期刊文献+
共找到75,857篇文章
< 1 2 250 >
每页显示 20 50 100
“Smart”micro/nano container-based self-healing coatings on magnesium alloys:A review
1
作者 Yonghua Chen Liang Wu +7 位作者 Wenhui Yao Jiahao Wu Maria Serdechnova Carsten Blawert Mikhail L.Zheludkevich Yuan Yuan Zhihui Xie Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第7期2230-2259,共30页
Coating technologies are a commonly used way to protect metals against corrosion.However,with more and more severe service environments of materials,many protective coating systems often are not environmentally friend... Coating technologies are a commonly used way to protect metals against corrosion.However,with more and more severe service environments of materials,many protective coating systems often are not environmentally friendly or toxic as in the case of chromates.Based on the world’s abundant ideal magnesium(Mg)and its alloy,the smart self-healing anticorrosive coating can autonomously restore the damaged part of the coating according to the environmental changes,strengthen the corrosion protection ability,and prolong its service life.This paper reviews the research progress of smart self-healing coatings on Mg alloys.These coatings mostly contain suitable corrosion inhibitors encapsulated into micro/nano containers.Moreover,the different self-healing mechanisms and functionalities of micro/nano containers are discussed.The micro/nano containers range from inorganic nanocontainers such as mesoporous nanoparticles(silica(SiO_(2)),titanium dioxide(TiO_(2)),etc.),over inorganic clays(halloysite,hydrotalcite-like,zeolite),to organic nanocontainers such as polymer microcapsules,nanofibers,chitosan(CS)and cyclodextrin(CD),as well as,carbon materials such as graphene and carbon nanotubes and hybrids such as metal organic frameworks.The functioning of micro/nano containers can be divided in two principal groups:autonomous(based on defect filling and corrosion inhibition)and non-autonomous(based on dynamic bonds and shape memory polymers).Moreover,multi functionalities and composite applications of various micro/nano containers are summarized.At present,significant progress has been made in the preparation methods and technologies of micro/nano containers.Achieving long-term self-healing properties of coatings sensing of coating failure and early warning after self-healing function failure can be expected as the main development direction of self-healing corrosion protection coatings in the future. 展开更多
关键词 Magnesium alloy self-healing coating Micro/nano containers Mechanism Corrosion protection
下载PDF
Comparison of the corrosion behavior of AM60 Mg alloy with and without self-healing coating in atmospheric environment 被引量:4
2
作者 Yingwei Song Dan Liu +3 位作者 Weineng Tang Kaihui Dong Dayong Shan En-Hou Han 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第4期1224-1237,共14页
Coatings on the surface of Mg alloys are inevitably damaged during their practical applications,and corrosion can easily initiate from the damaged areas to accelerate the failure of Mg parts.A dual self-healing coatin... Coatings on the surface of Mg alloys are inevitably damaged during their practical applications,and corrosion can easily initiate from the damaged areas to accelerate the failure of Mg parts.A dual self-healing coating has already been developed to solve this problem in our previous work.Considering the practical application of this coating,it is necessary to investigate its service behavior in atmospheric environment.Thus,the corrosion behavior of AM60 Mg substrate with and without the self-healing coating was compared in Shenyang industrial atmospheric environment.The results show that the enrichment of sediments and rainwater on the scratch areas can accelerate the corrosion of the exposed Mg substrate.The inhibitors can be released from the damaged coating to inhibit corrosion.The dual self-healing coating shows better inhibition ability to narrow scratches due to the higher inhibitor concentration and less resumption.Also,the coating with wide scratches displays enough inhibition ability as well.The dual self-healing coating is a good alternative for Mg alloy parts in the practical applications. 展开更多
关键词 self-healing coating Micro-arc oxidation(mao)film Atmospheric corrosion Mg alloy Inhibitor Sediments
下载PDF
Improving the Dispersibility of Poly(urea-formaldehyde) Microcapsules for Self-Healing Coatings Using Preparation Process
3
作者 Yuhao Jiang Jialan Yao Chengfei Zhu 《Journal of Renewable Materials》 SCIE EI 2022年第1期135-148,共14页
Poly(urea-formaldehyde)(PUF)microcapsules were prepared by in-situ polymerization with four different pro-cesses in this paper.The chemical composition,surface morphology,particle size distribution,and thermal sta-bil... Poly(urea-formaldehyde)(PUF)microcapsules were prepared by in-situ polymerization with four different pro-cesses in this paper.The chemical composition,surface morphology,particle size distribution,and thermal sta-bility were characterized by FTIR,SEM,particle size analyzer,and TGA,respectively.The results demonstrated that the agglomeration of the PUF microcapsules was related to the agglomeration of the emulsion particles caused by the changes of emulsion interface during the shell polymerization.Due to the slow deposition of the shell material,the PUF microcapsules with the core-shell structure prepared by the process with ammonium chloride as the last additive showed good dispersibility with an average diameter of 6.36μm,high core content of 71.3 wt%,and high yield of 61.3 wt%.The PUF microcapsules had good thermal stability below 216?C.The PUF microcapsules could be uniformly dispersed in the epoxy coating in a single form.The epoxy coating with 2 wt%PUF microcapsules showed good self-healing property,and the service life of the coating was about doubled. 展开更多
