Resorption and loss of alveolar bone leads to oral dysfunction and loss of natural or implant teeth. Biomimetic delivery of growth factors based on stem cell recruitment and osteogenic differentiation, as the key step...Resorption and loss of alveolar bone leads to oral dysfunction and loss of natural or implant teeth. Biomimetic delivery of growth factors based on stem cell recruitment and osteogenic differentiation, as the key steps in natural alveolar bone regenerative process, has been an area of intense research in recent years. A mesoporous self-healing hydrogel(DFH) with basic fibroblast growth factor(bFGF) entrapment and transforming growth factor β3(TGFβ3)-loaded chitosan microspheres(CMs) was developed. The formulation was optimized by multiple tests of self-healing, in-bottle inversion, SEM, rheological, swelling rate and in vitro degradation. In vitro tubule formation assays, cell migration assays, and osteogenic differentiation assays confirmed the ability of DFH to promote blood vessels, recruit stem cells, and promote osteogenic differentiation. The optimum DFH formula is 0.05 ml 4ArmPEG-DF(20%) added to 1 ml CsGlu(2%) containing bFGF(80 ng) and TGFβ3-microspheres(5 mg). The results of in vitro release studied by Elisa kit, indicated an 95% release of b FGF in7 d and long-term sustained release of TGFβ3. For alveolar defects rat models, the expression levels of CD29 and CD45, the bone volume fraction, trabecular number, and trabecular thickness of new bone monitored by Micro-CT in DFH treatment groups were significantly higher than others(*P < 0.05, vs Model). HE and Masson staining show the same results.In conclusion, DFH is a design of bionic alveolar remodelling microenvironment, that is in early time microvessels formed by b FGF provide nutritious to recruited endogenous stem cells, then TGFβ3 slowly released speed up the process of new bones formation to common facilitate rat alveolar defect repair. The DFH with higher regenerative efficiency dovetails nicely with great demand due to the requirement of complicated biological processes.展开更多
The aim of the present real time in vivo micro-computed tomography (pCT) and histologic experiment was to assess the efficacy of guided bone regeneration (GBR) around standardized calvarial critical size defects ...The aim of the present real time in vivo micro-computed tomography (pCT) and histologic experiment was to assess the efficacy of guided bone regeneration (GBR) around standardized calvarial critical size defects (CSD) using bone marrow-derived mesenchymal stem cells (BMSCs), and collagen membrane (CM) with and without tricalcium phosphate (TCP) graft material. In the calvaria of nine female Sprague-Dawley rats, full-thickness CSD (diameter 4.6 mm) were created under general anesthesia. Treatment-wise, rats were divided into three groups. In group 1, CSD was covered with a resorbable CM; in group 2, BMSCs were filled in CSD and covered with CM; and in group 3, TCP soaked in BMSCs was placed in CSD and covered with CM. All defects were closed using resorbable sutures. Bone volume and bone mineral density of newly formed bone (NFB) and remaining TCP particles and rate of new bone formation was determined at baseline, 2, 4, 6, and 10 weeks using in vivo pCT. At the lOth week, the rats were killed and calvarial segments were assessed histologically. The results showed that the hardness of NFB was similar to that of the native bone in groups I and 2 as compared to the NFB in group 3. Likewise, values for the modulus of elasticity were also significantly higher in group 3 compared to groups 1 and 2. This suggests that TCP when used in combination with BMSCs and without CM was unable to form bone of significant strength that could possibly provide mechanical "lock" between the natural bone and NFB. The use of BMSCs as adjuncts to conventional GBR initiated new bone formation as early as 2 weeks of treatment compared to when GBR is attempted without adiunct BMSC therapy.展开更多
Recently, porous titanium granules (PTGs) have been indicated for the preservation of the dimensions of post-extraction sockets, as a filler in sinus lift procedures and for the treatment of peri-implant and periodo...Recently, porous titanium granules (PTGs) have been indicated for the preservation of the dimensions of post-extraction sockets, as a filler in sinus lift procedures and for the treatment of peri-implant and periodontal defects, based on the osteoconductivity and dimensional stability of the titanium granules. However, there is a lack of information regarding the use of this material in larger defects and in conjunction with membranes. The objective of this study is to test the behavior of PTGs used to fill critical size defects in rabbit tibiae, with and without membranes. Critical defects were created in both tibiae of rabbits, divided randomly into three groups: Group A (defect filled with PTG), Group B (defect filled with PTG+collagen membrane) and a control group (empty defect). After six weeks, histomorphometric analysis was performed. The results showed more defect closures at the cortical area (87.37%±2.2%) and more bone formation at the marrow area (57.6%± 1.3%) in Group B, in comparison with the other groups (P〈0.05); the use of membranes improved the material stability expressed as more percentages of the original material when membranes were used (P〈0.05). Finally, inflammatory reactions were observed when the granules were not protected by membranes. In spite of the limitations of this animal study, it may be concluded that PTG particles are osteoconductive and allow bone growth. The PTG particles must be covered by a membrane, especially when grafting larger defects, in order to control particle migration, promote clot stabilization and separate the PTG graft from undesired soft tissue cells.展开更多
