Solid non-conjugated polymers have long been regarded as insulators due to deficiency of delocalizedπelectrons along the molecular chain framework.Up to date,origin of insulating polymer regulated charge transfer has...Solid non-conjugated polymers have long been regarded as insulators due to deficiency of delocalizedπelectrons along the molecular chain framework.Up to date,origin of insulating polymer regulated charge transfer has not yet been uncovered.In this work,we unleash the root origin of charge transport capability of insulating polymer in photocatalysis.We ascertain that insulating polymer plays crucial roles in fine tuning of electronic structure of transition metal chalcogenides(TMCs),which mainly include altering surface electron density of TMCs for accelerating charge transport kinetics,triggering the generation of defect over TMCs for prolonging carrier lifetime,and acting as hole-trapping mediator for retarding charge recombination.These synergistic roles contribute to the charge transfer of insulating polymer.Our work opens a new vista of utilizing solid insulating polymers for maneuvering charge transfer toward solar energy conversion.展开更多
Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review ...Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review discusses the driving forces behind the self-assembly process of perovskite NCs,and the commonly used self-assembly methods and different self-assembly structures are detailed.Subsequently,we summarize the collective optoelectronic properties and application areas of perovskite superlattice structures.Finally,we conclude with an outlook on the potential issues and future challenges in developing perovskite NCs.展开更多
The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with th...The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with the lignin oligomers,were adopted to study their effects during solvent shifting process for LNPs’production.The lignin oligomers with widely distributed molecular weight and abundant guaiacyl units were extracted from wood waste(mainly consists of pine wood),exerting outstanding self-assembly capability.Uniform and spherical LNPs were generated in H_(2)O-n-propanol cosolvent,whereas irregular LNPs were obtained in H_(2)O-methanol cosolvent.The unsatisfactory self-assembly performance of the lignin oligomers in H_(2)O-methanol cosolvent could be attributed to two aspects.On one hand,for the initial dissolution state,the distinguishing Hansen solubility parameter and polarity between methanol solvent and lignin oligomers resulted in the poor dispersion of the lignin oligomers.On the other hand,strong hydrogen bonds between methanol solvent and lignin oligomers during solvent shifting process,hindered the interactions among the lignin oligomers for self-assembly.展开更多
A new kind of non-Gaussian quantum catalyzed state is proposed via multiphoton measurements and two-mode squeezing as an input of thermal state.The characteristics of the generated multiphoton catalysis output state d...A new kind of non-Gaussian quantum catalyzed state is proposed via multiphoton measurements and two-mode squeezing as an input of thermal state.The characteristics of the generated multiphoton catalysis output state depends on the thermal parameter,catalyzed photon number and squeezing parameter.We then analyze the nonclassical properties by examining the photon number distribution,photocount distribution and partial negativity of the Wigner function.Our findings indicate that nonclassicality can be achieved through the implementation of multiphoton catalysis operations and modulated by the thermal parameter,catalyzed photon number and squeezing parameter.展开更多
The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium...The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium alginate-based multilayer film is fabricated via a layer-by-layer(LBL)self-assembly method.With the help of superior interaction between the layers,the multilayer film possesses excellent mechanical properties(with a tensile strength of 50 MPa).Besides,the film displays outstanding water retention property(blocking moisture of 97.56%)and ultraviolet blocking property.Anthocyanin is introduced into the film to detect the food quality since it is one natural plant polyphenol that is sensitive to the pH changes ranging from 1 to 13 in food when spoilage occurs.It is noted that the film is also bacteriostatic which is desired for food packaging.This study describes a simple technique for the development of advanced multifunctional and fully biodegradable food packaging film and it is a sustainable alternative to plastic packaging.展开更多
Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their mac...Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their macroscopic assembly.The present study employed a gentle and direct self-assembly technique,wherein controlled growth of CNT sheaths occurred on the metal wire’s surface,followed by etching of the remaining metal to obtain the hollow tubes composed of CNTs.By controlling the growth time and temperature,it is possible to alter the thickness of the CNTs sheath.After immersing in a solution containing 1 g/L of CNTs at 60℃for 24 h,the resulting CNTs layer achieved a thickness of up to 60μm.These hollow CNTs tubes with varying inner diameters were prepared through surface reinforcement using polymers and sacrificing metal wires,thereby exhibiting exceptional attributes such as robustness,flexibility,air tightness,and high adsorption capacity that effectively capture CO_(2) from the gas mixture.展开更多
Since the D-band center theory was proposed,it has been widely used in the fields of surface chemistry by almost all researchers,due to its easy understanding,convenient operation and relative accuracy.However,with th...Since the D-band center theory was proposed,it has been widely used in the fields of surface chemistry by almost all researchers,due to its easy understanding,convenient operation and relative accuracy.However,with the continuous development of material systems and modification strategies,researchers have gradually found that D-band center theory is usually effective for large metal particle systems,but for small metal particle systems or semiconductors,such as single atom systems,the opposite conclusion to the D-band center theory is often obtained.To solve the issue above,here we propose a bonding and anti-bonding orbitals stable electron intensity difference(BASED)theory for surface chemistry.The newly-proposed BASED theory can not only successfully explain the abnormal phenomena of D-band center theory,but also exhibits a higher accuracy for prediction of adsorption energy and bond length of intermediates on active sites.Importantly,a new phenomenon of the spin transition state in the adsorption process is observed based on the BASED theory,where the active center atom usually yields an unstable high spin transition state to enhance its adsorption capability in the adsorption process of intermediates when their distance is about 2.5Å.In short,the BASED theory can be considered as a general principle to understand catalytic mechanism of intermediates on surfaces.展开更多
