期刊文献+
共找到1,053篇文章
< 1 2 53 >
每页显示 20 50 100
Microstructures of brazing zone between titanium alloy and stainless steel using various filler metals 被引量:12
1
作者 Taeshin CHUNG Jungsoo KIM +2 位作者 Jeongseok BANG Byoungho RHEE Daegeun NAM 《中国有色金属学会会刊:英文版》 CSCD 2012年第S3期639-644,共6页
Titanium alloy (Ti-Al-V alloy) substrate was brazed with stainless steel (STS304) using filler metal.At an optimized brazing condition,various filler metals were used.Microstructures were observed at each condition.Fi... Titanium alloy (Ti-Al-V alloy) substrate was brazed with stainless steel (STS304) using filler metal.At an optimized brazing condition,various filler metals were used.Microstructures were observed at each condition.Filler metals were titanium based 40Ti-20Zr-20Cu-20Ni,silver based Ag 5Pd,and nickel based Ni-7Cr-3.1B-4.5Si-3Fe-0.06C (BNi2) and Ni-14Cr-10P-0.06C (BNi7).To select a good filler metal for brazing process,wetting test was performed at 880-1050 °C.It was not brazed using silver based filler metals,but at the conditions using titanium and nickel based filler metals had brazed zone between titanium alloy and stainless steel.However,titanium alloy was eroded during brazing using titanium based filler metals.Nickel based filler metal has a good brazed zone between titanium alloy and stainless steel among the filler metals. 展开更多
关键词 brazing FILLER metal titanium alloy STAINLESS steel
下载PDF
Effect of Rare Earth on Microstructure of Vacuum Melting Ni-Based Self-Fluxing Alloy Coatings 被引量:9
2
作者 宣天鹏 闵丹 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第4期517-520,共4页
The Ni-based self-fluxing alloy coating containing RE was acquired by the technique of vacuum melting on the hypoeutectoid steel (Fe-0.45%C) matrix. By X-ray diffraction, SEM and EDX, the microstructure and phase stru... The Ni-based self-fluxing alloy coating containing RE was acquired by the technique of vacuum melting on the hypoeutectoid steel (Fe-0.45%C) matrix. By X-ray diffraction, SEM and EDX, the microstructure and phase structure of section of coating and the microstructure near the interface between coating and matrix were investigated, and the effect of RE on microstructure of coating was also discussed. The results show that the microstructure of the NiCrBSi alloy coating is composed of Ni-based solid solution and a lot of massive, globular and needle secondary phases CrB, Ni_3B, Cr_7C_3, Cr_(23)C_6 among the solid solution. The metallurgical binding between steel matrix and coating is realized. RE makes needle phase of alloy coating vanish. New phases of NiB and Cr_(6.5)Ni_(2.5)Si are precipitated from alloy coating, and secondary phases of alloy coating are sphericized. Consequently, RE also hinders the diffusion of Ni, Cr and Si atoms from coating to matrix and Fe atoms from matrix to coating, holds back the dilution of Fe for NiCrBSi alloy coating, and assures the chemical composition of the alloy coating. 展开更多
关键词 metal materals vacuum melting MICROSTRUCTURE Ni-based self-fluxing alloy rare earths
下载PDF
Brazing 6061 aluminum alloy with Al-Si-Zn filler metals containing Sr 被引量:3
3
作者 Wei Dai Song-bai Xue +3 位作者 Feng Ji Jiang Lou Bo Sun Shui-qing Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第4期365-370,共6页
Al-6.5Si-42Zn and Al-6.5Si-42Zn-0.09Sr filler metals were used for brazing 6061 aluminum alloy. Air cooling and water cooling were applied after brazing. Si phase morphologies in the brazing alloy and the brazed joint... Al-6.5Si-42Zn and Al-6.5Si-42Zn-0.09Sr filler metals were used for brazing 6061 aluminum alloy. Air cooling and water cooling were applied after brazing. Si phase morphologies in the brazing alloy and the brazed joints were investigated. It was found that zinc in the Al-Si filler metals could reduce the formation of eutectic Al-Si phase and lower the brazing temperature at about 520℃. Adding 0.09wt% Sr element into the Al-6.5Si-42Zn alloy caused a-Al phase refinement and transformed acicular Si phase into the finely fiber-like. After water cooling, Zn element dissolved into the Al-Si eutectic area, and η-Zn phase disappeared in the brazed joints. Tensile strength testing results showed that the Sr-modified filler metal could enhance the strength of the brazed joints by 13% than Al-12Si, while water-cooling further improved the strength at 144 MPa. 展开更多
