AIM To establish minimum clinically important difference(MCID) for measurements in an orthopaedic patient population with joint disorders.METHODS Adult patients aged 18 years and older seeking care for joint condition...AIM To establish minimum clinically important difference(MCID) for measurements in an orthopaedic patient population with joint disorders.METHODS Adult patients aged 18 years and older seeking care for joint conditions at an orthopaedic clinic took the Patient-Reported Outcomes Measurement Information System Physical Function(PROMIS~? PF) computerized adaptive test(CAT), hip disability and osteoarthritis outcome score for joint reconstruction(HOOS JR), and the knee injury and osteoarthritis outcome score for joint reconstruction(KOOS JR) from February 2014 to April 2017. MCIDs were calculated using anchorbased and distribution-based methods. Patient reports of meaningful change in function since their first clinic encounter were used as an anchor.RESULTS There were 2226 patients who participated with a mean age of 61.16(SD = 12.84) years, 41.6% male, and 89.7% Caucasian. Mean change ranged from 7.29 to 8.41 for the PROMIS~? PF CAT, from 14.81 to 19.68 for the HOOS JR, and from 14.51 to 18.85 for the KOOS JR. ROC cut-offs ranged from 1.97-8.18 for the PF CAT, 6.33-43.36 for the HOOS JR, and 2.21-8.16 for the KOOS JR. Distribution-based methods estimated MCID values ranging from 2.45 to 21.55 for the PROMIS~? PF CAT; from 3.90 to 43.61 for the HOOS JR, and from 3.98 to 40.67 for the KOOS JR. The median MCID value in the range was similar to the mean change score for each measure and was 7.9 for the PF CAT, 18.0 for the HOOS JR, and 15.1 for the KOOS JR.CONCLUSION This is the first comprehensive study providing a wide range of MCIDs for the PROMIS? PF, HOOS JR, and KOOS JR in orthopaedic patients with joint ailments.展开更多
The current measurement was exploited in a more efficient way. Firstly, the system equation was updated by introducing a correction term, which depends on the current measurement and can be obtained by running a subop...The current measurement was exploited in a more efficient way. Firstly, the system equation was updated by introducing a correction term, which depends on the current measurement and can be obtained by running a suboptimal filter. Then, a new importance density function(IDF) was defined by the updated system equation. Particles drawn from the new IDF are more likely to be in the significant region of state space and the estimation accuracy can be improved. By using different suboptimal filter, different particle filters(PFs) can be developed in this framework. Extensions of this idea were also proposed by iteratively updating the system equation using particle filter itself, resulting in the iterated particle filter. Simulation results demonstrate the effectiveness of the proposed IDF.展开更多
The design, analysis and parallel implementation of particle filter(PF) were investigated. Firstly, to tackle the particle degeneracy problem in the PF, an iterated importance density function(IIDF) was proposed, wher...The design, analysis and parallel implementation of particle filter(PF) were investigated. Firstly, to tackle the particle degeneracy problem in the PF, an iterated importance density function(IIDF) was proposed, where a new term associating with the current measurement information(CMI) was introduced into the expression of the sampled particles. Through the repeated use of the least squares estimate, the CMI can be integrated into the sampling stage in an iterative manner, conducing to the greatly improved sampling quality. By running the IIDF, an iterated PF(IPF) can be obtained. Subsequently, a parallel resampling(PR) was proposed for the purpose of parallel implementation of IPF, whose main idea was the same as systematic resampling(SR) but performed differently. The PR directly used the integral part of the product of the particle weight and particle number as the number of times that a particle was replicated, and it simultaneously eliminated the particles with the smallest weights, which are the two key differences from the SR. The detailed implementation procedures on the graphics processing unit of IPF based on the PR were presented at last. The performance of the IPF, PR and their parallel implementations are illustrated via one-dimensional numerical simulation and practical application of passive radar target tracking.展开更多
Road safety performance function(SPF) analysis using data-driven and nonparametric methods, especially recent developed deep learning approaches, has gained increasing achievements. However, due to the learning mechan...Road safety performance function(SPF) analysis using data-driven and nonparametric methods, especially recent developed deep learning approaches, has gained increasing achievements. However, due to the learning mechanisms are hidden in a"black box" in deep learning, traffic features extraction and intelligent importance analysis are still unsolved and hard to generate.This paper focuses on this problem using a deciphered version of deep neural networks(DNN), one of the most popular deep learning models. This approach builds on visualization, feature importance and sensitivity analysis, can evaluate the contributions of input variables on model's "black box" feature learning process and output decision. Firstly, a