We consider the inverse problem of finding guiding pattern shapes that result in desired self-assembly morphologies of block copolymer melts.Specifically,we model polymer selfassembly using the self-consistent field t...We consider the inverse problem of finding guiding pattern shapes that result in desired self-assembly morphologies of block copolymer melts.Specifically,we model polymer selfassembly using the self-consistent field theory and derive,in a non-parametric setting,the sensitivity of the dissimilarity between the desired and the actual morphologies to arbitrary perturbations in the guiding pattern shape.The sensitivity is then used for the optimization of the confining pattern shapes such that the dissimilarity between the desired and the actual morphologies is minimized.The efficiency and robustness of the proposed gradient-based algorithm are demonstrated in a number of examples related to templating vertical interconnect accesses(VIA).展开更多
The activity and selectivity of electrocatalytic CO_(2)reduction reaction(CO_(2)RR)to C_(2)products on metal catalysts can be regulated by molecular surfactants.However,the mechanism behind it remains elusive and deba...The activity and selectivity of electrocatalytic CO_(2)reduction reaction(CO_(2)RR)to C_(2)products on metal catalysts can be regulated by molecular surfactants.However,the mechanism behind it remains elusive and debatable.Herein,copper nanowires(Cu NWs)were fabricated and decorated with cobalt phthalocyanine(CoPc).The electronic interaction between the Cu NWs,CoPc,CO_(2) and CO_(2)RR intermediates were explored by density functional theory(DFT)calculations.It was found that the selectivity and activity of CO_(2)RR towards C_(2)products on Cu NWs were considerably enhanced from 35.2%to 69.9%by surface decoration of CoPc.DFT calculations revealed that CO_(2)RR can proceed in the interphase between Cu substrate and CoPc,and the CO_(2)RR intermediates could synergistically bond with both Cu and Co metal centre in CuNWs-CoPc,which favours the adsorption of CO_(2),CO and CO_(2)RR intermediates,thus reducing the free energy for CO-COcoupling towards C_(2)products.The synergistic interaction was further extended to phthalocyanine(Pc)and other metal phthalocyanine derivatives(MPc),where a relatively weaker synergistic interaction of COintermediates with MPc and Cu substrate and only a slight enhancement of CO_(2)RR towards C_(2) products were observed.This study demonstrates a synergistic catalysis pathway for CO_(2)RR,a novel perspective in interpreting the role of CoPc in enhancing the activity and selectivity of CO_(2)RR on Cu NWs,in contrast to the conventional tandem catalysis mechanism.展开更多
Poly(3,4-ethylenedioxyethiophene)-polystyrene sulfonic acid(PEDOT:PSS)/polyallyl dimethyl ammonium chloride modified reduced graphene oxide(PDDA-rGO)was layer by layer self-assembled on the cotton fiber.The surface mo...Poly(3,4-ethylenedioxyethiophene)-polystyrene sulfonic acid(PEDOT:PSS)/polyallyl dimethyl ammonium chloride modified reduced graphene oxide(PDDA-rGO)was layer by layer self-assembled on the cotton fiber.The surface morphology and electric property was investigated.The results confirmed the dense membrane of PEDOT:PSS and the lamellar structure of PDDA-rGO on the fibers.It has excellent electrical conductivity and mechanical properties.The fiber based electrochemical transistor(FECTs)prepared by the composite conductive fiber has a maximum output current of 8.7 mA,a transconductance peak of 10 mS,an on time of 1.37 s,an off time of 1.6 s and excellent switching stability.Most importantly,the devices by layer by layer self-assembly technology opens a path for the true integration of organic electronics with traditional textile technologies and materials,laying the foundation for their later widespread application.展开更多
Photothermal catalysis realizes the synergistic effect of solar energy and thermochemistry,which also has the potential to improve the reaction rate and optimize the selectivity.In this review,the research progress of...Photothermal catalysis realizes the synergistic effect of solar energy and thermochemistry,which also has the potential to improve the reaction rate and optimize the selectivity.In this review,the research progress of photothermal catalytic removal of volatile organic compounds(VOCs)by nano-catalysts in recent years is systematically reviewed.First,the fundamentals of photothermal catalysis and the fabrication of catalysts are described,and the design strategy of optimizing photothermal catalysis performance is proposed.Second,the performance for VOC degradation with photothermal catalysis is evaluated and compared for the batch and continuous systems.Particularly,the catalytic mechanism of VOC oxidation is systematically introduced based on experimental and theoretical study.Finally,the future limitations and challenges have been discussed,and potential research directions and priorities are highlighted.A broad view of recent photothermal catalyst fabrication,applications,challenges,and prospects can be systemically provided by this review.展开更多
Although lithium-sulfur batteries(Li SBs)are regarded as one of the most promising candidates for the next-generation energy storage system,the actual industrial application is hindered by the sluggish solid–liquid p...Although lithium-sulfur batteries(Li SBs)are regarded as one of the most promising candidates for the next-generation energy storage system,the actual industrial application is hindered by the sluggish solid–liquid phase conversion kinetics,severe shuttle effect,and low sulfur loadings.Herein,a zeolitic imidazolate framework(ZIF)derived heterogeneous ZnSe-CoSe nanoparticles encapsulated in hollow N-doped carbon nanocage(ZnSe-CoSe-HNC)was designed by etching with tannic acid as a multifunctional electrocatalyst to boost the polysulfide conversion kinetics in LiSBs.The hollow structure in ZIF ensures large inner voids for sulfur and buffering volume expansions.Abundant exposed ZnSe-CoSe heterogeneous interfaces serve as bifunctional adsorption-catalytic centers to accelerate the conversion kinetics and alleviate the shuttle effect.Together with the highly conductive framework,the ZnSe-CoSeHNC/S cathode exhibits a high initial reversible capacity of 1305.3 m A h g-1at 0.2 C,high-rate capability,and reliable cycling stability under high sulfur loading and lean electrolyte(maintaining at 745 m A h g-1after 200 cycles with a high sulfur loading of 6.4 mg cm-2and a low electrolyte/sulfur ratio of 6μL mg^(-1)).Theoretical calculations have demonstrated the heterostructures of ZnSe-CoSe offer higher binding energy to lithium polysulfides than that of ZnSe or CoSe,facilitating the electron transfer to lithium polysulfides.This work provides a novel heterostructure with superior catalytic ability and hollow conductive architecture,paving the way for the practical application of functional sulfur electrodes.展开更多