The effects of crystallite size on the physicochemical properties and surface defects of pure monoclinic ZrO_(2) catalysts for isobutene synthesis were studied.We prepared a series of monoclinic ZrO_(2) catalysts with...The effects of crystallite size on the physicochemical properties and surface defects of pure monoclinic ZrO_(2) catalysts for isobutene synthesis were studied.We prepared a series of monoclinic ZrO_(2) catalysts with different crystallite size by changing calcination temperature and evaluated their catalytic performance for isobutene synthesis from syngas.ZrO_(2) with small crystalline size showed higher CO conversion and isobutene selectivity,while samples with large crystalline size preferred to form dimethyl ether(DME)instead of hydrocarbons,much less to isobutene.Oxygen defects(ODefects)analyzed by X-ray photoelectron spectroscopy(XPS)provided evidence that more ODefectsoccupied on the surface of ZrO_(2) catalysts with smaller crystalline size.Electron paramagnetic resonance(EPR)and ultraviolet–visible diffuse reflectance(UV–vis DRS)confirmed the presence of high concentration of surface defects and Zr3+on mZrO_(2)-5.9 sample,respectively.In situ diffuse reflectance infrared Fourier transform spectroscopy(in situ DRIFTS)analysis indicated that the adsorption strength of formed formate species on catalyst reduced as the crystalline size decreased.These results suggested that surface defects were responsible for CO activation and further influenced the adsorption strength of surface species,and thus the products distribution changed.This study provides an in-depth insight for active sites regulation of ZrO_(2) catalyst in CO hydrogenation reaction.展开更多
The Bauschinger and size effects in the thinfilm plasticity theory arising from the defect-energy of geometrically necessary dislocations (GNDs) are analytically investigated in this paper. Firstly, this defect-ener...The Bauschinger and size effects in the thinfilm plasticity theory arising from the defect-energy of geometrically necessary dislocations (GNDs) are analytically investigated in this paper. Firstly, this defect-energy is deduced based on the elastic interactions of coupling dislocations (or pile-ups) moving on the closed neighboring slip plane. This energy is a quadratic function of the GNDs density, and includes an elastic interaction coefficient and an energetic length scale L. By incorporating it into the work- conjugate strain gradient plasticity theory of Gurtin, an energetic stress associated with this defect energy is obtained, which just plays the role of back stress in the kinematic hardening model. Then this back-stress hardening model is used to investigate the Bauschinger and size effects in the tension problem of single crystal Al films with passivation layers. The tension stress in the film shows a reverse dependence on the film thickness h. By comparing it with discrete-dislocation simulation results, the length scale L is determined, which is just several slip plane spacing, and accords well with our physical interpretation for the defect- energy. The Bauschinger effect after unloading is analyzed by combining this back-stress hardening model with a friction model. The effects of film thickness and pre-strain on the reversed plastic strain after unloading are quantified and qualitatively compared with experiment results.展开更多
The classical EPQ model has been used for a long ti me and is widely accepted and implemented. Nevertheless, the analysis for finding an economic lot size has based on a number of unrealistic assumptions. A common unr...The classical EPQ model has been used for a long ti me and is widely accepted and implemented. Nevertheless, the analysis for finding an economic lot size has based on a number of unrealistic assumptions. A common unrealistic assumption in using EPQ is that all units produced are of good quali ty. The classical EPQ model shows that the optimal lot size will generate minimum ma nufacturing cost, thus producing minimum setup cost and inventory cost. However, this is only true if all products manufactured in the process are assumed to be of good quality (i.e. all products are within the specification limits). In rea lity this is not the case, therefore, it is necessary to consider the cost of im perfect quality items, because this cost can influence the economic lot size. Ma ny studies and recent papers have indicated that there is a significant relation ship between economic production lot size and process/product quality. However, their models included either the imperfect quality items (not necessarily de fective) which are to be sold at a discounted price or defective items which can be reworked or rejected. The aim of this paper is to provide a framework to integrate three different sit uations (discounted pricing/rework/reject) into a single model. 