关键词 In-situ polymerization self-healing MICROCAPSULES ANTICORROSION DISPERSIBILITY coatingS
下载PDF
A self-healing coating based on facile pH-responsive nanocontainers for corrosion protection of magnesium alloy
4
作者 Yuejun Ouyang Lin-Xin Li +3 位作者 Zhi-Hui Xie Lili Tang Fuhui Wang Chuan-Jian Zhong 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第3期904-919,共16页
The preparation of pH-responsive nanocontainers by typical silane modification of the mesoporous silica nanoparticle(MSN)surface is usually high-cost,complex,and time-consuming,which remains a great challenge for effe... The preparation of pH-responsive nanocontainers by typical silane modification of the mesoporous silica nanoparticle(MSN)surface is usually high-cost,complex,and time-consuming,which remains a great challenge for effective corrosion protection of magnesium alloy.Here,a new strategy to construct pH-responsive nanocontainers(MSN-MBT@LDH)is demonstrated.The nanocontainers consist of corrosion inhibitor(2-mercaptobenzothiazole,MBT)loaded MSN core and layered double hydroxide(LDH)nanosheet shell serving as gatekeepers.The successful loading of MBT and encapsulation by LDH nanosheets were confirmed by a series of characterization such as scanning transmission electron microscopy coupled with energy dispersive X-ray spectroscopy(STEM-EDS)and N2 adsorption/desorption isotherms.The pH-responsive feature of the nanocontainers was demonstrated by determination of the MBT concentration in buffer solutions with different pH values.A smart corrosion protection system on Mg alloy is obtained by incorporating the synthesized nanocontainers into a self-assembled nanophase particle(SNAP)coating.The electrochemical tests and visual observations show that the hybrid coating has the best barrier properties and robustness in corrosion protection in NaCl corrosive solutions in comparison with the control coatings.The present method simplifies the synthesis processes of nanocontainers and eliminates the potential detrimental effect of excess gatekeepers on the coating.The findings provide new insights into the preparation of scalable nanocontainers.The self-healing coatings are expected to have widespread applications for corrosion protection of Mg alloy and other metals. 展开更多
关键词 Mg alloy coating Corrosion Layered double hydroxide Nanocontainer.
下载PDF
Novel PA encapsulated PCL hybrid coating for corrosion inhibition of biodegradable Mg alloys:A triple triggered self-healing response for synergistic multiple protection
5
作者 Navdeep Singh Grewal Uma Batra +1 位作者 Kamal Kumar Anil Mahapatro 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1440-1460,共21页
Surface coatings have been extensively used to control the degradation rate of Mg alloys for bioimplant applications.However,these coatings only act as passive barriers.In corrosive media,structural damage impairs the... Surface coatings have been extensively used to control the degradation rate of Mg alloys for bioimplant applications.However,these coatings only act as passive barriers.In corrosive media,structural damage impairs their barrier properties,resulting in rapid degradation of Mg alloys.The present study incorporates phytic acid(PA)as a healing agent in polycaprolactone(PCL)microcapsules with a unique honeycomb core matrix to obtain a self-healing PA-PCLcaps coating.The contact between simulated body fluid(SBF)and PA-PCLcaps coated ZM21 exhibited Cassie-Baxter interfacial states,resulting in significant hydrophobicity with a contact angle(CA)of 116.3.The corrosion potential(Ecorr)and current density(Icorr)were found to be-0.28 V and 1.1×10^(-9)A/cm^(2),respectively,for PA-PCLcaps coating,resulting in biosafe corrosion rate of 2.5×10^(-4)mm/year.After mechanical scratching,rapid HA mineralization at scratched regions recovered the hydrogen evolution rate(HER,0.36 mL/cm^(2)/day)and pH change(pH 7.10)of scratched PA-PCLcaps coated ZM21 samples to corresponding unscratched samples within one day of immersion.The coating’s self-healing ability could be attributed to PA released from punctured microcapsules,which facilitates HA chelation.The pH-triggered(pH 10)and Mg(II)-triggered(5 mM)conditions enhanced PA release from PA-PCLcaps coating by 2.5 and 3.1 times,respectively.As a result,dense HA mineralization occurred,which protects the coating from structural defects and ensures its durability in stimulating conditions.The findings of present study provide new insight for design of multiple stimuli-feedback based self-healing coatings on biodegradable Mg alloys. 展开更多
关键词 self-healing coating Corrosion resistance Magnesium alloy Phytic acid Polycaprolactone microcapsules