Ferroptosis has emerged as a potent form of no-apoptotic cell death that offers a promising alternative to avoid the chemoresistance of apoptotic pathways and serves as a vulnerability of cancer.Herein,we have constru...Ferroptosis has emerged as a potent form of no-apoptotic cell death that offers a promising alternative to avoid the chemoresistance of apoptotic pathways and serves as a vulnerability of cancer.Herein,we have constructed a biomimetic self-assembly nano-prodrug system that enables the co-delivery of gefitinib(Gefi),ferrocene(Fc)and dihydroartemisinin(DHA)for the combined therapy of both ferroptosis and apoptosis.In the tumor microenvironment,this nano-prodrug is able to disassemble and trigger drug release under high levels of GSH.Interestingly,the released DHA can downregulate GPX4 level for the enhancement of intracellular ferroptosis from Fc,further executing tumor cell death with concomitant chemotherapy by Gefi.More importantly,this nano-prodrug provides highly homologous targeting ability by coating related cell membranes and exhibits outstanding inhibition of tumor growth and metastasis,as well as no noticeable side-effects during treatments.This simple small molecular self-assembled nano-prodrug provides a new reasonably designed modality for ferroptosis-combined chemotherapy.展开更多
Sustainable ammonia synthesis at ambient conditions that relies on renewable sources of energy and feedstocks is globally sought to replace the Haber-Bosch process.Here,using nitrogen and water as raw materials,a nont...Sustainable ammonia synthesis at ambient conditions that relies on renewable sources of energy and feedstocks is globally sought to replace the Haber-Bosch process.Here,using nitrogen and water as raw materials,a nonthermal plasma catalysis approach is demonstrated as an effective powerto-chemicals conversion strategy for ammonia production.By sustaining a highly reactive environment,successful plasma-catalytic production of NH_(3) was achieved from the dissociation of N_(2) and H_(2)O under mild conditions.Plasma-induced vibrational excitation is found to decrease the N_(2) and H_(2)O dissociation barriers,with the presence of matched catalysts in the nonthermal plasma discharge reactor contributing significantly to molecular dissociation on the catalyst surface.Density functional theory calculations for the activation energy barrier for the dissociation suggest that ruthenium catalysts supported on magnesium oxide exhibit superior performance over other catalysts in NH_(3) production by lowering the activation energy for the dissociative adsorption of N_(2) down to 1.07 eV.The highest production rate,2.67 mmol gcat.^(-1) h^(-1),was obtained using ruthenium catalyst supported on magnesium oxide.This work highlights the potential of nonthermal plasma catalysis for the activation of renewable sources to serve as a new platform for sustainable ammonia production.展开更多
Lignin waste from the papermaking and biorefineries industry is a significantly promising renewable resource to prepare advanced carbon materials for diverse applications,such as the electrodes of supercapacitors;howe...Lignin waste from the papermaking and biorefineries industry is a significantly promising renewable resource to prepare advanced carbon materials for diverse applications,such as the electrodes of supercapacitors;however,the improvement of their energy density remains a challenge.Here,we design a green and universal approach to prepare the composite electrode material,which is composed of lignin-phenolformaldehyde resins derived hierarchical porous carbon(LR-HPC)as conductive skeletons and the self-assembly manganese cobaltite(MnCo_(2)O_(4))nanocrystals as active sites.The synthesized C@MnCo_(2)O_(4)composite has an abundant porous structure and superior electronic conductivity,allowing for more charge/electron mass transfer channels and active sites for the redox reactions.The composite shows excellent electrochemical performance,such as the maximum specific capacitance of~726 mF cm^(-2)at 0.5 mV s^(-1),due to the significantly enhanced interactive interface between LR-HPC and MnCo_(2)O_(4)crystals.The assembled all-solid-state asymmetric supercapacitor,with the LR-HPC and C@MnCo_(2)O_(4)as cathode and anode,respectively,exhibits the highest volumetric energy density of 0.68 mWh cm^(-3)at a power density of 8.2 mW cm^(-3).Moreover,this device shows a high capacity retention ratio of~87.6%at 5 mA cm^(-2)after 5000 cycles.展开更多
Photoelectrochemical(PEC) technology provides a promising prospect for the transformation of polyethylene terephthalate(PET) plastic wastes to produce value-added chemicals.The PEC catalytic systems with high activity...Photoelectrochemical(PEC) technology provides a promising prospect for the transformation of polyethylene terephthalate(PET) plastic wastes to produce value-added chemicals.The PEC catalytic systems with high activity,selectivity and long-term durability are required for the future up-scaling industrial applications.Herein,we employed the interfacial modification strategy to develop an efficient and stable photoanode and evaluated its PEC activity for ethylene glycol(EG,derived from PET hydrolysate) oxidation to formic acid.The interfacial modification between Fe_(2)O_(3)semiconductor and Ni(OH)xcocatalyst with ultrathin TiO_(x) interlayer not only improved the photocurrent density by accelerating the kinetics of photogenerated charge carriers,but also kept the high Faradaic efficiency(over 95% in 30 h) towards the value-added formic acid product.This work proposes an effective method to promote the PEC activity and enhance the long-term stability of photoelectrodes for upcycling PET plastic wastes.展开更多
Light-to-thermal conversion materials(LTCMs)have been of great interest to researchers due to their impressive energy conversion capacity and wide range of applications in biomedical,desalination,and synergistic catal...Light-to-thermal conversion materials(LTCMs)have been of great interest to researchers due to their impressive energy conversion capacity and wide range of applications in biomedical,desalination,and synergistic catalysis.Given the limited advances in existing materials(metals,semiconductors,π-conjugates),researchers generally adopt the method of constructing complex systems and hybrid structures to optimize performance and achieve multifunctional integration.However,the development of LTCMs is still in its infancy as the physical mechanism of light-to-thermal conversion is unclear.In this review,we proposed design strategies for efficient LTCMs by analyzing the physical process of light-tothermal conversion.First,we analyze the nature of light absorption and heat generation to reveal the physical processes of light-to-thermal conversion.Then,we explain the light-to-thermal conversion mechanisms of metallic,semiconducting andπ-conjugated LCTMs,and propose new material design strategies and performance improvement methods.Finally,we summarize the challenges and prospects of LTCMs in emerging applications such as solar water evaporation and photothermal catalysis.展开更多
