Supercapacitors are one of the most promising energy storage devices in the fields of vehicle transportation,flexible electronic devices,aerospace,etc.However,the existed self-discharge that is the spontaneous voltage...Supercapacitors are one of the most promising energy storage devices in the fields of vehicle transportation,flexible electronic devices,aerospace,etc.However,the existed self-discharge that is the spontaneous voltage decay after supercapacitors are fully charged,brings about the wide gap between experimental studies and practical utilization of supercapacitors.Although eliminating the selfdischarge completely is not reachable,suppressing the self-discharge rate to the lowest point is possible and feasible.So far,the significant endeavors have been devoted to achieve this goal.Herein,we summary and discuss the possible mechanisms for the self-discharge and the underlying influence factors.Moreover,the strategies to suppress the self-discharge are systemically summed up by three independent but unified aspects:modifying the electrode,modulating the electrolyte and tuning the separator.Finally,the major challenges to suppress the self-discharge of supercapacitors are concluded and the promising strategies are also pointed out and discussed.This review is presented with the view of serving as a guideline to suppress the self-discharge of supercapacitors and to across-the-board facilitate their widespread application.展开更多
Self-discharge is a significant issue in electric double layer energy storage, which leads to a rapid voltage drop and low energy efficiency. Here, we attempt to solve this problem by changing the structure of the ele...Self-discharge is a significant issue in electric double layer energy storage, which leads to a rapid voltage drop and low energy efficiency. Here, we attempt to solve this problem by changing the structure of the electric double layer into a de-solvated state, by constructing a nano-scale and ion-conductive solid electrolyte layer on the surface of a carbon electrode. The ion concentration gradient and potential field that drive the self-discharge are greatly restricted inside this electric double layer. Based on this understanding, a high-efficiency graphene-based lithium ion capacitor was built up, in which the self-discharge rate is reduced by 50% and the energy efficiency is doubled. The capacitor also has a high energy density, high power output and long life, and shows promise for practical applications.展开更多
For electric double layer supercapacitors,carbon materials originating from the purely physical energystorage mechanism limit the improvement in the capabilities of charge storage.To solve this problem,doping heteroat...For electric double layer supercapacitors,carbon materials originating from the purely physical energystorage mechanism limit the improvement in the capabilities of charge storage.To solve this problem,doping heteroatoms into carbon skeleton is a promising&charming strategy for enhancing electrochemical performance by providing the extra pseudocapacitance.However,the self-discharge behavior of such heteroatom-doped supercapacitors has been a challenging issue for a long time.Here,the porous carbon nanosheets with a tunable total content of heteroatoms are chosen as a demo to systemically decouple the correlation between the total content of heteroatoms and the specific capacitance as well as the self-discharge behavior.The capacitance changes in a range of 164–331 F g^(-1)@1 A g^(-1)with the increased total contents of doped heteroatom,strongly dependent on and sensitive to the total content of heteroatoms.The voltage retention rate and capacitance retention rate for the porous carbon nanosheets with a tunable total content of heteroatoms completely present a quick decline tendency as the increase in the content of heteroatoms,changing from 58%to 34%and 74%to 39%,respectively,indicative of a linear negative relationship.More importantly,the self-discharge mechanisms are elaborately explored and follow the combination of activation-and diffusion-controlled Faradic reactions.This work illustrates the diverse impacts of the doped heteroatoms on the electrochemical performance of supercapacitors,covering specific capacitance and self-discharge behavior,and highlights the importance of balancing the contents of doped heteroatoms in energy storage fields.展开更多
One of the major problems limiting the applications of electric double-layer(EDLC)supercapacitor devices is their inability to maintain their cell voltage over a significant period.Self-discharge is a spontaneous deca...One of the major problems limiting the applications of electric double-layer(EDLC)supercapacitor devices is their inability to maintain their cell voltage over a significant period.Self-discharge is a spontaneous decay in charged energy,often resulting in fully depleted devices in a matter of hours.Here,a new method for suppressing this self-discharge phenomenon is proposed by using directionally polarized piezoelectric electrospun nanofiber films as separator materials.Tailored engineering of polyvinylidene fluoride(PVDF)nanofiber films containing a small concentration of sodium dodecyl sulfate(SDS)results in a high proportion of polarβphases,reaching 380.5%of the total material.Inducing polarity into the separator material provides a reverse-diode mechanism in the device,such that it drops from an initial voltage of 1.6 down to 1 V after 10 h,as opposed to 0.3 V with a nonpolarized,commercial separator material.Thus,the energy retained for the polarized separator is 37%and 4%for the nonpolarized separator,making supercapacitors a more attractive solution for long-term energy storage.展开更多
Supercapacitors based on electric double layers are prone to serious self-discharge due to electrolyte ion desorption and the resulting energy loss severely limits the application range of supercapacitors.Rational des...Supercapacitors based on electric double layers are prone to serious self-discharge due to electrolyte ion desorption and the resulting energy loss severely limits the application range of supercapacitors.Rational design of polymer electrolyte systems to address this problem shows considerable generality and high feasibility.Herein,we reported a quasi-solid-state bipolar ionomer electrolyte prepared by an in-situ layer-by-layer ultraviolet-curing method,which has an integrated Janus structure with an intermediate binding layer.Based on the synergistic effect of confining impurity ions by ionizable groups and electrostatic repulsion to stabilize the electric double layers and superimposing synergies on both sides,the assembled device not only possesses ideal supercapacitor characteristics,but also exhibits an ultrahigh voltage retention of 71% after being left to stand for 100 h after being fully charged.Furthermore,through the quasi-in-situ energy dispersive X-ray spectroscopy linear scanning,the characteristics of ion diffusion in this ionomer electrolyte are revealed,suggesting its correlation with self-discharge behavior.展开更多
Factors that cause the self-discharge in valve-regulated sealed lead-acid batteries are discussed and measures to inhibit the self-discharge are put forward.
