selfassembly using the self-consistent field theory and derive,in a non-parametric setting,the sensitivity of the dissimilarity between the desired and the actual morphologies to arbitrary perturbations in the guiding pattern shape.The sensitivity is then used for the optimization of the confining pattern shapes such that the dissimilarity between the desired and the actual morphologies is minimized.The efficiency and robustness of the proposed gradient-based algorithm are demonstrated in a number of examples related to templating vertical interconnect accesses(VIA).
基金The work was supported by the National Natural Science Foundation of China(52372174)Carbon Neutrality Research Institute Fund(CNIF20230204)Special Project of Strategic Cooperation between China National Petroleum Corporation and China University of Petroleum(Beijing)(ZLZX-2020-04).
文摘Designing high-performance and low-cost electrocatalysts for oxygen evolu-tion reaction(OER)is critical for the conversion and storage of sustainable energy technologies.Inspired by the biomineralization process,we utilized the phosphorylation sites of collagen molecules to combine with cobalt-based mononuclear precursors at the molecular level and built a three-dimensional(3D)porous hierarchical material through a bottom-up biomimetic self-assembly strategy to obtain single-atom catalysts confined on carbonized biomimetic self-assembled carriers(Co SACs/cBSC)after subsequent high-temperature annealing.In this strategy,the biomolecule improved the anchoring efficiency of the metal precursor through precise functional groups;meanwhile,the binding-then-assembling strategy also effectively suppressed the nonspecific adsorption of metal ions,ultimately preventing atomic agglomeration and achieving strong electronic metal-support interactions(EMSIs).Experimental characterizations confirm that binding forms between cobalt metal and carbonized self-assembled substrate(Co–O_(4)–P).Theoretical calculations disclose that the local environment changes significantly tailored the Co d-band center,and optimized the binding energy of oxygenated intermediates and the energy barrier of oxygen release.As a result,the obtained Co SACs/cBSC catalyst can achieve remarkable OER activity and 24 h durability in 1 M KOH(η10 at 288 mV;Tafel slope of 44 mV dec-1),better than other transition metal-based catalysts and commercial IrO_(2).Overall,we presented a self-assembly strategy to prepare transition metal SACs with strong EMSIs,providing a new avenue for the preparation of efficient catalysts with fine atomic structures.
文摘Effectiveness and safety of a sports mouthguard depend on its thickness and material, and the thermoforming process affects these. The purpose of this study was to clarify the effects of differences in molding mechanisms on the lower molding temperature limit and molding time in dental thermoforming. Ethylene vinyl acetate resin mouthguard sheet and two thermoforming machines;vacuum blower molding machine and vacuum ejector/pressure molding machine were used. The molding pressures for suction molding were −0.018 MPa for vacuum blower molding and −0.090 MPa for vacuum ejector molding, and for pressure molding was set to 0.090 MPa or 0.450 MPa. Based on the manufacturer’s standard molding temperature of 95˚C, the molding temperature was lowered in 2.5˚C increments to determine the lower molding temperature limit at which no molding defects occurred. In order to investigate the difference in molding time depending on the molding mechanism, the duration of molding pressure was adjusted in each molding machine, and the molding time required to obtain a sample without molding defects was measured. The molding time of each molding machine were compared using one-way analysis of variance. The lower molding temperature limit was 90.0˚C for the vacuum blower machine, 77.5˚C for the vacuum ejector machine, 77.5˚C for the pressure molding machine at 0.090 MPa, and 67.5˚C for the pressure molding machine at 0.45 MPa. The lower molding temperature limit was higher for lower absolute values of molding pressure. The molding time was shorter for pressure molding than for suction molding. Significant differences were observed between all conditions except between the pressure molding machine at 0.090 MPa and 0.45 MPa (P < 0.01). A comparison of the differences in lower molding temperature limit and molding time due to molding mechanisms in dental thermoforming revealed that the lower molding temperature limit depends on the molding pressure and that the molding time is longer for suction molding than for pressure molding.
基金Funded by the Key R&D Program of the Science and Technology Department of Hubei Province(No.2022BCE008)。
文摘Poly(3,4-ethylenedioxyethiophene)-polystyrene sulfonic acid(PEDOT:PSS)/polyallyl dimethyl ammonium chloride modified reduced graphene oxide(PDDA-rGO)was layer by layer self-assembled on the cotton fiber.The surface morphology and electric property was investigated.The results confirmed the dense membrane of PEDOT:PSS and the lamellar structure of PDDA-rGO on the fibers.It has excellent electrical conductivity and mechanical properties.The fiber based electrochemical transistor(FECTs)prepared by the composite conductive fiber has a maximum output current of 8.7 mA,a transconductance peak of 10 mS,an on time of 1.37 s,an off time of 1.6 s and excellent switching stability.Most importantly,the devices by layer by layer self-assembly technology opens a path for the true integration of organic electronics with traditional textile technologies and materials,laying the foundation for their later widespread application.