Bimetallic catalysts typically exploit unique synergetic effects between two metal species to achieve their catalytic effect.Understanding the mechanism of CO oxidation using hybrid heterogeneous catalysts is importan...Bimetallic catalysts typically exploit unique synergetic effects between two metal species to achieve their catalytic effect.Understanding the mechanism of CO oxidation using hybrid heterogeneous catalysts is important for effective catalyst design and environmental protection.Herein,we report a Bi-Au/SiO_(2)tandem bimetallic catalyst for the oxidation of CO over the Au/SiO_(2)surface,which was monitored using near-ambient-pressure X-ray photoelectron spectroscopy.The Au-decorated SiO_(2)catalyst exhibited scarce activity in the CO oxidation reaction;however,the introduction of Bi to the Au/SiO_(2)system promoted the catalytic activity.The mechanism is thought to involve the dissociation O_(2)molecules in the presence of Bi,which results in spillover of the O species to adjacent Au atoms,thereby forming Au^(δ+).Further CO adsorption,followed by thermal treatment,facilitated the oxidation of CO at the Au-Bi interface,resulting in a reversible reversion to the neutral Au valence state.Our work provides insight into the mechanism of CO oxidation on tandem surfaces and will facilitate the rational design of other Au-based catalysts.展开更多
Plasma-catalytic dry reforming of CH_(4)(DRM) is promising to convert the greenhouse gasses CH_(4) and CO_(2) into value-added chemicals, thus simultaneously providing an alternative to fossil resources as feedstock f...Plasma-catalytic dry reforming of CH_(4)(DRM) is promising to convert the greenhouse gasses CH_(4) and CO_(2) into value-added chemicals, thus simultaneously providing an alternative to fossil resources as feedstock for the chemical industry. However, while many experiments have been dedicated to plasma-catalytic DRM, there is no consensus yet in literature on the optimal choice of catalyst for targeted products,because the underlying mechanisms are far from understood. Indeed, plasma catalysis is very complex,as it encompasses various chemical and physical interactions between plasma and catalyst, which depend on many parameters. This complexity hampers the comparison of experimental results from different studies, which, in our opinion, is an important bottleneck in the further development of this promising research field. Hence, in this perspective paper, we describe the important physical and chemical effects that should be accounted for when designing plasma-catalytic experiments in general, high-lighting the need for standardized experimental setups, as well as careful documentation of packing properties and reaction conditions, to further advance this research field. On the other hand, many parameters also create many windows of opportunity for further optimizing plasma-catalytic systems.Finally, various experiments also reveal the lack of improvement in plasma catalysis compared to plasma-only, specifically for DRM, but the underlying mechanisms are unclear. Therefore, we present our newly developed coupled plasma-surface kinetics model for DRM, to provide more insight in the underlying reasons. Our model illustrates that transition metal catalysts can adversely affect plasmacatalytic DRM, if radicals dominate the plasma-catalyst interactions. Thus, we demonstrate that a good understanding of the plasma-catalyst interactions is crucial to avoiding conditions at which these interactions negatively affect the results, and we provide some recommendations for improvement. For instance, we believe that plasma-catalytic DRM may benefit more from higher reaction temperatures,at which vibrational excitation can enhance the surface reactions.展开更多
In this work,a dual-size MOF-derived Co catalyst(0.2Co_(1-NPs)@NC)composed of single atoms(Co_(1))and highly dispersed nanoparticles(Co NPs)was prepared by in-situ Zn evaporation for the highperformance conversion of ...In this work,a dual-size MOF-derived Co catalyst(0.2Co_(1-NPs)@NC)composed of single atoms(Co_(1))and highly dispersed nanoparticles(Co NPs)was prepared by in-situ Zn evaporation for the highperformance conversion of lignin-derived o-methoxyphenols(lignin oil)to cyclohexanols(up to 97%yield)via cascade demethoxylation and dearomatization.Theoretical calculations elaborated that the dual-size Co catalyst exhibited a cooperative effect in the selective demethoxylation process,in which the Co NPs could initially dissociate hydrogen at lower energies while Co1remarkably facilitated the cleavage of the C_(Ar)-OCH_(3)bond.Moreover,the intramolecular hydrogen bonds formed in the omethoxy-containing phenols were found to result in a decrease in the bond energy of the C_(Ar)-OCH_(3)bond,which was more prone to be activated by the dual-size Co sites.Notably,the pre-hydrogenated intermediate(e.g.,2-methoxycyclohexanol from guaiacol)is difficult to undergo demethoxylation,indicating that the selective C_(Ar)-OCH_(3)bond cleavage is a prerequisite for the synthesis of cyclohexanols.The 0.2Co_(1-NPs)@NC catalyst was highly recyclable with a neglect decline in activity during five consecutive cycles.This cooperative catalytic strategy based on the metal size effect opens new avenues for biomass upgrading via enhanced C-O bond cleavage of high selectivity.展开更多
文摘Solid non-conjugated polymers have long been regarded as insulators due to deficiency of delocalizedπelectrons along the molecular chain framework.Up to date,origin of insulating polymer regulated charge transfer has not yet been uncovered.In this work,we unleash the root origin of charge transport capability of insulating polymer in photocatalysis.We ascertain that insulating polymer plays crucial roles in fine tuning of electronic structure of transition metal chalcogenides(TMCs),which mainly include altering surface electron density of TMCs for accelerating charge transport kinetics,triggering the generation of defect over TMCs for prolonging carrier lifetime,and acting as hole-trapping mediator for retarding charge recombination.These synergistic roles contribute to the charge transfer of insulating polymer.Our work opens a new vista of utilizing solid insulating polymers for maneuvering charge transfer toward solar energy conversion.