Supercapacitor is an efficient energy storage device,yet its wider application is still limited by self-discharge.Currently,various composite materials have been reported to have improved inhibition on self-discharge,...Supercapacitor is an efficient energy storage device,yet its wider application is still limited by self-discharge.Currently,various composite materials have been reported to have improved inhibition on self-discharge,while the evaluation of the synergistic effect in composite materials is challenging.Herein,pairs of intercalation type pseudocapacitive niobium oxides are pre-lithiated and coupled to construct conjugatedly configured supercapacitors,within which the cathode and anode experience identical reaction environment with single type of charge carrier,thus providing ideal platform to quantify the synergistic effect of composite materials on the self-discharge process.By using titanium dioxide as the stabilizer,we have compared how the modes of forming composite would influence the selfdischarge performance of the active composite materials with similar ratio of the constituent materials.Specifically,core@shell Nb_(2)O_(5)@TiO_(2) composite using TiO_(2) as the shell shows significantly higher synergy coefficient(μ=0.61,defined as the value that evaluates the synergistic effect between composite materials,and can be quantified using the overall performance of the composite,performance of individual component as well as the ratio of the component.) than other control group samples,which corresponds to the highest retained energy of 63% at 100 h.This work is expected to provide a general method for quantifying the synergistic effect and guide the design of composite materials with specific mode of forming the composite.展开更多
Ni-Fe rechargeable batteries possess the advantages of long cycle life, high theoretical specific energy, abundant raw material, low price and environmental friendship. It has a wide applied perspective. The advantage...Ni-Fe rechargeable batteries possess the advantages of long cycle life, high theoretical specific energy, abundant raw material, low price and environmental friendship. It has a wide applied perspective. The advantages, disadvantages and preparation methods of iron electrodes were summarized. The influence of four factors on discharge capacity and self-discharge rate of iron electrode were discussed by means of orthogonal experiments, galvanostatic charges and discharges. The influences of graphite on the discharge capacity and self-discharge rate of iron electrode were the most remarkable, the most unapparent influences on the discharge capacity and self-discharge rate were HPMC (hydroxy propoxy methoxy cellulose) and sodium sulphide, respectively. The aim of the present research was to study the effects of graphite, HPMC and iron powder added in the electrodes, sodium sulphide added in the electrolytes on the discharge capacity and self-discharge rate of iron electrodes. The largest discharge capacity of the iron electrodes was 488.5 mAh/g-Fe at 66.4 mA/g-Fe in the first ten cycles, and the average self-discharge rate was 0.367% per hour.展开更多
Printed micro-supercapacitor exhibits its flexibility in geometry design and integration,showing unprecedented potential in powering the internet of things and portable devices.However,the printing process brings unde...Printed micro-supercapacitor exhibits its flexibility in geometry design and integration,showing unprecedented potential in powering the internet of things and portable devices.However,the printing process brings undesired processing defects(e.g.,coffee ring effect),resulting in severe self-discharge of the printed micro-supercapacitors.The impact of such problems on device performance is poorly understood,limiting further development of microsupercapacitors.Herein,by analyzing the self-discharge behavior of fully printed micro-supercapacitors,the severe self-discharge problem is accelerated by the ohmic leakage caused by the coffee ring effect on an ultrathin polymer electrolyte.Based on this understanding,the coffee ring effect was successfully eradicated by introducing graphene oxide in the polymer electrolyte,achieving a decline of 99%in the self-discharge rate.Moreover,the micro-supercapacitors with uniformly printed polymer electrolyte present 7.64 F cm^(-3)volumetric capacitance(14.37 mF cm^(-2)areal capacitance),exhibiting about 50%increase compared to the one without graphene oxide addition.This work provides a new insight to understand the relationship between processing defects and device performance,which will help improve the performance and promote the application of printed micro-supercapacitors.展开更多
Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting m...Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting mode could achieve high yield,fiber quality and water use efficiency(WUE).This study aimed to explore if chemical topping affected cotton yield,quality and water use in relation to row configuration and plant densities.Results Experiments were carried out in Xinjiang China,in 2020 and 2021 with two topping method,manual topping and chemical topping,two plant densities,low and high,and two row configurations,i.e.,76 cm equal rows and 10+66 cm narrow-wide rows,which were commonly applied in matching harvest machine.Chemical topping increased seed cotton yield,but did not affect cotton fiber quality comparing to traditional manual topping.Under equal row spacing,the WUE in higher density was 62.4%higher than in the lower one.However,under narrow-wide row spacing,the WUE in lower density was 53.3%higher than in higher one(farmers’practice).For machine-harvest cotton in Xinjiang,the optimal row configuration and plant density for chemical topping was narrow-wide rows with 15 plants m-2 or equal rows with 18 plants m-2.Conclusion The plant density recommended in narrow-wide rows was less than farmers’practice and the density in equal rows was moderate with local practice.Our results provide new knowledge on optimizing agronomic managements of machine-harvested cotton for both high yield and water efficient.展开更多
BACKGROUND Lymph node ratio(LNR)was demonstrated to play a crucial role in the prognosis of many tumors.However,research concerning the prognostic value of LNR in postoperative gastric neuroendocrine neoplasm(NEN)pati...BACKGROUND Lymph node ratio(LNR)was demonstrated to play a crucial role in the prognosis of many tumors.However,research concerning the prognostic value of LNR in postoperative gastric neuroendocrine neoplasm(NEN)patients was limited.AIM To explore the prognostic value of LNR in postoperative gastric NEN patients and to combine LNR to develop prognostic models.METHODS A total of 286 patients from the Surveillance,Epidemiology,and End Results database were divided into the training set and validation set at a ratio of 8:2.92 patients from the First Affiliated Hospital of Soochow University in China were designated as a test set.Cox regression analysis was used to explore the relationship between LNR and disease-specific survival(DSS)of gastric NEN patients.Random survival forest(RSF)algorithm and Cox proportional hazards(CoxPH)analysis were applied to develop models to predict DSS respectively,and compared with the 8th edition American Joint Committee on Cancer(AJCC)tumornode-metastasis(TNM)staging.RESULTS Multivariate analyses indicated that LNR was an independent prognostic factor for postoperative gastric NEN patients and a higher LNR was accompanied by a higher risk of death.The RSF model exhibited the best performance in predicting DSS,with the C-index in the test set being 0.769[95%confidence interval(CI):0.691-0.846]outperforming the CoxPH model(0.744,95%CI:0.665-0.822)and the 8th edition AJCC TNM staging(0.723,95%CI:0.613-0.833).The calibration curves and decision curve analysis(DCA)demonstrated the RSF model had good calibration and clinical benefits.Furthermore,the RSF model could perform risk stratification and individual prognosis prediction effectively.CONCLUSION A higher LNR indicated a lower DSS in postoperative gastric NEN patients.The RSF model outperformed the CoxPH model and the 8th edition AJCC TNM staging in the test set,showing potential in clinical practice.展开更多