关键词 aluminum alloys brazing JOINTS filler metals COOLING STRONTIUM
下载PDF
Research progress of laser cladding self-fluxing alloy coatings on titanium alloys 被引量:8
4
作者 刘家奇 于慧君 陈传忠 《China Welding》 EI CAS 2018年第2期45-51,共7页
Laser cladding is a new surface modification technology, and is widely used for fabricating wear and corrosion resistant composites coatings. Self-fluxing alloys have many advantages, such as excellent properties of d... Laser cladding is a new surface modification technology, and is widely used for fabricating wear and corrosion resistant composites coatings. Self-fluxing alloys have many advantages, such as excellent properties of deoxidizing and slagging, high wear resistance, low melting point and easy cladding, and are often used in laser cladding to improve wear and corrosion resistance of titanium and its alloys. In this paper, the recent development of Ni-based and Co-based self-fluxing alloy coatings which includes the influenee of rare earth and ceramic particles in coatings are summarized. Besides, the effects of processing parameters, such as laser power and scanning speed, on coatings are reviewed. Finally, the trend of development in the future is forecasted. 展开更多
关键词 self-fluxing alloy titanium alloy laser cladding COATING
下载PDF
Microstructure,properties and first principles calculation of titanium alloy/steel by Nd: YAG laser self-fluxing welding 被引量:10
5
作者 张义福 张华 +1 位作者 朱政强 潘际銮 《China Welding》 EI CAS 2018年第3期1-10,共10页
The experiment of Nd: YAG pulsed laser self-fluxing welding for 304 stainless steel/Ti6Al4V titanium alloy dissimilar metal was carried out. The microstructure properties of welded joint were analyzed by SEM, EDS and... The experiment of Nd: YAG pulsed laser self-fluxing welding for 304 stainless steel/Ti6Al4V titanium alloy dissimilar metal was carried out. The microstructure properties of welded joint were analyzed by SEM, EDS and XRD. The equilibrium lattice constants, enthalpies of formation, cohesive energies, mechanical properties, Debye temperatures and valence electron structures of Ti-Fe intermetallic compounds (IMCs) were calculated by the first principle pseudopotential plane wave method based on density functional theory (DFT). According to the thermodynamic data of Ti-Fe-Cr compounds, the Gibbs free energy per mole of compound at different temperatures was calculated and their thermal stability was compared. The results show that there are no macroscopic cracks in the welded joints, and the IMCs distributed evenly along the welding interface exhibits 3 distinct layers of microstructure with different colors. The welds interface generates IMCs of TiFe, TiFe 2 and a small amount of Ti 5Cr 7Fe 17 IMCs. Ti-Fe IMCs with high thermodynamic stability and easy alloying formation. The results of Gibbs free energies show that the sequence of precipitates in the interface is Ti 5Cr 7Fe 17 , TiFe 2 and TiFe in high temperature during the metallurgical reaction. The G/B values of Ti-Fe IMCs are greater than the critical value of 0.5, indicating that it is an intrinsic brittleness. 展开更多
关键词 Nd:YAG pulsed laser self-fluxing welding titanium alloy stainless steel first-principle calculation
下载PDF
MICROSTRUCTURE AND PERFORMANCE OF Ni-Hf BRAZING FILLER ALLOY 被引量:1
6