visual feature importance(Vi FI) method that describes the importance of input features is proposed by adopting diagram and numerical-analysis. Secondly,by observing the change of weights using Vi FI on unsupervised training and fine-tuning of DNN, the final contributions of input features are calculated according to importance equations for both steps that we proposed. Sequentially, a case study based on a road SPF analysis is demonstrated, using data collected from a major Canadian highway, Highway 401. The proposed method allows effective deciphering of the model's inner workings and allows the significant features to be identified and the bad features to be eliminated. Finally, the revised dataset is used in crash modeling and vehicle collision prediction, and the testing result verifies that the deciphered and revised model achieves state-of-theart performance.展开更多
Gluten,the protein responsible for the superior viscoelastic properties of refined wheat flour dough over glutenfree cereals,causes celiac disease in people susceptible to gluten-allergy.Moreover,the sustainability of...Gluten,the protein responsible for the superior viscoelastic properties of refined wheat flour dough over glutenfree cereals,causes celiac disease in people susceptible to gluten-allergy.Moreover,the sustainability of using wheat flour in baked foods is threatened by its high cost,especially in countries that depend on imported wheat for their bakery industry.Research has shown that hydrocolloids serve as gluten replacements in baked foods,in response to these challenges.Food hydrocolloids are a class of high-molecular weight polysaccharides and proteins,which serve as functional ingredients in the food industry that modify the foods’rheological and textural properties.They function as stabilizers,viscosity modifiers,gelling agents,water binders,fibres,and inhibitors of ice crystal in foods.Further,food hydrocolloids have also been reported to possess health-promoting properties,such as lowering of postprandial blood glucose and plasma cholesterol concentrations,colon cancer prevention,and modulation of intestinal transit and satiety.They are obtained from plants,animals or microorganisms,and can be used in their natural or modified forms.The aim of this paper is to review the functional benefits of natural and modified hydrocolloids as gluten replacements in baked foods,emphasizing their physicochemical,nutraceutical,and sensorial importance.The application effects of food hydrocolloids as gluten substitutes in gluten-free baked products’quality were discussed.Also,some practical approaches to improve the quality of gluten-free baked products,in response to an increasing consumers’demand and the rising cost of refined wheat flour were highlighted.展开更多
基金National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health,No.U01AR067138.
文摘AIM To establish minimum clinically important difference(MCID) for measurements in an orthopaedic patient population with joint disorders.METHODS Adult patients aged 18 years and older seeking care for joint conditions at an orthopaedic clinic took the Patient-Reported Outcomes Measurement Information System Physical Function(PROMIS~? PF) computerized adaptive test(CAT), hip disability and osteoarthritis outcome score for joint reconstruction(HOOS JR), and the knee injury and osteoarthritis outcome score for joint reconstruction(KOOS JR) from February 2014 to April 2017. MCIDs were calculated using anchorbased and distribution-based methods. Patient reports of meaningful change in function since their first clinic encounter were used as an anchor.RESULTS There were 2226 patients who participated with a mean age of 61.16(SD = 12.84) years, 41.6% male, and 89.7% Caucasian. Mean change ranged from 7.29 to 8.41 for the PROMIS~? PF CAT, from 14.81 to 19.68 for the HOOS JR, and from 14.51 to 18.85 for the KOOS JR. ROC cut-offs ranged from 1.97-8.18 for the PF CAT, 6.33-43.36 for the HOOS JR, and 2.21-8.16 for the KOOS JR. Distribution-based methods estimated MCID values ranging from 2.45 to 21.55 for the PROMIS~? PF CAT; from 3.90 to 43.61 for the HOOS JR, and from 3.98 to 40.67 for the KOOS JR. The median MCID value in the range was similar to the mean change score for each measure and was 7.9 for the PF CAT, 18.0 for the HOOS JR, and 15.1 for the KOOS JR.CONCLUSION This is the first comprehensive study providing a wide range of MCIDs for the PROMIS? PF, HOOS JR, and KOOS JR in orthopaedic patients with joint ailments.
基金Project(61271296) supported by the National Natural Science Foundation of China
文摘The current measurement was exploited in a more efficient way. Firstly, the system equation was updated by introducing a correction term, which depends on the current measurement and can be obtained by running a suboptimal filter. Then, a new importance density function(IDF) was defined by the updated system equation. Particles drawn from the new IDF are more likely to be in the significant region of state space and the estimation accuracy can be improved. By using different suboptimal filter, different particle filters(PFs) can be developed in this framework. Extensions of this idea were also proposed by iteratively updating the system equation using particle filter itself, resulting in the iterated particle filter. Simulation results demonstrate the effectiveness of the proposed IDF.