Static Poisson’s ratio(vs)is crucial for determining geomechanical properties in petroleum applications,namely sand production.Some models have been used to predict vs;however,the published models were limited to spe...Static Poisson’s ratio(vs)is crucial for determining geomechanical properties in petroleum applications,namely sand production.Some models have been used to predict vs;however,the published models were limited to specific data ranges with an average absolute percentage relative error(AAPRE)of more than 10%.The published gated recurrent unit(GRU)models do not consider trend analysis to show physical behaviors.In this study,we aim to develop a GRU model using trend analysis and three inputs for predicting n s based on a broad range of data,n s(value of 0.1627-0.4492),bulk formation density(RHOB)(0.315-2.994 g/mL),compressional time(DTc)(44.43-186.9 μs/ft),and shear time(DTs)(72.9-341.2μ s/ft).The GRU model was evaluated using different approaches,including statistical error an-alyses.The GRU model showed the proper trends,and the model data ranges were wider than previous ones.The GRU model has the largest correlation coefficient(R)of 0.967 and the lowest AAPRE,average percent relative error(APRE),root mean square error(RMSE),and standard deviation(SD)of 3.228%,1.054%,4.389,and 0.013,respectively,compared to other models.The GRU model has a high accuracy for the different datasets:training,validation,testing,and the whole datasets with R and AAPRE values were 0.981 and 2.601%,0.966 and 3.274%,0.967 and 3.228%,and 0.977 and 2.861%,respectively.The group error analyses of all inputs show that the GRU model has less than 5% AAPRE for all input ranges,which is superior to other models that have different AAPRE values of more than 10% at various ranges of inputs.展开更多
BACKGROUND Coronary heart disease(CHD)and heart failure(HF)are the major causes of morbidity and mortality worldwide.Early and accurate diagnoses of CHD and HF are essential for optimal management and prognosis.Howeve...BACKGROUND Coronary heart disease(CHD)and heart failure(HF)are the major causes of morbidity and mortality worldwide.Early and accurate diagnoses of CHD and HF are essential for optimal management and prognosis.However,conventional diagnostic methods such as electrocardiography,echocardiography,and cardiac biomarkers have certain limitations,such as low sensitivity,specificity,availability,and cost-effectiveness.Therefore,there is a need for simple,noninvasive,and reliable biomarkers to diagnose CHD and HF.AIM To investigate serum cystatin C(Cys-C),monocyte/high-density lipoprotein cholesterol ratio(MHR),and uric acid(UA)diagnostic values for CHD and HF.METHODS We enrolled 80 patients with suspected CHD or HF who were admitted to our hospital between July 2022 and July 2023.The patients were divided into CHD(n=20),HF(n=20),CHD+HF(n=20),and control groups(n=20).The serum levels of Cys-C,MHR,and UA were measured using immunonephelometry and an enzymatic method,respectively,and the diagnostic values for CHD and HF were evaluated using receiver operating characteristic(ROC)curve analysis.RESULTS Serum levels of Cys-C,MHR,and UA were significantly higher in the CHD,HF,and CHD+HF groups than those in the control group.The serum levels of Cys-C,MHR,and UA were significantly higher in the CHD+HF group than those in the CHD or HF group.The ROC curve analysis showed that serum Cys-C,MHR,and UA had good diagnostic performance for CHD and HF,with areas under the curve ranging from 0.78 to 0.93.The optimal cutoff values of serum Cys-C,MHR,and UA for diagnosing CHD,HF,and CHD+HF were 1.2 mg/L,0.9×10^(9),and 389μmol/L;1.4 mg/L,1.0×10^(9),and 449μmol/L;and 1.6 mg/L,1.1×10^(9),and 508μmol/L,respectively.CONCLUSION Serum Cys-C,MHR,and UA are useful biomarkers for diagnosing CHD and HF,and CHD+HF.These can provide information for decision-making and risk stratification in patients with CHD and HF.展开更多
AIM:To investigate systemic immune-inflammation index(SII),neutrophil-to-lymphocyte ratio(NLR),and plateletto-lymphocyte ratio(PLR)levels in patients with type 2 diabetes at different stages of diabetic retinopathy(DR...AIM:To investigate systemic immune-inflammation index(SII),neutrophil-to-lymphocyte ratio(NLR),and plateletto-lymphocyte ratio(PLR)levels in patients with type 2 diabetes at different stages of diabetic retinopathy(DR).METHODS:This retrospective study included 141 patients with type 2 diabetes mellitus(DM):45 without diabetic retinopathy(NDR),47 with non-proliferative diabetic retinopathy(NPDR),and 49 with proliferative diabetic retinopathy(PDR).Complete blood counts were obtained,and NLR,PLR,and SII were calculated.The study analysed the ability of inflammatory markers to predict DR using receiver operating characteristic(ROC)curves.The relationships between DR stages and SII,PLR,and NLP were assessed using multivariate logistic regression.RESULTS:The average NLR,PLR,and SII were higher in the PDR group than in the NPDR group(P=0.011,0.043,0.009,respectively);higher in the NPDR group than in the NDR group(P<0.001 for all);and higher in the PDR group than in the NDR group(P<0.001 for all).In the ROC curve analysis,the NLR,PLR,and SII were significant predictors of DR(P<0.001 for all).The highest area under the curve(AUC)was for the PLR(0.929 for PLR,0.925 for SII,and 0.821 for NLR).Multivariate regression analysis indicated that NLR,PLR,and SII were statistically significantly positive and independent predictors for the DR stages in patients with DM[odds ratio(OR)=1.122,95%confidence interval(CI):0.200–2.043,P<0.05;OR=0.038,95%CI:0.018–0.058,P<0.05;OR=0.007,95%CI:0.001–0.01,P<0.05,respectively).CONCLUSION:The NLR,PLR,and SII may be used as predictors of DR.展开更多
Objective Hypertriglyceridemic waist(HW),hypertriglyceridemic waist-to-height ratio(HWHtR),and waist-to-hip ratio(WHR)have been shown to be indicators of cardiometabolic risk factors.However,it is not clear which indi...Objective Hypertriglyceridemic waist(HW),hypertriglyceridemic waist-to-height ratio(HWHtR),and waist-to-hip ratio(WHR)have been shown to be indicators of cardiometabolic risk factors.However,it is not clear which indicator is more suitable for children and adolescents.We aimed to investigate the relationship between HW,HWHtR,WHR,and cardiovascular risk factors clustering to determine the best screening tools for cardiometabolic risk in children and adolescents.Methods This was a national cross-sectional study.Anthropometric and biochemical variables were assessed in approximately 70,000 participants aged 6–18 years from seven provinces in China.Demographics,physical activity,dietary intake,and family history of chronic diseases were obtained through questionnaires.ANOVA,χ2 and logistic regression analysis was conducted.Results A significant sex difference was observed for HWHtR and WHR,but not for HW phenotype.The risk of cardiometabolic health risk factor clustering with HW phenotype or the HWHtR phenotype was significantly higher than that with the non-HW or non-HWHtR phenotypes among children and adolescents(HW:OR=12.22,95%CI:9.54-15.67;HWHtR:OR=9.70,95%CI:6.93-13.58).Compared with the HW and HWHtR phenotypes,the association between risk of cardiometabolic health risk factors(CHRF)clustering and high WHR was much weaker and not significant(WHR:OR=1.14,95%CI:0.97-1.34).Conclusion Compared with HWHtR and WHR,the HW phenotype is a more convenient indicator with higher applicability to screen children and adolescents for cardiovascular risk factors.展开更多