下载PDF
Achieving anti-corrosion and anti-biofouling dual-function self-healing coating by natural carrier attapulgite loading with 2-Undecylimidazoline 被引量:1
6
作者 Yinghao Wu Jinming Wei +1 位作者 Xiaolu Shi Wenjie Zhao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第17期222-234,共13页
In the marine environment,the protective coatings face serious corrosion and biofouling problem,lim-itations,and challenges that made self-healing coatings unable to perform both anti-corrosion and anti-biofouling dua... In the marine environment,the protective coatings face serious corrosion and biofouling problem,lim-itations,and challenges that made self-healing coatings unable to perform both anti-corrosion and anti-biofouling dual-function at the same time.Here we constructed the corrosion resistance and anti-biofouling self-healing coating by integrating nano-containers into the coating matrix,the 2-Undecylimidazoline(ULM)acted as a corrosion inhibitor and anti-biofouling dual-functional agent which was loaded on the natural container attapulgite(ATP).To obtain high healing efficiency,a fluidity-driven self-healing silicone oil coating was thickened by fibrous ATP to enhance its stability,which played a key role in the self-healing and long-term corrosion resistance.The self-healing time of ULM@ATP rein-forced oil coating was 4 s at least in the air and up to 30 s in the 1 M HCl solution.Meanwhile,the ULM@ATP can significantly enhance the corrosion resistance of the self-healing coating,with the best effect achieved when the content of ULM@ATP was 5 wt.%.The impedance modulus of ULM@ATP-2 still reached 1.62×10^(8)Ωcm^(2) after 480 immersion in 3.5 wt.%NaCl solution,which is 3 orders of magnitude high than pure Oil coating(2.17×10^(5)Ωcm^(2)).The restructure of the ATP network and the release of ULM could largely inhibit the corrosion of metal.The continuous open circuit potential of the compos-ite coating performed the potentially infinite self-healing capacity.The self-healing performances of the composite coating in strong acid and base solutions exhibited high environmental suitability.This anti-corrosion and anti-biofouling(the surface coverage of adhered chlorella decreased 96.88%)dual-function strategy of self-healing coatings could be also realized by many other porous nano-materials or function modifications.The self-healing performances of the composite coating in strong acid and base solutions exhibited high environmental suitability.This anti-corrosion and anti-biofouling dual-function strategy of self-healing coatings could be also realized by many other porous nano-materials or function modifica-tions.The rapid response self-healing coating possessed anti-biofouling and active self-healing functions and showed wide application under more service environments. 展开更多
关键词 self-healing Active corrosion resistance Anti-biofouling ATTAPULGITE
原文传递
A self-healing and bioactive coating based on duplex plasma electrolytic oxidation/polydopamine on AZ91 alloy for bone implants
7
作者 Safoora Farshid Mahshid Kharaziha Masoud Atapour 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第2期592-606,共15页
Magnesium(Mg) alloys are well-known in biomedical materials owing to their elastic module near to bone, biocompatibility and biodegradation properties. Nevertheless, poor corrosion resistance hinders their biomedical ... Magnesium(Mg) alloys are well-known in biomedical materials owing to their elastic module near to bone, biocompatibility and biodegradation properties. Nevertheless, poor corrosion resistance hinders their biomedical applications. Besides, it is necessary to endow Mg alloys with bioactive property, which is crucial for temporary bone implants. Here, a self-healing, corrosion resistant and bioactive duplex coating of plasma electrolytic oxidization(PEO)/polydopamine(PDA) is applied on AZ91 substrate using PEO and subsequent electrodeposition process. Moreover, the role of different electrodeposition times(60 s, 120 s) and dopamine concentrations(1 and 1.5 mg/ml) to improve corrosion resistance, bioactivity, biocompatibility and self-healing property and its mechanism are investigated. The results indicate that the PEO coating is efficiently sealed by the PDA, depending on the electrodeposition parameters. Noticeably, electrodeposition for 120 s in dopamine concentration of 1 mg/ml(120T-1C) results in the formation of uniform and crack-free PDA coating. Duplex PEO/PDA coatings reveal high bioactivity compared to PEO coating, owing to electrostatic interaction between PDA top-layer and calcium and phosphate ions as well as high hydrophilicity of coatings. In addition, duplex PEO/PDA coatings also show improved and more stable protective performance than the PEO and bare alloy, depending on the PDA deposition parameters. Noticeably, the corrosion current density of the 120T-1C decreases one orders of magnitude compared to PEO. In addition, the presence of a broad passivation region in the anodic polarization branch shows durable self-healing property via Zipper-like mechanism, demonstrating the duplex coating could preserve promising corrosion resistance.Furthermore, the cytocompatibility of duplex coated samples is also confirmed via interaction with MG63 cells. In summary, the PEO/PDA coating with great corrosion protection, self-healing ability, bioactivity and biocompatibility could be a promising candidate for degradable magnesium-based implants. 展开更多