作者 ZHENG Yunrong RUAN Zhongci Institute of Aeronautical Materials,Beijing,China ZHENG Yunrong,Senior Engineer,Laboratory No.4 Institute of Aeronautical Materials, 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1990年第11期335-340,共6页
In consideration of the envelopment of γ dendrites by the Hf-rich melts at the late period of solidification of the cast Ni-base superalloys containing Hf,a heat of brazing filler alloy composed of Ni-18.6Co-4.5Cr-4.... In consideration of the envelopment of γ dendrites by the Hf-rich melts at the late period of solidification of the cast Ni-base superalloys containing Hf,a heat of brazing filler alloy composed of Ni-18.6Co-4.5Cr-4.7 W-25.6Hf(wt-%)was prepared.This alloy is hypereutectic.γ phase is the leading phase in eutectic γ+Ni_5Hf and γ bars are surrounded by Ni_5Hf phase.At the section perpendicular or parallel to the γ growing direction,the eutectic morphology is cellular or laminar respectively.The content of Ni_5Hf in the alloy is 68.7v.-%. The compositions of primary and eutectic Ni_5Hf are very similar.Ni,Co and Hf are the main elements and solubility of Cr and W in Ni_5Hf is very low.This alloy is an ideal brazing filler suitable to the directional or single crystal superalloy,and the elements are beneficial to superalloys properties.This filler alloy is of low melting point and of good fluidity.After braz- ing at 1240℃,5 min+1190℃,I h in 10^(-3) Pa vacuum,the microstructure of bond is the same as that of Hf-bearing superalloy.No Si and B contamination is involved. 展开更多
关键词 Ni-Hf brazing alloy Hf-bearing Ni-base superalloy Ni_5Hf phase brazing
下载PDF
Vacuum brazing of Si/SiC ceramic composite and Invar alloy using TiSOCu-W filler metals 被引量:2
7
作者 张华 黄继华 +2 位作者 张志远 赵兴科 陈树海 《China Welding》 EI CAS 2012年第1期76-80,共5页
Si/SiC ceramic composite and lnvar alloy were successfidly joined by vacuum brazing using Ti5OCu-W filler metals into which W was added to release the thermal stress of the brazed joint. Microstructures of the brazed ... Si/SiC ceramic composite and lnvar alloy were successfidly joined by vacuum brazing using Ti5OCu-W filler metals into which W was added to release the thermal stress of the brazed joint. Microstructures of the brazed joints were irwestigated by scanning electron micrascope (SEM) and energy dispersive spectrometer (EDS). The mechanical properties of the brazed joints were measured by shearing tests. The results showed that the brazed joints were composed of Ti-Cu phase, W phase and Ti-Si phase. W had no effect on the wettability and mobility of the .filler metals. The growth of Ti2 Cu phase was restrained, and the reaction between ceramic composite and filler metals was weakened. The specimen, brazed at 970°C for 5 rain, had the maximum shear strength of 108 MPa at room temperature. 展开更多
关键词 Si/SiC ceramic composite lnvar alloy brazing Ti50Cu-W filler metals
下载PDF
Fabrication of in-situ synthesized ceramic reinforced Ni-based alloy composite coatings by reactive braze coating processing 被引量:3
8
作者 裴新军 刘文彬 +3 位作者 程铬 潘新宇 李爱娜 李海深 《China Welding》 EI CAS 2019年第4期56-62,共7页
In-situ synthesized ceramic such as TiC,Cr7C3 and Cr5B3 reinforced Ni-based alloy composite coating was fabricated on the surface of mild steel substrate by reactive braze coating processing with colloidal graphite,Cr... In-situ synthesized ceramic such as TiC,Cr7C3 and Cr5B3 reinforced Ni-based alloy composite coating was fabricated on the surface of mild steel substrate by reactive braze coating processing with colloidal graphite,Cr,Ni,ferro-boron,Si and titanium powders as the raw materials at low temperature of 1000℃,and a new kind of coating materials was developed.By means of SEM,EDS,XRD and surface hardness tester,the microstructures,phases,hardness and wear-resistance of the coating were analyzed,respectively.The results revealed that the coating was mainly composed of the ceramic in-situ synthesized reinforcement phases of TiC,Cr7C3 and Cr5B3 and the binder phases in-situ synthesized of Ni31Si12 and(Ni,Fe)solid solution;The ceramic reinforcement phases of TiC,Cr7C3 and Cr5B3 were randomly distributed in the binder phases of Ni31Si12 and(Ni,Fe)solid solution;The coating had about 15vol%pores and can possibly be applied as a self-lubrication coating;The coating and the substrate were integrated together by metallurgical bonding;The coating had a hardness up to 91-94HR15N. 展开更多