We conducted a comprehensive review of existing prediction models pertaining to the efficacy of immune-checkpoint inhibitor(ICI)and the occurrence of immune-related adverse events(irAEs).The predictive potential of ne...We conducted a comprehensive review of existing prediction models pertaining to the efficacy of immune-checkpoint inhibitor(ICI)and the occurrence of immune-related adverse events(irAEs).The predictive potential of neutrophil-to-lymphocyte ratio(NLR)and platelet-to-lymphocyte ratio(PLR)in determining ICI effectiveness has been extensively investigated,while limited research has been conducted on predicting irAEs.Furthermore,the combined model incor-porating NLR and PLR,either with each other or in conjunction with additional markers such as carcinoembryonic antigen,exhibits superior predictive capabilities compared to individual markers alone.NLR and PLR are promising markers for clinical applications.Forthcoming models ought to incorporate established efficacious models and newly identified ones,thereby constituting a multifactor composite model.Furthermore,efforts should be made to explore effective clinical application approaches that enhance the predictive accuracy and efficiency.展开更多
BACKGROUND The neutrophil-to-lymphocyte ratio(NLR)and platelet-to-lymphocyte ratio(PLR)are novel inflammatory indicators that can be used to predict the severity and prognosis of various diseases.We categorize acute p...BACKGROUND The neutrophil-to-lymphocyte ratio(NLR)and platelet-to-lymphocyte ratio(PLR)are novel inflammatory indicators that can be used to predict the severity and prognosis of various diseases.We categorize acute pancreatitis by etiology into acute biliary pancreatitis(ABP)and hypertriglyceridemia-induced acute pancreatitis(HTGP).AIM To investigate the clinical significance of NLR and PLR in assessing persistent organ failure(POF)in HTGP and ABP.METHODS A total of 1450 patients diagnosed with acute pancreatitis(AP)for the first time at Shanxi Bethune Hospital between January 2012 and January 2023 were enrolled.The patients were categorized into two groups according to the etiology of AP:ABP in 530 patients and HTGP in 241 patients.We collected and compared the clinical data of the patients,including NLR,PLR,and AP prognostic scoring systems,within 48 h of hospital admission.RESULTS The NLR(9.1 vs 6.9,P<0.001)and PLR(203.1 vs 160.5,P<0.001)were significantly higher in the ABP group than in the HTGP group.In the HTGP group,both NLR and PLR were significantly increased in patients with severe AP and those with a SOFA score≥3.Likewise,in the ABP group,NLR and PLR were significantly elevated in patients with severe AP,modified computed tomography severity index score≥4,Japanese Severity Score≥3,and modified Marshall score≥2.Moreover,NLR and PLR showed predictive value for the development of POF in both the ABP and HTGP groups.CONCLUSION NLR and PLR vary between ABP and HTGP,are strongly associated with AP prognostic scoring systems,and have predictive potential for the occurrence of POF in both ABP and HTGP.展开更多
In an effort to investigate and quantify the patterns of local scour,researchers embarked on an in-depth study using a systematic experimental approach.The research focused on the effects of local scour around a set o...In an effort to investigate and quantify the patterns of local scour,researchers embarked on an in-depth study using a systematic experimental approach.The research focused on the effects of local scour around a set of four piles,each subjected to different hydromechanical conditions.In particular,this study aimed to determine how different attack angles—the angles at which the water flow impinges on the piles,and gap ratios—the ratios of the spacing between the piles to their diameters,influence the extent and nature of scour.A comprehensive series of 35 carefully designed experiments were orchestrated,each designed to dissect the nuances in how the gap ratio and attack angle might contribute to changes in the local scour observed at the base of pile groups.During these experimental trials,a wealth of local scour data were collected to support the analysis.These data included precise topographic profiles of the sediment bed around the pile groups,as well as detailed scour time histories showing the evolution of scour at strategic feature points throughout the test procedure.The analysis of the experimental data provided interesting insights.The study revealed that the interplay between the gap ratio and the attack angle had a pronounced influence on the scouring dynamics of the pile groups.One of the key observations was that the initial phases of scour,particularly within the first hour of water flow exposure,were characterized by a sharp increase in the scour depth occurring immediately in front of the piles.After this initial rapid development,the scour depth transitioned to a more gradual change rate.In contrast,the scour topography around the piles continuously evolved.This suggests that sediment displacement and the associated sculpting of the seabed around pile foundations are sustained and progressive processes,altering the underwater landscape over time.The results of this empirical investigation have significant implications for the design and construction of offshore multi-pile foundations,providing a critical reference for engineers and designers to estimate the expected scour depth around such structures,which is an integral part of decisions regarding foundation design,selection of structural materials,and implementation of scour protection measures.展开更多
To adapt to the change of aquaculture workshop site,optimize the shape of aquaculture tanks and improve the utilization rate of breeding space,it is necessary to determine the appropriate length width ratio parameters...To adapt to the change of aquaculture workshop site,optimize the shape of aquaculture tanks and improve the utilization rate of breeding space,it is necessary to determine the appropriate length width ratio parameters of aquaculture tanks.In this paper,computational fluid dynamics(CFD)technology is adopted to study the flow field performance of aquaculture tanks with different L/B ratios(L:the length;B:the width,of aquaculture tank)and different jet direction conditions(lengthways jet and widthways jet).A three-dimensional numerical calculation model of turbulence in rounded rectangle aquaculture tanks in dual-diagonal-inlet layout was established.Jet directions are arranged lengthways and widthways,and the water flow velocity,resistance coefficient change,vorticity,etc.are analyzed under two working conditions.Results show that the flow field performance in aquaculture tank decreases with the increase of the L/B ratio.The flow field performed well when L/B was 1.0-1.3,sharply dropped at 1.4-1.6,and poor at 1.7-1.9.The results provided a theoretical basis for the design and optimization in flow field performance of the industrialized circulating aquaculture tanks.展开更多
基金partly supported by the National Natural Science Foundation of China(NSFC,No.51872035)the Talent Program of Rejuvenation of the Liaoning(No.XLYC1807002)+1 种基金the Fundamental Research Funds for the Central Universities(DUT19LAB20)the National Key Research Development Program of China(2016YFB0101201)。
文摘Supercapacitors are one of the most promising energy storage devices in the fields of vehicle transportation,flexible electronic devices,aerospace,etc.However,the existed self-discharge that is the spontaneous voltage decay after supercapacitors are fully charged,brings about the wide gap between experimental studies and practical utilization of supercapacitors.Although eliminating the selfdischarge completely is not reachable,suppressing the self-discharge rate to the lowest point is possible and feasible.So far,the significant endeavors have been devoted to achieve this goal.Herein,we summary and discuss the possible mechanisms for the self-discharge and the underlying influence factors.Moreover,the strategies to suppress the self-discharge are systemically summed up by three independent but unified aspects:modifying the electrode,modulating the electrolyte and tuning the separator.Finally,the major challenges to suppress the self-discharge of supercapacitors are concluded and the promising strategies are also pointed out and discussed.This review is presented with the view of serving as a guideline to suppress the self-discharge of supercapacitors and to across-the-board facilitate their widespread application.