关键词 Magnesium alloy Plasma electrolytic oxidation POLYDOPAMINE self-healing Bioactivity Orthopedic applications
下载PDF
Advancements in enhancing corrosion protection of Mg alloys:A comprehensive review on the synergistic effects of combining inhibitors with PEO coating
8
作者 Arash Fattah-alhosseini Abdelhameed Fardosi +1 位作者 Minoo Karbasi Mosab Kaseem 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期465-489,共25页
Magnesium(Mg)alloys are lightweight materials with excellent mechanical properties,making them attractive for various applications,including aerospace,automotive,and biomedical industries.However,the practical applica... Magnesium(Mg)alloys are lightweight materials with excellent mechanical properties,making them attractive for various applications,including aerospace,automotive,and biomedical industries.However,the practical application of Mg alloys is limited due to their high susceptibility to corrosion.Plasma electrolytic oxidation(PEO),or micro-arc oxidation(MAO),is a coating method that boosts Mg alloys'corrosion resistance.However,despite the benefits of PEO coatings,they can still exhibit certain limitations,such as failing to maintain long-term protection as a result of their inherent porosity.To address these challenges,researchers have suggested the use of inhibitors in combination with PEO coatings on Mg alloys.Inhibitors are chemical compounds that can be incorporated into the coating or applied as a post-treatment to further boost the corrosion resistance of the PEO-coated Mg alloys.Corrosion inhibitors,whether organic or inorganic,can act by forming a protective barrier,hindering the corrosion process,or modifying the surface properties to reduce susceptibility to corrosion.Containers can be made of various materials,including polyelectrolyte shells,layered double hydroxides,polymer shells,and mesoporous inorganic materials.Encapsulating corrosion inhibitors in containers fully compatible with the coating matrix and substrate is a promising approach for their incorporation.Laboratory studies of the combination of inhibitors with PEO coatings on Mg alloys have shown promising results,demonstrating significant corrosion mitigation,extending the service life of Mg alloy components in aggressive environments,and providing self-healing properties.In general,this review presents available information on the incorporation of inhibitors with PEO coatings,which can lead to improved performance of Mg alloy components in demanding environments. 展开更多
关键词 INHIBITOR Mg alloy self-healing coating Plasma electrolytic oxidation(PEO) Corrosion protection
下载PDF
Evaluation of self-healing properties of inhibitor loaded nanoclay-based anticorrosive coatings on magnesium alloy AZ91D 被引量:9
9
作者 Swapnil H.Adsul K.R.C.Soma Raju +2 位作者 B.V.Sarada Shirish H.Sonawane R.Subasri 《Journal of Magnesium and Alloys》 SCIE EI CAS 2018年第3期299-308,共10页
This study emphasizes on the evaluation and comparison of the anticorrosive properties of sol-gel coatings with and without inhibitor loaded nanocontainers.In this case,naturally available clay nanotubes(halloysite)we... This study emphasizes on the evaluation and comparison of the anticorrosive properties of sol-gel coatings with and without inhibitor loaded nanocontainers.In this case,naturally available clay nanotubes(halloysite)were loaded with cationic corrosion inhibitors Ce 3+/Zr 4+.These nanocontainers were dispersed in hybrid organic-inorganic sol-gel matrix sol.Coating was applied on magnesium alloy AZ91D using the sols containing modified and unmodified nanocontainers employing the dip coating method and cured at 130℃for 1 h in air.Corrosion resistance of coated/uncoated substrates were analyzed using electrochemical impedance spectroscopy,potentiodynamic polarization and weight loss measurements after exposure to 3.5 wt%NaCl solution for varying time durations between 24 h to 120 h.Self-healing ability of coatings was evaluated by micro-Raman spectroscopy after 120 h exposure to 3.5 wt%NaCl solution.Coatings generated after dispersion of corrosion inhibitor loaded clay in hybrid sol-gel matrix have shown more promising corrosion resistance when compared to just the sol-gel matrix coatings,after prolonged exposure to corrosive environment. 展开更多
关键词 self-healing coating Halloysite nanoclay Cationic corrosion inhibitors Magnesium alloy AZ91D Micro-Raman spectroscopy Corrosion protection
下载PDF
Photothermal and pH dual-responsive self-healing coating for smart corrosion protection 被引量:2
10
作者 Yao Huang Panjun Wang +8 位作者 Weimin Tan Wenkui Hao Lingwei Ma Jinke Wang Tong Liu Fan Zhang Chenhao Ren Wei Liu Dawei Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第12期34-42,共9页