基金financially supported by the National Key Research and Development Program of China (2021YFB3600403)the Fundamental Research Funds for the Central Universities (000-0903069032)。
文摘Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review discusses the driving forces behind the self-assembly process of perovskite NCs,and the commonly used self-assembly methods and different self-assembly structures are detailed.Subsequently,we summarize the collective optoelectronic properties and application areas of perovskite superlattice structures.Finally,we conclude with an outlook on the potential issues and future challenges in developing perovskite NCs.
基金supported by the National Natural Science Foundation of China(22078211)the China Postdoctoral Science Foundation(2022M721115).
文摘The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with the lignin oligomers,were adopted to study their effects during solvent shifting process for LNPs’production.The lignin oligomers with widely distributed molecular weight and abundant guaiacyl units were extracted from wood waste(mainly consists of pine wood),exerting outstanding self-assembly capability.Uniform and spherical LNPs were generated in H_(2)O-n-propanol cosolvent,whereas irregular LNPs were obtained in H_(2)O-methanol cosolvent.The unsatisfactory self-assembly performance of the lignin oligomers in H_(2)O-methanol cosolvent could be attributed to two aspects.On one hand,for the initial dissolution state,the distinguishing Hansen solubility parameter and polarity between methanol solvent and lignin oligomers resulted in the poor dispersion of the lignin oligomers.On the other hand,strong hydrogen bonds between methanol solvent and lignin oligomers during solvent shifting process,hindered the interactions among the lignin oligomers for self-assembly.
基金supported by the National Natural Science Foundation of China (Grant No.11347026)the Natural Science Foundation of Shandong Province,China (Grant Nos.ZR2020MA085 and ZR2020MF113)。
文摘A new kind of non-Gaussian quantum catalyzed state is proposed via multiphoton measurements and two-mode squeezing as an input of thermal state.The characteristics of the generated multiphoton catalysis output state depends on the thermal parameter,catalyzed photon number and squeezing parameter.We then analyze the nonclassical properties by examining the photon number distribution,photocount distribution and partial negativity of the Wigner function.Our findings indicate that nonclassicality can be achieved through the implementation of multiphoton catalysis operations and modulated by the thermal parameter,catalyzed photon number and squeezing parameter.
基金National Undergraduate Training Program for Innovation and Entrepreneurship of China (Grant No.202210288027).
文摘The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium alginate-based multilayer film is fabricated via a layer-by-layer(LBL)self-assembly method.With the help of superior interaction between the layers,the multilayer film possesses excellent mechanical properties(with a tensile strength of 50 MPa).Besides,the film displays outstanding water retention property(blocking moisture of 97.56%)and ultraviolet blocking property.Anthocyanin is introduced into the film to detect the food quality since it is one natural plant polyphenol that is sensitive to the pH changes ranging from 1 to 13 in food when spoilage occurs.It is noted that the film is also bacteriostatic which is desired for food packaging.This study describes a simple technique for the development of advanced multifunctional and fully biodegradable food packaging film and it is a sustainable alternative to plastic packaging.
基金Project(ZCLTGS24B0101)supported by Zhejiang Provincial Natural Science Foundation of ChinaProject(Y202250501)supported by Scientific Research Fund of Zhejiang Provincial Education Department,ChinaProject supported by SRT Research Project of Jiaxing Nanhu University,China。
文摘Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their macroscopic assembly.The present study employed a gentle and direct self-assembly technique,wherein controlled growth of CNT sheaths occurred on the metal wire’s surface,followed by etching of the remaining metal to obtain the hollow tubes composed of CNTs.By controlling the growth time and temperature,it is possible to alter the thickness of the CNTs sheath.After immersing in a solution containing 1 g/L of CNTs at 60℃for 24 h,the resulting CNTs layer achieved a thickness of up to 60μm.These hollow CNTs tubes with varying inner diameters were prepared through surface reinforcement using polymers and sacrificing metal wires,thereby exhibiting exceptional attributes such as robustness,flexibility,air tightness,and high adsorption capacity that effectively capture CO_(2) from the gas mixture.
文摘Since the D-band center theory was proposed,it has been widely used in the fields of surface chemistry by almost all researchers,due to its easy understanding,convenient operation and relative accuracy.However,with the continuous development of material systems and modification strategies,researchers have gradually found that D-band center theory is usually effective for large metal particle systems,but for small metal particle systems or semiconductors,such as single atom systems,the opposite conclusion to the D-band center theory is often obtained.To solve the issue above,here we propose a bonding and anti-bonding orbitals stable electron intensity difference(BASED)theory for surface chemistry.The newly-proposed BASED theory can not only successfully explain the abnormal phenomena of D-band center theory,but also exhibits a higher accuracy for prediction of adsorption energy and bond length of intermediates on active sites.Importantly,a new phenomenon of the spin transition state in the adsorption process is observed based on the BASED theory,where the active center atom usually yields an unstable high spin transition state to enhance its adsorption capability in the adsorption process of intermediates when their distance is about 2.5Å.In short,the BASED theory can be considered as a general principle to understand catalytic mechanism of intermediates on surfaces.