基金Project(61372136) supported by the National Natural Science Foundation of China
文摘The design, analysis and parallel implementation of particle filter(PF) were investigated. Firstly, to tackle the particle degeneracy problem in the PF, an iterated importance density function(IIDF) was proposed, where a new term associating with the current measurement information(CMI) was introduced into the expression of the sampled particles. Through the repeated use of the least squares estimate, the CMI can be integrated into the sampling stage in an iterative manner, conducing to the greatly improved sampling quality. By running the IIDF, an iterated PF(IPF) can be obtained. Subsequently, a parallel resampling(PR) was proposed for the purpose of parallel implementation of IPF, whose main idea was the same as systematic resampling(SR) but performed differently. The PR directly used the integral part of the product of the particle weight and particle number as the number of times that a particle was replicated, and it simultaneously eliminated the particles with the smallest weights, which are the two key differences from the SR. The detailed implementation procedures on the graphics processing unit of IPF based on the PR were presented at last. The performance of the IPF, PR and their parallel implementations are illustrated via one-dimensional numerical simulation and practical application of passive radar target tracking.
基金supported by the National Science and Engineering Research Council of Canada(NSERC)Ontario Research Fund–Research Excellence(ORF-RE)+3 种基金the Ministry of Transportation Ontario(MTO)through Its Highway Infrastructure Innovation Funding Program(HIIFP)Beijing Postdoctoral Science Foundation(ZZ-2019-65)Beijing Chaoyang District Postdoctoral Science Foundation(2019ZZ-45)Beijing Municipal Education Commission(KM201811232016)。
文摘Road safety performance function(SPF) analysis using data-driven and nonparametric methods, especially recent developed deep learning approaches, has gained increasing achievements. However, due to the learning mechanisms are hidden in a"black box" in deep learning, traffic features extraction and intelligent importance analysis are still unsolved and hard to generate.This paper focuses on this problem using a deciphered version of deep neural networks(DNN), one of the most popular deep learning models. This approach builds on visualization, feature importance and sensitivity analysis, can evaluate the contributions of input variables on model's "black box" feature learning process and output decision. Firstly, a visual feature importance(Vi FI) method that describes the importance of input features is proposed by adopting diagram and numerical-analysis. Secondly,by observing the change of weights using Vi FI on unsupervised training and fine-tuning of DNN, the final contributions of input features are calculated according to importance equations for both steps that we proposed. Sequentially, a case study based on a road SPF analysis is demonstrated, using data collected from a major Canadian highway, Highway 401. The proposed method allows effective deciphering of the model's inner workings and allows the significant features to be identified and the bad features to be eliminated. Finally, the revised dataset is used in crash modeling and vehicle collision prediction, and the testing result verifies that the deciphered and revised model achieves state-of-theart performance.
文摘Gluten,the protein responsible for the superior viscoelastic properties of refined wheat flour dough over glutenfree cereals,causes celiac disease in people susceptible to gluten-allergy.Moreover,the sustainability of using wheat flour in baked foods is threatened by its high cost,especially in countries that depend on imported wheat for their bakery industry.Research has shown that hydrocolloids serve as gluten replacements in baked foods,in response to these challenges.Food hydrocolloids are a class of high-molecular weight polysaccharides and proteins,which serve as functional ingredients in the food industry that modify the foods’rheological and textural properties.They function as stabilizers,viscosity modifiers,gelling agents,water binders,fibres,and inhibitors of ice crystal in foods.Further,food hydrocolloids have also been reported to possess health-promoting properties,such as lowering of postprandial blood glucose and plasma cholesterol concentrations,colon cancer prevention,and modulation of intestinal transit and satiety.They are obtained from plants,animals or microorganisms,and can be used in their natural or modified forms.The aim of this paper is to review the functional benefits of natural and modified hydrocolloids as gluten replacements in baked foods,emphasizing their physicochemical,nutraceutical,and sensorial importance.The application effects of food hydrocolloids as gluten substitutes in gluten-free baked products’quality were discussed.Also,some practical approaches to improve the quality of gluten-free baked products,in response to an increasing consumers’demand and the rising cost of refined wheat flour were highlighted.