A novel self-healing coating with photothermal and pH dual-responsive properties has been designed to protect carbon steel against corrosion by loading the stimuli-responsive microcapsules into a shape memory epoxy co... A novel self-healing coating with photothermal and pH dual-responsive properties has been designed to protect carbon steel against corrosion by loading the stimuli-responsive microcapsules into a shape memory epoxy coating. The sandwich-like microcapsules were based on reduced graphene oxide/mesoporous silica(r GO@MS) assembled with a p H-responsive poly(N,N-dimethylaminoethyl methacrylate)(PDMAEMA) layer, and were loaded with benzotriazole(BTA) inhibitors(abbreviated as rGO@MS-P-BTA). Under near-infrared(NIR) light irradiation, the prominent photothermal effect of rGO could not only elevate the coating temperature to activate the shape memory effect and close the coating scratch, but also facilitate the release of corrosion inhibitors to suppress the corrosion activity. Moreover,the PDMAEMA as a p H-driven “gatekeeper” realized the controlled release of BTA from microcapsules at acid conditions. The surface morphology analysis, electrochemical impedance spectroscopy(EIS), and scanning electrochemical microscopy(SECM) were performed to evaluate the self-healing performance of the composite coatings. The results showed that the combination of NIR light and p H-responsive selfhealing effects endowed the coating with short healing time and prominent healing efficiency. 展开更多
关键词 self-healing coatings Corrosion inhibitors Photothermal effects PH-RESPONSIVE Shape memory polymers
原文传递
Multi-action self-healing coatings with simultaneous recovery of corrosion resistance and adhesion strength 被引量:2
11
作者 Chenhao Ren Yao Huang +7 位作者 Wenkui Hao Dawei Zhang Xiejing Luo Lingwei Ma Jinke Wang Thee Chowwanonthapunya Chaofang Dong Xiaogang Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第6期18-27,共10页
In this study, a new self-healing strategy that can simultaneously recover the corrosion resistance and the adhesion strength of coatings was introduced. The coating was based on a shape memory epoxy resin containing ... In this study, a new self-healing strategy that can simultaneously recover the corrosion resistance and the adhesion strength of coatings was introduced. The coating was based on a shape memory epoxy resin containing ethylene vinyl acetate(EVA) microspheres loaded with Ce(NO_(3))_(3)inhibitors, and was cured at a relatively high temperature to facilitate the fusion of adjacent microspheres for a strengthened self-healing effect. The electrochemical impedance spectroscopy(EIS) and scanning electrochemical microscopy(SECM) results demonstrated that the shape memory effect of epoxy matrix, the filling of molten EVA microspheres as well as the release of Ce(NO_(3))_(3)inhibitors contributed synergistically to suppress the corrosion reaction at the coating damage. After healing, the low frequency impedance modulus of the coatings containing Ce(NO_(3))_(3)-EVA microspheres was three orders of magnitude higher than that of the blank epoxy coating. The adhesion strength of the coatings containing Ce(NO_(3))_(3)-EVA microspheres on the metal substrate was also largely repaired thanks to the strong bonding effect of the EVA microspheres. 展开更多
关键词 self-healing coating Corrosion protection Adhesion strength Shape memory effect Bonding effect
原文传递
Anticorrosive composite self-healing coating enabled by solar irradiation 被引量:1
12
作者 Zhentao Hao Si Chen +1 位作者 Zhifeng Lin Weihua Li 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2022年第9期1355-1366,共12页
Self-healing coatings for long-term corrosion protection have received much interest in recent years.However,most self-healing coatings rely on healants released from microcapsules,dynamic bonds,shape memory,or thermo... Self-healing coatings for long-term corrosion protection have received much interest in recent years.However,most self-healing coatings rely on healants released from microcapsules,dynamic bonds,shape memory,or thermoplastic materials,which generally suffer from limited healing times or harsh conditions for selfhealing,such as high temperature and UV radiation.Herein,we present a composite coating with a self-healing function under easily accessible sunlight by adding Fe_(3)O_(4)nanoparticles and tetradecanol into epoxy resin.Tetradecanol,with its moderate melting point,and Fe_(3)O_(4)nanoparticles serve as a phase-change component and photothermal material in an epoxy coating system,respectively.Fe_(3)O_(4)nanoparticles endow this composite self-healing coating with good photothermal properties and a rapid thermal response time under simulated solar irradiation as well as outdoor real sunlight.Tetradecanol can flow to and fill defects by phase transition at low temperatures.Therefore,artificial defects created in this type of selfhealing coating can be healed by the liquified tetradecanol induced by the photothermal effect of Fe_(3)O_(4)nanoparticles under simulated solar irradiation.The healed coating can still serve as a good barrier for the protection of the underlying carbon steel.These excellent properties make this self-healing coating an excellent candidate for various engineering applications. 展开更多
关键词 self-healing coating phase transition photothermal effect corrosion protection
原文传递
Developing an atmospheric aging evaluation model of acrylic coatings:A semi-supervised machine learning algorithm
13