文摘We consider the inverse problem of finding guiding pattern shapes that result in desired self-assembly morphologies of block copolymer melts.Specifically,we model polymer selfassembly using the self-consistent field theory and derive,in a non-parametric setting,the sensitivity of the dissimilarity between the desired and the actual morphologies to arbitrary perturbations in the guiding pattern shape.The sensitivity is then used for the optimization of the confining pattern shapes such that the dissimilarity between the desired and the actual morphologies is minimized.The efficiency and robustness of the proposed gradient-based algorithm are demonstrated in a number of examples related to templating vertical interconnect accesses(VIA).
基金supported by the National Natural Science Foundation of China(U2032151,22272059)。
文摘The activity and selectivity of electrocatalytic CO_(2)reduction reaction(CO_(2)RR)to C_(2)products on metal catalysts can be regulated by molecular surfactants.However,the mechanism behind it remains elusive and debatable.Herein,copper nanowires(Cu NWs)were fabricated and decorated with cobalt phthalocyanine(CoPc).The electronic interaction between the Cu NWs,CoPc,CO_(2) and CO_(2)RR intermediates were explored by density functional theory(DFT)calculations.It was found that the selectivity and activity of CO_(2)RR towards C_(2)products on Cu NWs were considerably enhanced from 35.2%to 69.9%by surface decoration of CoPc.DFT calculations revealed that CO_(2)RR can proceed in the interphase between Cu substrate and CoPc,and the CO_(2)RR intermediates could synergistically bond with both Cu and Co metal centre in CuNWs-CoPc,which favours the adsorption of CO_(2),CO and CO_(2)RR intermediates,thus reducing the free energy for CO-COcoupling towards C_(2)products.The synergistic interaction was further extended to phthalocyanine(Pc)and other metal phthalocyanine derivatives(MPc),where a relatively weaker synergistic interaction of COintermediates with MPc and Cu substrate and only a slight enhancement of CO_(2)RR towards C_(2) products were observed.This study demonstrates a synergistic catalysis pathway for CO_(2)RR,a novel perspective in interpreting the role of CoPc in enhancing the activity and selectivity of CO_(2)RR on Cu NWs,in contrast to the conventional tandem catalysis mechanism.
基金Funded by the Key R&D Program of the Science and Technology Department of Hubei Province(No.2022BCE008)。
文摘Poly(3,4-ethylenedioxyethiophene)-polystyrene sulfonic acid(PEDOT:PSS)/polyallyl dimethyl ammonium chloride modified reduced graphene oxide(PDDA-rGO)was layer by layer self-assembled on the cotton fiber.The surface morphology and electric property was investigated.The results confirmed the dense membrane of PEDOT:PSS and the lamellar structure of PDDA-rGO on the fibers.It has excellent electrical conductivity and mechanical properties.The fiber based electrochemical transistor(FECTs)prepared by the composite conductive fiber has a maximum output current of 8.7 mA,a transconductance peak of 10 mS,an on time of 1.37 s,an off time of 1.6 s and excellent switching stability.Most importantly,the devices by layer by layer self-assembly technology opens a path for the true integration of organic electronics with traditional textile technologies and materials,laying the foundation for their later widespread application.
基金sponsored financially by the National Natural Science Foundation of China (No.21906104 and No.12175145)the Shanghai Rising-Star Program (21QA1406600).
文摘Photothermal catalysis realizes the synergistic effect of solar energy and thermochemistry,which also has the potential to improve the reaction rate and optimize the selectivity.In this review,the research progress of photothermal catalytic removal of volatile organic compounds(VOCs)by nano-catalysts in recent years is systematically reviewed.First,the fundamentals of photothermal catalysis and the fabrication of catalysts are described,and the design strategy of optimizing photothermal catalysis performance is proposed.Second,the performance for VOC degradation with photothermal catalysis is evaluated and compared for the batch and continuous systems.Particularly,the catalytic mechanism of VOC oxidation is systematically introduced based on experimental and theoretical study.Finally,the future limitations and challenges have been discussed,and potential research directions and priorities are highlighted.A broad view of recent photothermal catalyst fabrication,applications,challenges,and prospects can be systemically provided by this review.
基金financially supported by the Natural Science Foundation of Shandong Province,China(ZR2021QE192)the National Natural Science Foundation of China(21975154,22179078)+1 种基金the Postdoctoral Science Foundation of China(2018M63074)Qingdao Post-doctoral Applied Research Project(QDBSH20220202040)。
文摘Although lithium-sulfur batteries(Li SBs)are regarded as one of the most promising candidates for the next-generation energy storage system,the actual industrial application is hindered by the sluggish solid–liquid phase conversion kinetics,severe shuttle effect,and low sulfur loadings.Herein,a zeolitic imidazolate framework(ZIF)derived heterogeneous ZnSe-CoSe nanoparticles encapsulated in hollow N-doped carbon nanocage(ZnSe-CoSe-HNC)was designed by etching with tannic acid as a multifunctional electrocatalyst to boost the polysulfide conversion kinetics in LiSBs.The hollow structure in ZIF ensures large inner voids for sulfur and buffering volume expansions.Abundant exposed ZnSe-CoSe heterogeneous interfaces serve as bifunctional adsorption-catalytic centers to accelerate the conversion kinetics and alleviate the shuttle effect.Together with the highly conductive framework,the ZnSe-CoSeHNC/S cathode exhibits a high initial reversible capacity of 1305.3 m A h g-1at 0.2 C,high-rate capability,and reliable cycling stability under high sulfur loading and lean electrolyte(maintaining at 745 m A h g-1after 200 cycles with a high sulfur loading of 6.4 mg cm-2and a low electrolyte/sulfur ratio of 6μL mg^(-1)).Theoretical calculations have demonstrated the heterostructures of ZnSe-CoSe offer higher binding energy to lithium polysulfides than that of ZnSe or CoSe,facilitating the electron transfer to lithium polysulfides.This work provides a novel heterostructure with superior catalytic ability and hollow conductive architecture,paving the way for the practical application of functional sulfur electrodes.