关键词 reactive braze coating processing composite coating Ni-based alloy CERAMIC self-lubrication coating
下载PDF
Nickel-coated Steel Stud to Aluminum Alloy Joints Made by High Frequency Induction Brazing 被引量:1
9
作者 葛佳棋 王克鸿 +1 位作者 ZHANG Deku WANG Jian 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第3期601-606,共6页
Nickel-coated 45 steel studs and 6061 aluminum alloy with 4047 A1 alloy foil as filler metal were joined by using high frequency induction brazing. The microstrueture of Fe/A1 brazed joint was studied by means of opti... Nickel-coated 45 steel studs and 6061 aluminum alloy with 4047 A1 alloy foil as filler metal were joined by using high frequency induction brazing. The microstrueture of Fe/A1 brazed joint was studied by means of optical microscopy (OM), scanning electron microscope (SEM), energy dispersive X-ray (EDX), and X-ray diffraction (XRD). Results showed that 45 steel stud and 6061 aluminum alloy could be successfully joined by high frequency induction brazing with proper processing parameters. The bonding strength of the joint was of the order of 88 MPa. Ni coating on steel stud successfully avoided the generation of Fe-AI intermetallic compound which is brittle by blocking the contact between A1 and Fe. Intermetallic compounds, i e, AI3Ni2, AlmNi0.9 and A10.3Fe3Si0.7 presented in AI side, FeNi and Fe-A1-Ni ternary eutectic structure were formed in Fe side. The micro-hardness in intermetallic compound layer was 313 HV. The joint was brittle fractured in the intermetallic compounds layer of A1 side, where plenty of A13Ni2 intermetallie compounds were distributed continuously. 展开更多
关键词 45 steel stud 6 061 aluminum alloy high frequency induction brazing dissimilar metaljoint mechanical property microstructure
下载PDF
Effects of Rare Earths on Properties of Ti-Zr-Cu-Ni Base Brazing Filler Alloys 被引量:1
10
作者 Ma Tianjun Kang Hui Wu Yongqin Qu Ping 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第z1期214-217,共4页
The effects of the addition of rare earths on the properties of Ti-Zr-Cu-Ni base brazing filler alloys and the mechanical microstructure and properties were studied for the brazed-joints in the vacuum brazing of TC4 b... The effects of the addition of rare earths on the properties of Ti-Zr-Cu-Ni base brazing filler alloys and the mechanical microstructure and properties were studied for the brazed-joints in the vacuum brazing of TC4 by comparing synthetical properties of two kinds of filler metals.The results indicate that the filler metals added with rare earths have lower melting point, better wettability and higher mechanical properties in the brazing joints. 展开更多
关键词 brazing FILLER alloyS TC4 Ti-Zr-Cu-Ni RARE earths
下载PDF
Effect of trace calcium on melting behavior of Ag-Cu-Zn brazing alloy by thermal analysis kinetics 被引量:1
11
作者 鲍丽 龙伟民 +3 位作者 何鹏 吴铭方 顾小龙 马佳 《China Welding》 EI CAS 2015年第4期15-20,共6页