作者 Yiran Li Zhongheng Fu +5 位作者 Xiangyang Yu Zhihui Jin Haiyan Gong Lingwei Ma Xiaogang Li Dawei Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1617-1627,共11页
To study the atmospheric aging of acrylic coatings,a two-year aging exposure experiment was conducted in 13 representative climatic environments in China.An atmospheric aging evaluation model of acrylic coatings was d... To study the atmospheric aging of acrylic coatings,a two-year aging exposure experiment was conducted in 13 representative climatic environments in China.An atmospheric aging evaluation model of acrylic coatings was developed based on aging data including11 environmental factors from 567 cities.A hybrid method of random forest and Spearman correlation analysis was used to reduce the redundancy and multicollinearity of the data set by dimensionality reduction.A semi-supervised collaborative trained regression model was developed with the environmental factors as input and the low-frequency impedance modulus values of the electrochemical impedance spectra of acrylic coatings in 3.5wt%NaCl solution as output.The model improves accuracy compared to supervised learning algorithms model(support vector machines model).The model provides a new method for the rapid evaluation of the aging performance of acrylic coatings,and may also serve as a reference to evaluate the aging performance of other organic coatings. 展开更多
关键词 acrylic coatings coatings aging atmospheric environment machine learning
下载PDF
A Self-Healing Optoacoustic Patch with High Damage Threshold and Conversion Efficiency for Biomedical Applications
14
作者 Tao Zhang Cheng-Hui Li +7 位作者 Wenbo Li Zhen Wang Zhongya Gu Jiapu Li Junru Yuan Jun Ou-Yang Xiaofei Yang Benpeng Zhu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期31-45,共15页
Compared with traditional piezoelectric ultrasonic devices,optoacoustic devices have unique advantages such as a simple preparation process,anti-electromagnetic interference,and wireless long-distance power supply.How... Compared with traditional piezoelectric ultrasonic devices,optoacoustic devices have unique advantages such as a simple preparation process,anti-electromagnetic interference,and wireless long-distance power supply.However,current optoacoustic devices remain limited due to a low damage threshold and energy conversion efficiency,which seriously hinder their widespread applications.In this study,using a self-healing polydimethylsiloxane(PDMS,Fe-Hpdca-PDMS)and carbon nanotube composite,a flexible optoacoustic patch is developed,which possesses the self-healing capability at room temperature,and can even recover from damage induced by cutting or laser irradiation.Moreover,this patch can generate high-intensity ultrasound(>25 MPa)without the focusing structure.The laser damage threshold is greater than 183.44 mJ cm^(-2),and the optoacoustic energy conversion efficiency reaches a major achievement at 10.66×10^(-3),compared with other carbon-based nanomaterials and PDMS composites.This patch is also been successfully examined in the application of acoustic flow,thrombolysis,and wireless energy harvesting.All findings in this study provides new insight into designing and fabricating of novel ultrasound devices for biomedical applications. 展开更多
关键词 Optoacoustic self-healing PDMS Acoustic flow THROMBOLYTIC Wireless energy harvesting
下载PDF
Mechanical reliable,NIR light-induced rapid self-healing hydrogel electrolyte towards flexible zinc-ion hybrid supercapacitors with low-temperature adaptability and long service life
15
作者 Tengjia Gao Na Li +4 位作者 Yang Yang Jing Li Peng Ji Yunlong Zhou Jianxiong Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期63-73,共11页
Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors(ZICs)due to their high conductivity,good safety,and flexibility.However,freezing of electrolytes at low temperature(subzero)leads to dras... Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors(ZICs)due to their high conductivity,good safety,and flexibility.However,freezing of electrolytes at low temperature(subzero)leads to drastic reduction in ionic conductivity and mechanical properties that deteriorates the performance of flexible ZICs.Besides,the mechanical fracture during arbitrary deformations significantly prunes out the lifespan of the flexible device.Herein,a Zn^(2+)and Li^(+)co-doped,polypyrrole-dopamine decorated Sb_(2)S_(3)incorporated,and polyvinyl alcohol/poly(N-(2-hydroxyethyl)acrylamide)double-network hydrogel electrolyte is constructed with favorable mechanical reliability,anti-freezing,and self-healing ability.In addition,it delivers ultra-high ionic conductivity of 8.6 and 3.7 S m^(-1)at 20 and−30°C,respectively,and displays excellent mechanical properties to withstand tensile stress of 1.85 MPa with tensile elongation of 760%,together with fracture energy of 5.14 MJ m^(-3).Notably,the fractured hydrogel electrolyte can recover itself after only 90 s of infrared illumination,while regaining 83%of its tensile strain and almost 100%of its ionic conductivity during−30–60°C.Moreover,ZICs coupled with this hydrogel electrolyte not only show a wide voltage window(up to 2 V),but also provide high energy density of 230 Wh kg^(-1)at power density of 500 W kg^(-1)with a capacity retention of 86.7%after 20,000 cycles under 20°C.Furthermore,the ZICs are able to retain excellent capacity even under various mechanical deformation at−30°C.This contribution will open up new insights into design of advanced wearable flexible electronics with environmental adaptability and long-life span. 展开更多