基金supported by the National Natural Science Foun-dation of China (Nos. 51525206 , 51521091 and 51172239)the Ministry of Science and Technology of China(2016YFA0200100 ,2016YFB0100100)+4 种基金the Strategic Priority Research Program of Chinese Academy of Science (XDA22010602)the Key Research Program of Chinese Academy of Sciences (Grant No. KGZD-EWT06)the Program for Guangdong Introducing Innovative and Enterpreneurial Teamsthe Strategic Priority Research Program of Chinese Academy of Science (No. XDA22010602)the Development and Reform Commission of Shenzhen Municipality for the development of the “Low-Dimensional Materials and Devices” discipline
文摘Self-discharge is a significant issue in electric double layer energy storage, which leads to a rapid voltage drop and low energy efficiency. Here, we attempt to solve this problem by changing the structure of the electric double layer into a de-solvated state, by constructing a nano-scale and ion-conductive solid electrolyte layer on the surface of a carbon electrode. The ion concentration gradient and potential field that drive the self-discharge are greatly restricted inside this electric double layer. Based on this understanding, a high-efficiency graphene-based lithium ion capacitor was built up, in which the self-discharge rate is reduced by 50% and the energy efficiency is doubled. The capacitor also has a high energy density, high power output and long life, and shows promise for practical applications.
基金partly supported by the National Natural Science Foundation of China(51872035,22078052)the Innovation Program of Dalian City of Liaoning Province(2019RJ03)the Shandong Provincial Natural Science Foundation(ZR2020ZD08)。
文摘For electric double layer supercapacitors,carbon materials originating from the purely physical energystorage mechanism limit the improvement in the capabilities of charge storage.To solve this problem,doping heteroatoms into carbon skeleton is a promising&charming strategy for enhancing electrochemical performance by providing the extra pseudocapacitance.However,the self-discharge behavior of such heteroatom-doped supercapacitors has been a challenging issue for a long time.Here,the porous carbon nanosheets with a tunable total content of heteroatoms are chosen as a demo to systemically decouple the correlation between the total content of heteroatoms and the specific capacitance as well as the self-discharge behavior.The capacitance changes in a range of 164–331 F g^(-1)@1 A g^(-1)with the increased total contents of doped heteroatom,strongly dependent on and sensitive to the total content of heteroatoms.The voltage retention rate and capacitance retention rate for the porous carbon nanosheets with a tunable total content of heteroatoms completely present a quick decline tendency as the increase in the content of heteroatoms,changing from 58%to 34%and 74%to 39%,respectively,indicative of a linear negative relationship.More importantly,the self-discharge mechanisms are elaborately explored and follow the combination of activation-and diffusion-controlled Faradic reactions.This work illustrates the diverse impacts of the doped heteroatoms on the electrochemical performance of supercapacitors,covering specific capacitance and self-discharge behavior,and highlights the importance of balancing the contents of doped heteroatoms in energy storage fields.
基金the UK Engineering and Physical Sciences Research Council(EPSRC)for funding this work under the Doctoral Training Partnership(DTP)award(EP/N509772/1).
文摘One of the major problems limiting the applications of electric double-layer(EDLC)supercapacitor devices is their inability to maintain their cell voltage over a significant period.Self-discharge is a spontaneous decay in charged energy,often resulting in fully depleted devices in a matter of hours.Here,a new method for suppressing this self-discharge phenomenon is proposed by using directionally polarized piezoelectric electrospun nanofiber films as separator materials.Tailored engineering of polyvinylidene fluoride(PVDF)nanofiber films containing a small concentration of sodium dodecyl sulfate(SDS)results in a high proportion of polarβphases,reaching 380.5%of the total material.Inducing polarity into the separator material provides a reverse-diode mechanism in the device,such that it drops from an initial voltage of 1.6 down to 1 V after 10 h,as opposed to 0.3 V with a nonpolarized,commercial separator material.Thus,the energy retained for the polarized separator is 37%and 4%for the nonpolarized separator,making supercapacitors a more attractive solution for long-term energy storage.
基金financial supports of National Natural Science Foundation of China(21875065,51673064,22109045)the China Postdoctoral Science Foundation Special Fund(2022T150211)the China Postdoctoral Science Foundation(2021M701191)。
文摘Supercapacitors based on electric double layers are prone to serious self-discharge due to electrolyte ion desorption and the resulting energy loss severely limits the application range of supercapacitors.Rational design of polymer electrolyte systems to address this problem shows considerable generality and high feasibility.Herein,we reported a quasi-solid-state bipolar ionomer electrolyte prepared by an in-situ layer-by-layer ultraviolet-curing method,which has an integrated Janus structure with an intermediate binding layer.Based on the synergistic effect of confining impurity ions by ionizable groups and electrostatic repulsion to stabilize the electric double layers and superimposing synergies on both sides,the assembled device not only possesses ideal supercapacitor characteristics,but also exhibits an ultrahigh voltage retention of 71% after being left to stand for 100 h after being fully charged.Furthermore,through the quasi-in-situ energy dispersive X-ray spectroscopy linear scanning,the characteristics of ion diffusion in this ionomer electrolyte are revealed,suggesting its correlation with self-discharge behavior.
文摘Factors that cause the self-discharge in valve-regulated sealed lead-acid batteries are discussed and measures to inhibit the self-discharge are put forward.