The purity of the brazing alloys applied is necessary to be improved with the increasing cleanness of steel. Calcium is easily brought into the widely ased brazing alloy, Ag-Cu-Zn, during the producing process. This p... The purity of the brazing alloys applied is necessary to be improved with the increasing cleanness of steel. Calcium is easily brought into the widely ased brazing alloy, Ag-Cu-Zn, during the producing process. This paper aims at revealing the effect of calcium on the melting behavior of the brazing alloy. The thermal analysis kinetics of silver alloy with trace calcium was studied by using differential scanning calorimetry ( DSC ) , and the enthalpy peaks were analyzed by differential methods. The rate constant of phase transformation in the probable brazing temperature range goes up with increasing calcium content, according to the values of the apparent activation energy, E, and the frequeney constant, A. It is concluded that the calcium addition could improve the melting performance of Ag-Cu-Zn brazing alloy. 展开更多
关键词 silver brazing alloy thermal analysis kinetics melting behavior apparent activation energy frequency constant
下载PDF
The effect of different crystal conditions of filler metal on vacuum brazing of TiAl alloy and 42CrMo 被引量:1
12
作者 朱颖 张茉 +3 位作者 王国建 李文轶 康慧 曲平 《China Welding》 EI CAS 2007年第4期17-19,共3页
Ti-based filler metals made by transient solidification and normal crystallization were selected for the vacuum brazing of the TiAl alloy and 42CrMo under different processing parameters. The results show that the ten... Ti-based filler metals made by transient solidification and normal crystallization were selected for the vacuum brazing of the TiAl alloy and 42CrMo under different processing parameters. The results show that the tensile strength of the joint of transient solidified filler metal is higher than that of normal crystallized filler metal under the same processing parameters. By the analysis of scanning electron microscope(SEM) and X-ray diffracting (XRD) , it is found that the higher strength maybe caused by the generating of TiAl , TiNi and TiCu at the interface of joint made by transient solidified filler metal. 展开更多
关键词 Ti-based filler metal TiAl alloy vacuum brazing
下载PDF
Preparation of Ti-based amorphous brazing alloy 被引量:6
13
作者 邹家生 蒋志国 +1 位作者 许志荣 陈光 《中国有色金属学会会刊:英文版》 CSCD 2006年第A02期171-174,共4页
关键词 钛基非晶态铜焊合金 焊接合金 制备 性质 成分 玻璃态转化温度 SI3N4陶瓷
下载PDF
Experimental study on dissimilar TIG welding-brazing of 5A06 aluminum alloy to SUS321 stainless steel 被引量:3
14
作者 林三宝 宋建岭 +2 位作者 杨春利 范成磊 张东卫 《China Welding》 EI CAS 2010年第1期26-31,共6页
Dissimilar metals TIG welding-brazing of 5A06 aluminum alloy to SUS321 stainless steel has been carried out with Al-Sil2 eutectic filler metal and modified non-corrosive flux. The surface appearance and microstructure... Dissimilar metals TIG welding-brazing of 5A06 aluminum alloy to SUS321 stainless steel has been carried out with Al-Sil2 eutectic filler metal and modified non-corrosive flux. The surface appearance and microstructures of the joint were analyzed and the average tensile strength of the joint was estimated. The results show that a sound dissimilar metals joint is obtained by TIG welding-brazing. Slag and residual flux on steel surface can be removed by sanding easily. The joint has dual characteristics: in aluminum alloy side, it is a welded joint, while in stainless steel side, it is a brazed joint. The whole interface layer, unequal in thickness at different position, ranges from 5 μm to 25 μm. The average tensile strength of the butt joint reaches 120 MPa and the fracture occurs at the interface layer. 展开更多
关键词 TIG welding-brazing aluminum alloy stainless steel microstructure tensile strength
下载PDF
Microstructure and fracture behavior of SiO_2 glass ceramic and TC4 alloy joint brazed with TiZrNiCu alloy 被引量:1
15
作者 刘多 张丽霞 +2 位作者 冯吉才 刘洪斌 何鹏 《Journal of Central South University》 SCIE EI CAS 2009年第5期713-718,共6页