基金financial supports from National Natural Science Foundation of China(32000992,21977081,32101124)the Zhejiang Provincial Natural Science Foundation for Distinguished Young Scholar(LR23C100001)+1 种基金Wenzhou Medical University(KYYW201901)Zhejiang Qianjiang Talent Plan(QJD20020224)
文摘Ferroptosis has emerged as a potent form of no-apoptotic cell death that offers a promising alternative to avoid the chemoresistance of apoptotic pathways and serves as a vulnerability of cancer.Herein,we have constructed a biomimetic self-assembly nano-prodrug system that enables the co-delivery of gefitinib(Gefi),ferrocene(Fc)and dihydroartemisinin(DHA)for the combined therapy of both ferroptosis and apoptosis.In the tumor microenvironment,this nano-prodrug is able to disassemble and trigger drug release under high levels of GSH.Interestingly,the released DHA can downregulate GPX4 level for the enhancement of intracellular ferroptosis from Fc,further executing tumor cell death with concomitant chemotherapy by Gefi.More importantly,this nano-prodrug provides highly homologous targeting ability by coating related cell membranes and exhibits outstanding inhibition of tumor growth and metastasis,as well as no noticeable side-effects during treatments.This simple small molecular self-assembled nano-prodrug provides a new reasonably designed modality for ferroptosis-combined chemotherapy.
基金partially supported by the Australian Research Council(ARC)the National Science Fund for Distinguished Young Scholars(grant number 51925703)。
文摘Sustainable ammonia synthesis at ambient conditions that relies on renewable sources of energy and feedstocks is globally sought to replace the Haber-Bosch process.Here,using nitrogen and water as raw materials,a nonthermal plasma catalysis approach is demonstrated as an effective powerto-chemicals conversion strategy for ammonia production.By sustaining a highly reactive environment,successful plasma-catalytic production of NH_(3) was achieved from the dissociation of N_(2) and H_(2)O under mild conditions.Plasma-induced vibrational excitation is found to decrease the N_(2) and H_(2)O dissociation barriers,with the presence of matched catalysts in the nonthermal plasma discharge reactor contributing significantly to molecular dissociation on the catalyst surface.Density functional theory calculations for the activation energy barrier for the dissociation suggest that ruthenium catalysts supported on magnesium oxide exhibit superior performance over other catalysts in NH_(3) production by lowering the activation energy for the dissociative adsorption of N_(2) down to 1.07 eV.The highest production rate,2.67 mmol gcat.^(-1) h^(-1),was obtained using ruthenium catalyst supported on magnesium oxide.This work highlights the potential of nonthermal plasma catalysis for the activation of renewable sources to serve as a new platform for sustainable ammonia production.
基金The authors gratefully acknowledge the financial support from the National Key R&D Program of China(2021YFC2101304)China Postdoctoral Science Foundation(BX2021041)。
文摘Lignin waste from the papermaking and biorefineries industry is a significantly promising renewable resource to prepare advanced carbon materials for diverse applications,such as the electrodes of supercapacitors;however,the improvement of their energy density remains a challenge.Here,we design a green and universal approach to prepare the composite electrode material,which is composed of lignin-phenolformaldehyde resins derived hierarchical porous carbon(LR-HPC)as conductive skeletons and the self-assembly manganese cobaltite(MnCo_(2)O_(4))nanocrystals as active sites.The synthesized C@MnCo_(2)O_(4)composite has an abundant porous structure and superior electronic conductivity,allowing for more charge/electron mass transfer channels and active sites for the redox reactions.The composite shows excellent electrochemical performance,such as the maximum specific capacitance of~726 mF cm^(-2)at 0.5 mV s^(-1),due to the significantly enhanced interactive interface between LR-HPC and MnCo_(2)O_(4)crystals.The assembled all-solid-state asymmetric supercapacitor,with the LR-HPC and C@MnCo_(2)O_(4)as cathode and anode,respectively,exhibits the highest volumetric energy density of 0.68 mWh cm^(-3)at a power density of 8.2 mW cm^(-3).Moreover,this device shows a high capacity retention ratio of~87.6%at 5 mA cm^(-2)after 5000 cycles.
基金supported by the NSFC(21777096,21777097)the Ministry of Science and Technology of China(2018YFC1802001)+1 种基金the OU–SJTU strategic partnership development fundInternational Joint Research Promotion Program in Osaka University。
文摘Photoelectrochemical(PEC) technology provides a promising prospect for the transformation of polyethylene terephthalate(PET) plastic wastes to produce value-added chemicals.The PEC catalytic systems with high activity,selectivity and long-term durability are required for the future up-scaling industrial applications.Herein,we employed the interfacial modification strategy to develop an efficient and stable photoanode and evaluated its PEC activity for ethylene glycol(EG,derived from PET hydrolysate) oxidation to formic acid.The interfacial modification between Fe_(2)O_(3)semiconductor and Ni(OH)xcocatalyst with ultrathin TiO_(x) interlayer not only improved the photocurrent density by accelerating the kinetics of photogenerated charge carriers,but also kept the high Faradaic efficiency(over 95% in 30 h) towards the value-added formic acid product.This work proposes an effective method to promote the PEC activity and enhance the long-term stability of photoelectrodes for upcycling PET plastic wastes.
基金the financial support from the National Natural Science Foundation of China(Grant Nos.52272153,52032004)the KLOMT Key Laboratory Open Project(2022KLOMT02-05)。
文摘Light-to-thermal conversion materials(LTCMs)have been of great interest to researchers due to their impressive energy conversion capacity and wide range of applications in biomedical,desalination,and synergistic catalysis.Given the limited advances in existing materials(metals,semiconductors,π-conjugates),researchers generally adopt the method of constructing complex systems and hybrid structures to optimize performance and achieve multifunctional integration.However,the development of LTCMs is still in its infancy as the physical mechanism of light-to-thermal conversion is unclear.In this review,we proposed design strategies for efficient LTCMs by analyzing the physical process of light-tothermal conversion.First,we analyze the nature of light absorption and heat generation to reveal the physical processes of light-to-thermal conversion.Then,we explain the light-to-thermal conversion mechanisms of metallic,semiconducting andπ-conjugated LCTMs,and propose new material design strategies and performance improvement methods.Finally,we summarize the challenges and prospects of LTCMs in emerging applications such as solar water evaporation and photothermal catalysis.
基金the National Natural Science Foundation of China(Nos.11874380 and 22002183)the National Key Research and Development Program of China(No.2021YFA1600800).
文摘Bimetallic catalysts typically exploit unique synergetic effects between two metal species to achieve their catalytic effect.Understanding the mechanism of CO oxidation using hybrid heterogeneous catalysts is important for effective catalyst design and environmental protection.Herein,we report a Bi-Au/SiO_(2)tandem bimetallic catalyst for the oxidation of CO over the Au/SiO_(2)surface,which was monitored using near-ambient-pressure X-ray photoelectron spectroscopy.The Au-decorated SiO_(2)catalyst exhibited scarce activity in the CO oxidation reaction;however,the introduction of Bi to the Au/SiO_(2)system promoted the catalytic activity.The mechanism is thought to involve the dissociation O_(2)molecules in the presence of Bi,which results in spillover of the O species to adjacent Au atoms,thereby forming Au^(δ+).Further CO adsorption,followed by thermal treatment,facilitated the oxidation of CO at the Au-Bi interface,resulting in a reversible reversion to the neutral Au valence state.Our work provides insight into the mechanism of CO oxidation on tandem surfaces and will facilitate the rational design of other Au-based catalysts.
基金supported by the FWO-SBO project PlasMaCatDESIGN (FWO grant ID S001619N)the FWO fellowship of R. Michiels (FWO grant ID 1114921N)+2 种基金the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project)funded by the Research Foundation - Flanders (FWO)the Flemish Government。
文摘Plasma-catalytic dry reforming of CH_(4)(DRM) is promising to convert the greenhouse gasses CH_(4) and CO_(2) into value-added chemicals, thus simultaneously providing an alternative to fossil resources as feedstock for the chemical industry. However, while many experiments have been dedicated to plasma-catalytic DRM, there is no consensus yet in literature on the optimal choice of catalyst for targeted products,because the underlying mechanisms are far from understood. Indeed, plasma catalysis is very complex,as it encompasses various chemical and physical interactions between plasma and catalyst, which depend on many parameters. This complexity hampers the comparison of experimental results from different studies, which, in our opinion, is an important bottleneck in the further development of this promising research field. Hence, in this perspective paper, we describe the important physical and chemical effects that should be accounted for when designing plasma-catalytic experiments in general, high-lighting the need for standardized experimental setups, as well as careful documentation of packing properties and reaction conditions, to further advance this research field. On the other hand, many parameters also create many windows of opportunity for further optimizing plasma-catalytic systems.Finally, various experiments also reveal the lack of improvement in plasma catalysis compared to plasma-only, specifically for DRM, but the underlying mechanisms are unclear. Therefore, we present our newly developed coupled plasma-surface kinetics model for DRM, to provide more insight in the underlying reasons. Our model illustrates that transition metal catalysts can adversely affect plasmacatalytic DRM, if radicals dominate the plasma-catalyst interactions. Thus, we demonstrate that a good understanding of the plasma-catalyst interactions is crucial to avoiding conditions at which these interactions negatively affect the results, and we provide some recommendations for improvement. For instance, we believe that plasma-catalytic DRM may benefit more from higher reaction temperatures,at which vibrational excitation can enhance the surface reactions.
基金the Guizhou Provincial S&T Project(ZK[2022]011)the National Natural Science Foundation of China(21908033,21922513)+1 种基金the Natural Science Foundation of Guangxi Zhuang Autonomous Region(2020GXNSFAA297072)the Fok Ying-Tong Education Foundation(161030)。
文摘In this work,a dual-size MOF-derived Co catalyst(0.2Co_(1-NPs)@NC)composed of single atoms(Co_(1))and highly dispersed nanoparticles(Co NPs)was prepared by in-situ Zn evaporation for the highperformance conversion of lignin-derived o-methoxyphenols(lignin oil)to cyclohexanols(up to 97%yield)via cascade demethoxylation and dearomatization.Theoretical calculations elaborated that the dual-size Co catalyst exhibited a cooperative effect in the selective demethoxylation process,in which the Co NPs could initially dissociate hydrogen at lower energies while Co1remarkably facilitated the cleavage of the C_(Ar)-OCH_(3)bond.Moreover,the intramolecular hydrogen bonds formed in the omethoxy-containing phenols were found to result in a decrease in the bond energy of the C_(Ar)-OCH_(3)bond,which was more prone to be activated by the dual-size Co sites.Notably,the pre-hydrogenated intermediate(e.g.,2-methoxycyclohexanol from guaiacol)is difficult to undergo demethoxylation,indicating that the selective C_(Ar)-OCH_(3)bond cleavage is a prerequisite for the synthesis of cyclohexanols.The 0.2Co_(1-NPs)@NC catalyst was highly recyclable with a neglect decline in activity during five consecutive cycles.This cooperative catalytic strategy based on the metal size effect opens new avenues for biomass upgrading via enhanced C-O bond cleavage of high selectivity.