关键词 Flexible zinc ion supercapacitor Hydrogel electrolyte self-healing Anti-freezing
下载PDF
High performance photodegradation resistant PVA@TiO_(2)/carboxyl-PES self-healing reactive ultrafiltration membrane
16
作者 Yu Liang Yuanfang Fan +5 位作者 Zhongmin Su Mingxin Huo Xia Yang Hongliang Huo Chi Wang Zhi Geng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期31-39,共9页
The occurrence of ultrafiltration(UF)membrane fouling frequently hampers the sustainable advancement of UF technology.Reactive self-cleaning UF membranes can effectively alleviate the problem of membrane fouling.Never... The occurrence of ultrafiltration(UF)membrane fouling frequently hampers the sustainable advancement of UF technology.Reactive self-cleaning UF membranes can effectively alleviate the problem of membrane fouling.Nevertheless,the self-cleaning process may accelerate membrane aging.Addressing these concerns,we present an innovative design concept for composite self-healing materials based on self-cleaning UF membranes.To begin,TiO_(2)nanoparticles were incorporated into the polymer molecular structure via molecular design,resulting in the synthesis of TiO_(2)/carboxyl-polyether sulfone(PES)hybrid materials.Subsequently,the nonsolvent-induced phase inversion technique was employed to prepare a novel of UF membrane.Lastly,a polyvinyl alcohol(PVA)hydrogel coating was applied to the hybrid UF membrane surface to create PVA@TiO_(2)/carboxyl-PES self-healing reactive UF membranes.By establishing a covalent bond,the TiO_(2)nanoparticles were effectively and uniformly dispersed within the UF membrane,leading to exceptional self-cleaning properties.Furthermore,the water-absorbing and swelling properties of PVA hydrogel,along with its capacity to form hydrogen bonds with water molecules,resulted in UF membranes with improved hydrophilicity and active self-healing abilities.The results demonstrated that the water contact angle of PVA@5%TiO_(2)/carboxyl-PES UF membrane was 43.1°.Following a 1-h exposure to simulated solar exposure,the water flux recovery ratio increased from 48.16%to 81.03%.Moreover,even after undergoing five cycles of 12-h simulated sunlight exposure,the UF membranes exhibited a consistent retention rate of over 97%,thus fully demonstrating their exceptional self-cleaning,antifouling,and selfhealing capabilities.We anticipate that the self-healing reactive UF membrane system will serve as a pioneering and comprehensive solution for the self-cleaning antifouling challenges encountered in UF membranes while also effectively mitigating the aging effects of reactive UF membranes. 展开更多
关键词 Ultrafiltration membrane SELF-CLEANING self-healing Poly(aryl ether sulfone)
下载PDF
An intrinsically self-healing and anti-freezing molecular chains induced polyacrylamide-based hydrogel electrolytes for zinc manganese dioxide batteries
17
作者 Haiyang Liao Wenzhao Zhong +8 位作者 Chen Li Jieling Han Xiao Sun Xinhui Xia Ting Li Abolhassan Noori Mir F.Mousavi Xin Liu Yongqi Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期565-578,I0013,共15页
The anti-freezing strategy of hydrogels and their self-healing structure are often contradictory,it is vital to break through the molecular structure to design and construct hydrogels with intrinsic anti-freezing/self... The anti-freezing strategy of hydrogels and their self-healing structure are often contradictory,it is vital to break through the molecular structure to design and construct hydrogels with intrinsic anti-freezing/self-healing for meeting the rapid development of flexible and wearable devices in diverse service conditions.Herein,we design a new hydrogel electrolyte(AF/SH-Hydrogel)with intrinsic anti-freezing/self-healing capabilities by introducing ethylene glycol molecules,dynamic chemical bonding(disulfide bond),and supramolecular interaction(multi-hydrogen bond)into the polyacrylamide molecular chain.Thanks to the exceptional freeze resistance(84%capacity retention at-20℃)and intrinsic self-healing capabilities(95%capacity retention after 5 cutting/self-healing cycles),the obtained AF/SH-Hydrogel makes the zinc||manganese dioxide cell an economically feasible battery for the state-of-the-art applications.The Zn||AF/SH-Hydrogel||MnO_(2)device offers a near-theoretical specific capacity of 285 m A h g^(-1)at 0.1 A g^(-1)(Coulombic efficiency≈100%),as well as good self-healing capability and mechanical flexibility in an ice bath.This work provides insight that can be utilized to develop multifunctional hydrogel electrolytes for application in next generation of self-healable and freeze-resistance smart aqueous energy storage devices. 展开更多
关键词 Flexible aqueous battery Hydrogel electrolyte ANTI-FREEZING self-healing Dual-dynamic reversible bond
下载PDF
High corrosion and wear resistant electroless Ni–P gradient coatings on aviation aluminum alloy parts
18