Vacuum brazing of SiO2 glass ceramic and TC4 alloy using a commercially available TiZrNiCu foil was investigated. The interfacial microstructure and the fractures were examined with an optical microscope(OM) and an S-... Vacuum brazing of SiO2 glass ceramic and TC4 alloy using a commercially available TiZrNiCu foil was investigated. The interfacial microstructure and the fractures were examined with an optical microscope(OM) and an S-4700 scanning electron microscope(SEM) equipped with an energy dispersive spectrometer(EDS) and an electron probe X-ray microanalyzer(EPMA) . The structure of joint interface was identified by XRD(JDX-3530M) . Meanwhile,the fracture paths of the joints were comprehensively studied. The results show that processing parameters,especially the brazing temperature,have a significant effect on the microstructure and mechanical properties of joints. The typical interface structure is SiO2/Ti2O+Zr3Si2+Ti5Si3/(Ti,Zr) +Ti2O+ TiZrNiCu/Ti(s.s) /TiZrNiCu+Ti(s.s) +Ti2(Cu,Ni) /TC4 from SiO2 glass ceramic to TC4 alloy side. Based on the mechanical property tests,the joints brazed at 880 ℃ for 5 min has the maximum shear strength of 23 MPa. 展开更多
关键词 TC4合金 玻璃陶瓷 SiO2 钎焊合金 断裂行为 力学性能测试 扫描电子显微镜 X射线衍射
下载PDF
Electron beam braze-welding of vanadium alloy to stainless steel with electroplated Cu/Ag coatings 被引量:1
16
作者 王亚荣 腾文华 余洋 《China Welding》 EI CAS 2016年第3期9-15,共7页
Cracks may easily occur in the fusion weld between vanadium alloys and stainless steel due to the brittle intermetallics and welding stress. The high vacuum electron beam braze-welding has been successfully used to jo... Cracks may easily occur in the fusion weld between vanadium alloys and stainless steel due to the brittle intermetallics and welding stress. The high vacuum electron beam braze-welding has been successfully used to join vanadium alloy(V-5Cr-STi) to stainless steel (HR-2) with electroplated Cu and Ag coating. To investigate the effects of electroplated coating on the weldability, the joint appearaace, the microstrueture and the mechanical properties of the joints have been thoroughly analyzed. The results show that the joint surface configuration was good and root reinforcement was full and smooth. A reaction zone (RZ) was gained on the interface between the V-5 Cr-5 Ti alloy and HR-2 stainless steel base metals. The width of reaction zone at the top of the joint was up to O. 65 mm, wider than that in the bottom of the joint ( 0.46 mm). The reaction zone consisted of considerably smaller dendritic structures with an average grain size of less than 10μm. Element Ag and Cu almost enriched the interface between V-SCr-5Ti alloy substrate and RZ, serving as a physical barrier which decreases or avoids the formation of intermetallics. The maximum tensile strength of vanadium alloy^stainless steel dissimilar alloy joint was more than 300 MPa. The joint was defects free. 展开更多
关键词 electron beam braze-welding vanadium alloy stainless steel electroplate
下载PDF
Analysis on interfacial layer of aluminum alloy and non-coated stainless steel joint made by TIG welding-brazing 被引量:1
17
作者 宋建岭 林三宝 +2 位作者 杨春利 马广超 王寅杰 《China Welding》 EI CAS 2009年第2期1-5,共5页
Dissimilar metals TIG welding-brazing of aluminum alloy and non-coated stainless steel was investigated. The resultant joint was characterized in order to identify the phases and the brittle intermetallic compounds (... Dissimilar metals TIG welding-brazing of aluminum alloy and non-coated stainless steel was investigated. The resultant joint was characterized in order to identify the phases and the brittle intermetallic compounds (IMCs) in the interracial layer by optical metalloscope (OM), scanning electron microscopy (SEM) and energy dispersive spectrometer ( EDS) , and the cracked joint was analyzed in order to understand the cracking mechanism of the joint. The results show that the microfusion of the stainless steel can improve the wetting and spreading of liquid aluminum base filler metal on the steel suuface and the melted steel accelerates the formation of mass of brittle IMCs in the interracial layer, which causes the joint cracking badly. The whole interfacial layer is 5 -7 μm thick and comprises approximately 5μm-thickness reaction layer in aluminum side and about 2 μm-thickness diffusion layer in steel side. The stable Al-rich IMCs are formed in the interfacial layer and the phases transfer from ( Al + FeAl3 ) in aluminum side to ( FeAl3 + Fe2Al5 ) and ( α-Fe + FeAl) in steel side. 展开更多