文摘Darcy’s law is widely used to describe the flow in porous media in which there is a linear relationship between fluid velocity and pressure gradient. However, it has been found that for high numbers of Reynolds this law ceases to be valid. In this work, the Ergun equation is employed to consider the non-linearity of air velocity with the pressure gradient in casting sands. The contribution of non-linearity to the total flow in terms of a variable defined as a non-Darcy flow fraction is numerically quantified. In addition, the influence of the shape factor of the sand grains on the non-linear flow fraction is analyzed. It is found that for values of the Reynolds number less or equal than 1, the contribution of non-linearity for spherical particles is around 1.15%.
基金financial supports from National Natural Science Foundation of China(32000992,21977081,32101124)the Zhejiang Provincial Natural Science Foundation for Distinguished Young Scholar(LR23C100001)+1 种基金Wenzhou Medical University(KYYW201901)Zhejiang Qianjiang Talent Plan(QJD20020224)
文摘Ferroptosis has emerged as a potent form of no-apoptotic cell death that offers a promising alternative to avoid the chemoresistance of apoptotic pathways and serves as a vulnerability of cancer.Herein,we have constructed a biomimetic self-assembly nano-prodrug system that enables the co-delivery of gefitinib(Gefi),ferrocene(Fc)and dihydroartemisinin(DHA)for the combined therapy of both ferroptosis and apoptosis.In the tumor microenvironment,this nano-prodrug is able to disassemble and trigger drug release under high levels of GSH.Interestingly,the released DHA can downregulate GPX4 level for the enhancement of intracellular ferroptosis from Fc,further executing tumor cell death with concomitant chemotherapy by Gefi.More importantly,this nano-prodrug provides highly homologous targeting ability by coating related cell membranes and exhibits outstanding inhibition of tumor growth and metastasis,as well as no noticeable side-effects during treatments.This simple small molecular self-assembled nano-prodrug provides a new reasonably designed modality for ferroptosis-combined chemotherapy.
基金The authors gratefully acknowledge the financial support from the National Key R&D Program of China(2021YFC2101304)China Postdoctoral Science Foundation(BX2021041)。
文摘Lignin waste from the papermaking and biorefineries industry is a significantly promising renewable resource to prepare advanced carbon materials for diverse applications,such as the electrodes of supercapacitors;however,the improvement of their energy density remains a challenge.Here,we design a green and universal approach to prepare the composite electrode material,which is composed of lignin-phenolformaldehyde resins derived hierarchical porous carbon(LR-HPC)as conductive skeletons and the self-assembly manganese cobaltite(MnCo_(2)O_(4))nanocrystals as active sites.The synthesized C@MnCo_(2)O_(4)composite has an abundant porous structure and superior electronic conductivity,allowing for more charge/electron mass transfer channels and active sites for the redox reactions.The composite shows excellent electrochemical performance,such as the maximum specific capacitance of~726 mF cm^(-2)at 0.5 mV s^(-1),due to the significantly enhanced interactive interface between LR-HPC and MnCo_(2)O_(4)crystals.The assembled all-solid-state asymmetric supercapacitor,with the LR-HPC and C@MnCo_(2)O_(4)as cathode and anode,respectively,exhibits the highest volumetric energy density of 0.68 mWh cm^(-3)at a power density of 8.2 mW cm^(-3).Moreover,this device shows a high capacity retention ratio of~87.6%at 5 mA cm^(-2)after 5000 cycles.
文摘The successful manufacture of thick composites is challenging since the highly exothermic nature of thermoset resins and limited temperature control make avoiding the onset of detrimental thermal gradients within the composite relatively difficult.This phenomenon is mainly caused by exothermic heat reactions.The so-called Michaud's model has been largely used in the literature to reduce the gap between experience and simulation with regard to the effective prediction of the temperature cycle in these processes.In this work,another solution is proposed to simulate the curing process for thick composites,namely preheating the resin to activate the curing reaction before resin injection into the mold.A good agreement between the experiment and the simulation is found.Moreover,in order to minimize the thermal gradient in the final composite,the thermophysical properties of the fiber and the torque(temperature,time)of the Plate have been varied leading to interesting results.
基金This work was supported by General Program of National Natural Science Foundation of China(No.816736112017):General Project of Heilongjiang Provincial Science Foundation(No.H2016076)Harbin Special Fund for Scientific and Technological Innovation Talent Research(No.2017RAQXJ090)。
文摘Traditional Chinese medicine decoction is a complex polydispersed phase system containing real solution,colloid solution,emulsion and suspension.The compound decoction of traditional Chinese medicine has complex components,including saponins,alkaloids,polysaccharides,flavonoids,amino acids and so on,which can be self-assembled to form gels,fibers,micelles,vesicles and so on.The self-assembled nano-phase not only neutralizes the single drug and reduces the toxicity and side effects,but also has its own pharmacological effects,which complement each other to achieve synergistic effect,so as to achieve the role of drug supplement,which is of research significance.The formation principle,solubilization and synergism principle and characterization method of multi-component self-assembly of traditional Chinese medicine compound decoction are discussed in this paper.