100% inspection is performed in order to distinguish the amount of good quality items, imper fect quality items and defective items in each lot. In this paper, a mathematica l model is developed, and a numerical example is presented to illustrate the sol ution procedures. It is found that the economic production lot size tends to inc rease as the average percentage of imperfect quality items and defectives (rejec ted items) increases.展开更多
On the basis of the Li-site vacancy model, the non-stoichiometric defects in LN crystals, i.e., anti-site defects NbLi and corresponding lithium vacancy defects VLi, were investigated by the bond valence model. Accord...On the basis of the Li-site vacancy model, the non-stoichiometric defects in LN crystals, i.e., anti-site defects NbLi and corresponding lithium vacancy defects VLi, were investigated by the bond valence model. According to the valence sum rule, 4 VLi sites must emerge in the nearest lattices of NbLi, and thus form a neutral cluster with the center, NbLi(VLi)4Nb5O15. The bond graph of the defect cluster was given, which reveals the ideal chemical bonding characteristics of defect clusters. Combining the possible configuration of defect clusters and the ideal bond lengths in the bond graph, the size of defect clusters in the LN crystallographic frame is estimated as 0.9~1.2 nm in diameter.展开更多
This paper uses various mean-field approaches and the Monte Carlo simulation to calculate asymmetric simple exclusion processes with particles of arbitrary size in the successive defects system. In this system, the ho...This paper uses various mean-field approaches and the Monte Carlo simulation to calculate asymmetric simple exclusion processes with particles of arbitrary size in the successive defects system. In this system, the hopping probability p (p 〈 1) and the size d of particles are not constant, Through theoretical calculation and computer simulation, it obtains the exact theoretical results and finds that the theoretical results are in agreement with the computer simulation. These results are helpful in analysing the effect of traffic with different hopping probabilities p and sizes d of particle.展开更多
BACKGROUND Critically sized bone defects represent a significant challenge to orthopaedic surgeons worldwide.These defects generally result from severe trauma or resection of a whole large tumour.Autologous bone graft...BACKGROUND Critically sized bone defects represent a significant challenge to orthopaedic surgeons worldwide.These defects generally result from severe trauma or resection of a whole large tumour.Autologous bone grafts are the current gold standard for the reconstruction of such defects.However,due to increased patient morbidity and the need for a second operative site,other lines of treatment should be introduced.To find alternative unconventional therapies to manage such defects,bone tissue engineering using a combination of suitable bioactive factors,cells,and biocompatible scaffolds offers a promising new approach for bone regeneration.AIM To evaluate the healing capacity of platelet-rich fibrin(PRF)membranes seeded with allogeneic mesenchymal bone marrow-derived stem cells(BMSCs)on critically sized mandibular defects in a rat model.METHODS Sixty-three Sprague Dawley rats were subjected to bilateral bone defects of critical size in the mandibles created by a 5-mm diameter trephine bur.Rats were allocated to three equal groups of 21 rats each.Group I bone defects were irrigated with normal saline and designed as negative controls.Defects of group II were grafted with PRF membranes and served as positive controls,while defects of group III were grafted with PRF membranes seeded with allogeneic BMSCs.Seven rats from each group were killed at 1,2 and 4 wk.The mandibles were dissected and prepared for routine haematoxylin and eosin(HE)staining,Masson's trichrome staining and CD68 immunohistochemical staining.RESULTS Four weeks postoperatively,the percentage area of newly formed bone was significantly higher in group III(0.88±0.02)than in groups I(0.02±0.00)and II(0.60±0.02).The amount of granulation tissue formation was lower in group III(0.12±0.02)than in groups I(0.20±0.02)and II(0.40±0.02).The number of inflammatory cells was lower in group III(0.29±0.03)than in groups I(4.82±0.08)and II(3.09±0.07).CONCLUSION Bone regenerative quality of critically sized mandibular bone defects in rats was better promoted by PRF membranes seeded with BMSCs than with PRF membranes alone.展开更多
A study of the self-healing phenomenon of Cu2ZnSn(S, