High-density well-aligned ZnO nanorods were successfully synthesized on ZnO-buffer-layer coated indium phosphide (InP) (100) substrates by a pulsed laser deposition (PLD) method. Scanning electron microscopy images sh...High-density well-aligned ZnO nanorods were successfully synthesized on ZnO-buffer-layer coated indium phosphide (InP) (100) substrates by a pulsed laser deposition (PLD) method. Scanning electron microscopy images show that the ZnO buffer layer formed uniform drip-like structure and ZnO nano- rods were well-oriented perpendicular to the substrate surface. The sharp diffraction peak observed at 34.46° in X-ray diffraction scanning pattern suggests that the ZnO nanorods exhibit a (002)-preferred orientation. The PL spectra of ZnO samples shows a strong near band edge emission centered at about 380 nm and a weak deep level emission centered at around 495 nm, and it demonstrates that the ZnO nanorods produced in this work have high optical quality, which sheds light on further applications for nanodevices.展开更多
Microspheres covered with ZnO nanowires were fabricated by oxidative evaporation of pure zinc powder without catalyst at 450℃. X-my diffraction (XRD) demonstrates that the as-obtained sample can be indexed to high ...Microspheres covered with ZnO nanowires were fabricated by oxidative evaporation of pure zinc powder without catalyst at 450℃. X-my diffraction (XRD) demonstrates that the as-obtained sample can be indexed to high crystaUinity with wurtzite structure. The structural features associated with different growth stages were monitored using scanning elec- tron microscope (SEM), which described the direct observation nucleation and growth process. Meanwhile, room temperature photoluminescence (PL) spectrum showed a UV emission at -388 nm and a broad green emission at -505 nm. The ZnO nanowires with the self-catalyzed growth mechanism were discussed in detail.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 50532080)the Science & Technology Foundation for Key Laboratory of Liaoning Province (Grant No. 20060131)the Doctoral Project by China Ministry of Education (Grant No. 20070141038)
文摘High-density well-aligned ZnO nanorods were successfully synthesized on ZnO-buffer-layer coated indium phosphide (InP) (100) substrates by a pulsed laser deposition (PLD) method. Scanning electron microscopy images show that the ZnO buffer layer formed uniform drip-like structure and ZnO nano- rods were well-oriented perpendicular to the substrate surface. The sharp diffraction peak observed at 34.46° in X-ray diffraction scanning pattern suggests that the ZnO nanorods exhibit a (002)-preferred orientation. The PL spectra of ZnO samples shows a strong near band edge emission centered at about 380 nm and a weak deep level emission centered at around 495 nm, and it demonstrates that the ZnO nanorods produced in this work have high optical quality, which sheds light on further applications for nanodevices.
文摘Microspheres covered with ZnO nanowires were fabricated by oxidative evaporation of pure zinc powder without catalyst at 450℃. X-my diffraction (XRD) demonstrates that the as-obtained sample can be indexed to high crystaUinity with wurtzite structure. The structural features associated with different growth stages were monitored using scanning elec- tron microscope (SEM), which described the direct observation nucleation and growth process. Meanwhile, room temperature photoluminescence (PL) spectrum showed a UV emission at -388 nm and a broad green emission at -505 nm. The ZnO nanowires with the self-catalyzed growth mechanism were discussed in detail.