基金supported by the National Natural Science Foundation of China (52262030)the Natural Science Foundation of Guizhou Science and Technology Department (QKHJC-ZK[2021]YB257)。
文摘Supercapacitor is an efficient energy storage device,yet its wider application is still limited by self-discharge.Currently,various composite materials have been reported to have improved inhibition on self-discharge,while the evaluation of the synergistic effect in composite materials is challenging.Herein,pairs of intercalation type pseudocapacitive niobium oxides are pre-lithiated and coupled to construct conjugatedly configured supercapacitors,within which the cathode and anode experience identical reaction environment with single type of charge carrier,thus providing ideal platform to quantify the synergistic effect of composite materials on the self-discharge process.By using titanium dioxide as the stabilizer,we have compared how the modes of forming composite would influence the selfdischarge performance of the active composite materials with similar ratio of the constituent materials.Specifically,core@shell Nb_(2)O_(5)@TiO_(2) composite using TiO_(2) as the shell shows significantly higher synergy coefficient(μ=0.61,defined as the value that evaluates the synergistic effect between composite materials,and can be quantified using the overall performance of the composite,performance of individual component as well as the ratio of the component.) than other control group samples,which corresponds to the highest retained energy of 63% at 100 h.This work is expected to provide a general method for quantifying the synergistic effect and guide the design of composite materials with specific mode of forming the composite.
基金This work was supported by the National Natural Science Foundation of China under grant No.50002005Natural Sci ence Foundation of Tianjin under grant No.013606811,which were presided by Shihai YE.
文摘Ni-Fe rechargeable batteries possess the advantages of long cycle life, high theoretical specific energy, abundant raw material, low price and environmental friendship. It has a wide applied perspective. The advantages, disadvantages and preparation methods of iron electrodes were summarized. The influence of four factors on discharge capacity and self-discharge rate of iron electrode were discussed by means of orthogonal experiments, galvanostatic charges and discharges. The influences of graphite on the discharge capacity and self-discharge rate of iron electrode were the most remarkable, the most unapparent influences on the discharge capacity and self-discharge rate were HPMC (hydroxy propoxy methoxy cellulose) and sodium sulphide, respectively. The aim of the present research was to study the effects of graphite, HPMC and iron powder added in the electrodes, sodium sulphide added in the electrolytes on the discharge capacity and self-discharge rate of iron electrodes. The largest discharge capacity of the iron electrodes was 488.5 mAh/g-Fe at 66.4 mA/g-Fe in the first ten cycles, and the average self-discharge rate was 0.367% per hour.
基金the financial support of this work by the Science,Technology,and Innovation Commission of Shenzhen Municipality(Program No.JCYJ20180508151856806,No.JCYJ20180306171355233)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(Program No.CX201944)。
文摘Printed micro-supercapacitor exhibits its flexibility in geometry design and integration,showing unprecedented potential in powering the internet of things and portable devices.However,the printing process brings undesired processing defects(e.g.,coffee ring effect),resulting in severe self-discharge of the printed micro-supercapacitors.The impact of such problems on device performance is poorly understood,limiting further development of microsupercapacitors.Herein,by analyzing the self-discharge behavior of fully printed micro-supercapacitors,the severe self-discharge problem is accelerated by the ohmic leakage caused by the coffee ring effect on an ultrathin polymer electrolyte.Based on this understanding,the coffee ring effect was successfully eradicated by introducing graphene oxide in the polymer electrolyte,achieving a decline of 99%in the self-discharge rate.Moreover,the micro-supercapacitors with uniformly printed polymer electrolyte present 7.64 F cm^(-3)volumetric capacitance(14.37 mF cm^(-2)areal capacitance),exhibiting about 50%increase compared to the one without graphene oxide addition.This work provides a new insight to understand the relationship between processing defects and device performance,which will help improve the performance and promote the application of printed micro-supercapacitors.
基金Key Research and Development Program of Xinjiang(2022B02001-1)National Natural Science Foundation of China(42105172,41975146).
文摘Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting mode could achieve high yield,fiber quality and water use efficiency(WUE).This study aimed to explore if chemical topping affected cotton yield,quality and water use in relation to row configuration and plant densities.Results Experiments were carried out in Xinjiang China,in 2020 and 2021 with two topping method,manual topping and chemical topping,two plant densities,low and high,and two row configurations,i.e.,76 cm equal rows and 10+66 cm narrow-wide rows,which were commonly applied in matching harvest machine.Chemical topping increased seed cotton yield,but did not affect cotton fiber quality comparing to traditional manual topping.Under equal row spacing,the WUE in higher density was 62.4%higher than in the lower one.However,under narrow-wide row spacing,the WUE in lower density was 53.3%higher than in higher one(farmers’practice).For machine-harvest cotton in Xinjiang,the optimal row configuration and plant density for chemical topping was narrow-wide rows with 15 plants m-2 or equal rows with 18 plants m-2.Conclusion The plant density recommended in narrow-wide rows was less than farmers’practice and the density in equal rows was moderate with local practice.Our results provide new knowledge on optimizing agronomic managements of machine-harvested cotton for both high yield and water efficient.
基金Supported by the Science and Technology Plan of Suzhou City,No.SKY2021038.
文摘BACKGROUND Lymph node ratio(LNR)was demonstrated to play a crucial role in the prognosis of many tumors.However,research concerning the prognostic value of LNR in postoperative gastric neuroendocrine neoplasm(NEN)patients was limited.AIM To explore the prognostic value of LNR in postoperative gastric NEN patients and to combine LNR to develop prognostic models.METHODS A total of 286 patients from the Surveillance,Epidemiology,and End Results database were divided into the training set and validation set at a ratio of 8:2.92 patients from the First Affiliated Hospital of Soochow University in China were designated as a test set.Cox regression analysis was used to explore the relationship between LNR and disease-specific survival(DSS)of gastric NEN patients.Random survival forest(RSF)algorithm and Cox proportional hazards(CoxPH)analysis were applied to develop models to predict DSS respectively,and compared with the 8th edition American Joint Committee on Cancer(AJCC)tumornode-metastasis(TNM)staging.RESULTS Multivariate analyses indicated that LNR was an independent prognostic factor for postoperative gastric NEN patients and a higher LNR was accompanied by a higher risk of death.The RSF model exhibited the best performance in predicting DSS,with the C-index in the test set being 0.769[95%confidence interval(CI):0.691-0.846]outperforming the CoxPH model(0.744,95%CI:0.665-0.822)and the 8th edition AJCC TNM staging(0.723,95%CI:0.613-0.833).The calibration curves and decision curve analysis(DCA)demonstrated the RSF model had good calibration and clinical benefits.Furthermore,the RSF model could perform risk stratification and individual prognosis prediction effectively.CONCLUSION A higher LNR indicated a lower DSS in postoperative gastric NEN patients.The RSF model outperformed the CoxPH model and the 8th edition AJCC TNM staging in the test set,showing potential in clinical practice.