作者 Bo Wang Jiawei Li +2 位作者 Zhihui Xie Gengjie Wang Gang Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期155-164,共10页
A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were... A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were used to characterize the different Ni–P coatings’ morphologies, phase structures, elemental compositions, and corrosion protection. The gradient coating showed good adhesion and high corrosion and wear resistance, enabling the application of aluminum alloy in harsh environments. The results showed that the double zinc immersion was vital in obtaining excellent adhesion (81.2 N). The optimal coating was not peeled and shredded even after bending tests with angles higher than 90°and was not corroded visually after 500 h of neutral salt spray test at 35℃. The high corrosion resistance was attributed to the misaligning of these micro defects in the three different nickel alloy layers and the amorphous structure of the high P content in the outer layer. These findings guide the exploration of functional gradient coatings that meet the high application requirement of aluminum alloy parts in complicated and harsh aviation environments. 展开更多
关键词 aluminum alloy ELECTROLESS nickel coating CORROSION ADHESION
下载PDF
Effect of drying cracks on swelling and self-healing of bentonite-sand blocks used as engineered barriers for radioactive waste disposal
19
作者 Yu Tan Guangping Zhou +2 位作者 Huyuan Zhang Xiaoya Li Ping Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1776-1787,共12页
Experiments were conducted to evaluate the healing of drying cracks in air-dried bentonite-sand blocks after hydration and swelling in groundwater,providing justifications to simplify the protection of blocks prior to... Experiments were conducted to evaluate the healing of drying cracks in air-dried bentonite-sand blocks after hydration and swelling in groundwater,providing justifications to simplify the protection of blocks prior to installation in a high-level radioactive waste repository.Synthetic groundwater was prepared to represent the geochemistry of Beishan groundwater,and was used to hydrate the blocks during the swelling pressure and swelling strain measurements,as Beishan is the most promising site for China's repository.Healing of the surface cracks was recorded by photography,and healing of the internal cracks was visualized by CT images and hydraulic conductivity of air-dried blocks.The results indicate that the maximum swelling pressure and swelling strain are primarily affected by the geochemistry of Beishan groundwater,but not affected by the drying cracks.The maximum swelling pressure and swelling strain of air-dried blocks are comparable to or even higher than the pressure and strain of fresh blocks.The maximum swelling pressure measured in strong(i.e.high ion strength)Beishan groundwater was 44%of the pressure measured in deionized(DI)water,and the maximum swelling strain was reduced to 23%of the strain measured in DI water.Nevertheless,the remained swelling of the blocks hydrated in strong Beishan groundwater was sufficient to heal the surface and internal drying cracks,as demonstrated by the pictures of surface cracks and CT images.The hydraulic conductivity of the air-dried block permeated with strong groundwater was comparable(3.7×higher)to the hydraulic conductivity of the fresh block,indicating the self-healing of drying cracks after hydration and swelling in groundwater.A simplified method of protecting the block with plastic wraps before installation is recommended,since the remained swelling of the block hydrated in Beishan groundwater is sufficient to heal the drying cracks. 展开更多
关键词 Beishan groundwater chemistry Bentonite buffer Drying cracks High-level radioactive waste(HLW) self-healing SWELLING
下载PDF
Graphene-calcium carbonate coating to improve the degradation resistance and mechanical integrity of a biodegradable implant
20
作者 Lokesh Choudhary Parama Chakraborty Banerjee +5 位作者 R.K.Singh Raman Derrek E.Lobo Christopher D.Easton Mainak Majumder Frank Witte Jörg F.Löffler 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期394-404,共11页
Biodegradable implants are critical for regenerative orthopaedic procedures,but they may suffer from too fast corrosion in human-body environment.This necessitates the synthesis of a suitable coating that may improve ... Biodegradable implants are critical for regenerative orthopaedic procedures,but they may suffer from too fast corrosion in human-body environment.This necessitates the synthesis of a suitable coating that may improve the corrosion resistance of these implants without compromising their mechanical integrity.In this study,an AZ91 magnesium alloy,as a representative for a biodegradable Mg implant material,was modified with a thin reduced graphene oxide(RGO)-calcium carbonate(CaCO_(3))composite coating.Detailed analytical and in-vitro electrochemical characterization reveals that this coating significantly improves the corrosion resistance and mechanical integrity,and thus has the potential to greatly extend the related application field. 展开更多
关键词 Graphene coating Biodegradable implant HYDROXYAPATITE Corrosion Magnesium alloy
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部