关键词 aluminum alloy stainless steel TIG welding-brazing interfacial layer intermetallic compound
下载PDF
New filler metal systems for the brazing of titanium alloys
18
作者 V. F. Khorunov S. V. Maksymova V. V. Voronov 《China Welding》 EI CAS 2015年第3期1-5,共5页
It' s well known welding takes the leading role in development of titanium structures. However, in number of cases technological processes of brazing are more appropriate and, sometimes, being the single possible, in... It' s well known welding takes the leading role in development of titanium structures. However, in number of cases technological processes of brazing are more appropriate and, sometimes, being the single possible, in particular, during production of multilayer thin-wall structures. It should be noted that brazing filler metals of Ti-Cu-Ni, Ti-Zr-Cu-Ni, Zr-Ti-Ni and Cu-Zr-Ti systems in a form of plastic foils, as well as in powder form are mainly used in world practice for brazing of titanium alloys. Present work provides the results of complex investigations of brazing filler metals of Ti-Zr-Fe, Ti-Zr-Mn and Ti-Zr-Co systems using differential thermal analysis, light and scanning microscopy, X-ray microspectrum analysis. Data on melting ranges of pilot alloys were obtained, and liquidas su^Caces of given systems using simplex-lattice method were build. Brazing filler metals covering brazing temperature range of current structural titanium materials based on solid solutions as well as intermetallics were proposed. Structure, chemical inhomogeniety and strength characteristics of brazed joints were studied. It is determined that brazing of solid solution based alloys (OT4, VT6 ) using indicated brazing fiUer metals ensures strength characteristics of joints, which are not inferior to that obtained with application of known brazing filler metals even if they are received at lower brazing temperature. 展开更多
关键词 vacuum brazing titanium alloys inter-metallic alloys brazing filler metals brazed joints structure strength of brazed joints
下载PDF
2D Finite Element Computer Analysis of Strength for Brazed Joint of Cemented Carbide and Silver Brazing Filler Metal 被引量:1
19
作者 Meribe Richard Chukwuma Kazuya MORI +3 位作者 Kento Takenouchi Yuki Fijishita Takeshi Eguchi Kazufumi Sakata 《Journal of Mechanics Engineering and Automation》 2016年第4期186-189,共4页
关键词 钎焊接头 接头强度 二维分析 硬质合金 有限元计算 有限元分析软件 银钎料 计算机辅助分析
下载PDF
Stirring brazing of dissimilar Al/Mg alloy without flux in air
20
作者 Hui-Bin Xu Hui-Bin Sun Hong-You Chen 《Rare Metals》 SCIE EI CAS CSCD 2013年第5期469-474,共6页
AZ31B magnesium alloy and 2024 aluminum alloy were successfully jointed at aid of mechanical stirring with Sn-Zn-Al filler metal. The microstructure, fracture morphologies, and mechanical properties of joint were inve... AZ31B magnesium alloy and 2024 aluminum alloy were successfully jointed at aid of mechanical stirring with Sn-Zn-Al filler metal. The microstructure, fracture morphologies, and mechanical properties of joint were investigated. The results show that Mg-Al intermetallic compounds can be avoided by the process. But, a small quantity of porosity is found in the joint. The sheafing strength of joint interface adjacent to magnesium alloy is 35.4 MPa for formation of Mg-Sn intermetallic compounds, which is about 46 % of that of filler metal. While, the shearing strength of joint interfaces adjacent to aluminum alloy is 70.4 MPa for formation of Zn-Sn-Al solid solution, which is about 92 % of that of filler metal. 展开更多
关键词 2024 Al alloy AZ31B Mg alloy Stirring brazing
下载PDF
上一页 1 2 53 下一页 到第
使用帮助 返回顶部