基金The authors thank the Yayasan Universiti Teknologi PETRONAS(YUTP FRG Grant No.015LC0-428)at Universiti Teknologi PETRO-NAS for supporting this study.
文摘Static Poisson’s ratio(vs)is crucial for determining geomechanical properties in petroleum applications,namely sand production.Some models have been used to predict vs;however,the published models were limited to specific data ranges with an average absolute percentage relative error(AAPRE)of more than 10%.The published gated recurrent unit(GRU)models do not consider trend analysis to show physical behaviors.In this study,we aim to develop a GRU model using trend analysis and three inputs for predicting n s based on a broad range of data,n s(value of 0.1627-0.4492),bulk formation density(RHOB)(0.315-2.994 g/mL),compressional time(DTc)(44.43-186.9 μs/ft),and shear time(DTs)(72.9-341.2μ s/ft).The GRU model was evaluated using different approaches,including statistical error an-alyses.The GRU model showed the proper trends,and the model data ranges were wider than previous ones.The GRU model has the largest correlation coefficient(R)of 0.967 and the lowest AAPRE,average percent relative error(APRE),root mean square error(RMSE),and standard deviation(SD)of 3.228%,1.054%,4.389,and 0.013,respectively,compared to other models.The GRU model has a high accuracy for the different datasets:training,validation,testing,and the whole datasets with R and AAPRE values were 0.981 and 2.601%,0.966 and 3.274%,0.967 and 3.228%,and 0.977 and 2.861%,respectively.The group error analyses of all inputs show that the GRU model has less than 5% AAPRE for all input ranges,which is superior to other models that have different AAPRE values of more than 10% at various ranges of inputs.
文摘BACKGROUND Coronary heart disease(CHD)and heart failure(HF)are the major causes of morbidity and mortality worldwide.Early and accurate diagnoses of CHD and HF are essential for optimal management and prognosis.However,conventional diagnostic methods such as electrocardiography,echocardiography,and cardiac biomarkers have certain limitations,such as low sensitivity,specificity,availability,and cost-effectiveness.Therefore,there is a need for simple,noninvasive,and reliable biomarkers to diagnose CHD and HF.AIM To investigate serum cystatin C(Cys-C),monocyte/high-density lipoprotein cholesterol ratio(MHR),and uric acid(UA)diagnostic values for CHD and HF.METHODS We enrolled 80 patients with suspected CHD or HF who were admitted to our hospital between July 2022 and July 2023.The patients were divided into CHD(n=20),HF(n=20),CHD+HF(n=20),and control groups(n=20).The serum levels of Cys-C,MHR,and UA were measured using immunonephelometry and an enzymatic method,respectively,and the diagnostic values for CHD and HF were evaluated using receiver operating characteristic(ROC)curve analysis.RESULTS Serum levels of Cys-C,MHR,and UA were significantly higher in the CHD,HF,and CHD+HF groups than those in the control group.The serum levels of Cys-C,MHR,and UA were significantly higher in the CHD+HF group than those in the CHD or HF group.The ROC curve analysis showed that serum Cys-C,MHR,and UA had good diagnostic performance for CHD and HF,with areas under the curve ranging from 0.78 to 0.93.The optimal cutoff values of serum Cys-C,MHR,and UA for diagnosing CHD,HF,and CHD+HF were 1.2 mg/L,0.9×10^(9),and 389μmol/L;1.4 mg/L,1.0×10^(9),and 449μmol/L;and 1.6 mg/L,1.1×10^(9),and 508μmol/L,respectively.CONCLUSION Serum Cys-C,MHR,and UA are useful biomarkers for diagnosing CHD and HF,and CHD+HF.These can provide information for decision-making and risk stratification in patients with CHD and HF.
基金Affiliated Jinling Hospital,Medical School of Nanjing University(No.22JCYYYB29).
文摘AIM:To investigate systemic immune-inflammation index(SII),neutrophil-to-lymphocyte ratio(NLR),and plateletto-lymphocyte ratio(PLR)levels in patients with type 2 diabetes at different stages of diabetic retinopathy(DR).METHODS:This retrospective study included 141 patients with type 2 diabetes mellitus(DM):45 without diabetic retinopathy(NDR),47 with non-proliferative diabetic retinopathy(NPDR),and 49 with proliferative diabetic retinopathy(PDR).Complete blood counts were obtained,and NLR,PLR,and SII were calculated.The study analysed the ability of inflammatory markers to predict DR using receiver operating characteristic(ROC)curves.The relationships between DR stages and SII,PLR,and NLP were assessed using multivariate logistic regression.RESULTS:The average NLR,PLR,and SII were higher in the PDR group than in the NPDR group(P=0.011,0.043,0.009,respectively);higher in the NPDR group than in the NDR group(P<0.001 for all);and higher in the PDR group than in the NDR group(P<0.001 for all).In the ROC curve analysis,the NLR,PLR,and SII were significant predictors of DR(P<0.001 for all).The highest area under the curve(AUC)was for the PLR(0.929 for PLR,0.925 for SII,and 0.821 for NLR).Multivariate regression analysis indicated that NLR,PLR,and SII were statistically significantly positive and independent predictors for the DR stages in patients with DM[odds ratio(OR)=1.122,95%confidence interval(CI):0.200–2.043,P<0.05;OR=0.038,95%CI:0.018–0.058,P<0.05;OR=0.007,95%CI:0.001–0.01,P<0.05,respectively).CONCLUSION:The NLR,PLR,and SII may be used as predictors of DR.
基金supported by the National Natural Science Foundation of China[no.81903336,Yi-de Yang]the Health Research Project of Hunan Provincial Health Commission[no.202112031516,Yi-de Yang]+3 种基金Scientific Research Fund of Hunan Provincial Education Department[no.22B0038,Yi-de Yang]the Research Team for Reproduction Health and Translational Medicine of Hunan Normal University[2023JC101]Key Project of Developmental Biology and Breeding from Hunan Province[no.2022XKQ0205]Open Project for Postgraduates of Hunan Normal University[no.KF2022019,Tianli Xiao].
文摘Objective Hypertriglyceridemic waist(HW),hypertriglyceridemic waist-to-height ratio(HWHtR),and waist-to-hip ratio(WHR)have been shown to be indicators of cardiometabolic risk factors.However,it is not clear which indicator is more suitable for children and adolescents.We aimed to investigate the relationship between HW,HWHtR,WHR,and cardiovascular risk factors clustering to determine the best screening tools for cardiometabolic risk in children and adolescents.Methods This was a national cross-sectional study.Anthropometric and biochemical variables were assessed in approximately 70,000 participants aged 6–18 years from seven provinces in China.Demographics,physical activity,dietary intake,and family history of chronic diseases were obtained through questionnaires.ANOVA,χ2 and logistic regression analysis was conducted.Results A significant sex difference was observed for HWHtR and WHR,but not for HW phenotype.The risk of cardiometabolic health risk factor clustering with HW phenotype or the HWHtR phenotype was significantly higher than that with the non-HW or non-HWHtR phenotypes among children and adolescents(HW:OR=12.22,95%CI:9.54-15.67;HWHtR:OR=9.70,95%CI:6.93-13.58).Compared with the HW and HWHtR phenotypes,the association between risk of cardiometabolic health risk factors(CHRF)clustering and high WHR was much weaker and not significant(WHR:OR=1.14,95%CI:0.97-1.34).Conclusion Compared with HWHtR and WHR,the HW phenotype is a more convenient indicator with higher applicability to screen children and adolescents for cardiovascular risk factors.
文摘We conducted a comprehensive review of existing prediction models pertaining to the efficacy of immune-checkpoint inhibitor(ICI)and the occurrence of immune-related adverse events(irAEs).The predictive potential of neutrophil-to-lymphocyte ratio(NLR)and platelet-to-lymphocyte ratio(PLR)in determining ICI effectiveness has been extensively investigated,while limited research has been conducted on predicting irAEs.Furthermore,the combined model incor-porating NLR and PLR,either with each other or in conjunction with additional markers such as carcinoembryonic antigen,exhibits superior predictive capabilities compared to individual markers alone.NLR and PLR are promising markers for clinical applications.Forthcoming models ought to incorporate established efficacious models and newly identified ones,thereby constituting a multifactor composite model.Furthermore,efforts should be made to explore effective clinical application approaches that enhance the predictive accuracy and efficiency.
基金Supported by Shanxi Province“136”Revitalization Medical Project Construction Funds,No.2019XY004.
文摘BACKGROUND The neutrophil-to-lymphocyte ratio(NLR)and platelet-to-lymphocyte ratio(PLR)are novel inflammatory indicators that can be used to predict the severity and prognosis of various diseases.We categorize acute pancreatitis by etiology into acute biliary pancreatitis(ABP)and hypertriglyceridemia-induced acute pancreatitis(HTGP).AIM To investigate the clinical significance of NLR and PLR in assessing persistent organ failure(POF)in HTGP and ABP.METHODS A total of 1450 patients diagnosed with acute pancreatitis(AP)for the first time at Shanxi Bethune Hospital between January 2012 and January 2023 were enrolled.The patients were categorized into two groups according to the etiology of AP:ABP in 530 patients and HTGP in 241 patients.We collected and compared the clinical data of the patients,including NLR,PLR,and AP prognostic scoring systems,within 48 h of hospital admission.RESULTS The NLR(9.1 vs 6.9,P<0.001)and PLR(203.1 vs 160.5,P<0.001)were significantly higher in the ABP group than in the HTGP group.In the HTGP group,both NLR and PLR were significantly increased in patients with severe AP and those with a SOFA score≥3.Likewise,in the ABP group,NLR and PLR were significantly elevated in patients with severe AP,modified computed tomography severity index score≥4,Japanese Severity Score≥3,and modified Marshall score≥2.Moreover,NLR and PLR showed predictive value for the development of POF in both the ABP and HTGP groups.CONCLUSION NLR and PLR vary between ABP and HTGP,are strongly associated with AP prognostic scoring systems,and have predictive potential for the occurrence of POF in both ABP and HTGP.
基金financially supported by the National Natural Science Foundation of China(Grant No.51890913)the Natural Science Foundation of Sichuan Province of China(Grant No.2023YFQ0111)。
文摘In an effort to investigate and quantify the patterns of local scour,researchers embarked on an in-depth study using a systematic experimental approach.The research focused on the effects of local scour around a set of four piles,each subjected to different hydromechanical conditions.In particular,this study aimed to determine how different attack angles—the angles at which the water flow impinges on the piles,and gap ratios—the ratios of the spacing between the piles to their diameters,influence the extent and nature of scour.A comprehensive series of 35 carefully designed experiments were orchestrated,each designed to dissect the nuances in how the gap ratio and attack angle might contribute to changes in the local scour observed at the base of pile groups.During these experimental trials,a wealth of local scour data were collected to support the analysis.These data included precise topographic profiles of the sediment bed around the pile groups,as well as detailed scour time histories showing the evolution of scour at strategic feature points throughout the test procedure.The analysis of the experimental data provided interesting insights.The study revealed that the interplay between the gap ratio and the attack angle had a pronounced influence on the scouring dynamics of the pile groups.One of the key observations was that the initial phases of scour,particularly within the first hour of water flow exposure,were characterized by a sharp increase in the scour depth occurring immediately in front of the piles.After this initial rapid development,the scour depth transitioned to a more gradual change rate.In contrast,the scour topography around the piles continuously evolved.This suggests that sediment displacement and the associated sculpting of the seabed around pile foundations are sustained and progressive processes,altering the underwater landscape over time.The results of this empirical investigation have significant implications for the design and construction of offshore multi-pile foundations,providing a critical reference for engineers and designers to estimate the expected scour depth around such structures,which is an integral part of decisions regarding foundation design,selection of structural materials,and implementation of scour protection measures.
基金Supported by the National Natural Science Foundation of China(No.31872609)the Innovation Support Program for High-level Talents of Dalian City(No.2019RD12)+1 种基金the Key Research Project of Liaoning Provincial Department of Education in 2022(No.LJKZZ 20220091)the earmarked fund for CARS-49(CARS-49)。
文摘To adapt to the change of aquaculture workshop site,optimize the shape of aquaculture tanks and improve the utilization rate of breeding space,it is necessary to determine the appropriate length width ratio parameters of aquaculture tanks.In this paper,computational fluid dynamics(CFD)technology is adopted to study the flow field performance of aquaculture tanks with different L/B ratios(L:the length;B:the width,of aquaculture tank)and different jet direction conditions(lengthways jet and widthways jet).A three-dimensional numerical calculation model of turbulence in rounded rectangle aquaculture tanks in dual-diagonal-inlet layout was established.Jet directions are arranged lengthways and widthways,and the water flow velocity,resistance coefficient change,vorticity,etc.are analyzed under two working conditions.Results show that the flow field performance in aquaculture tank decreases with the increase of the L/B ratio.The flow field performed well when L/B was 1.0-1.3,sharply dropped at 1.4-1.6,and poor at 1.7-1.9.The results provided a theoretical basis for the design and optimization in flow field performance of the industrialized circulating aquaculture tanks.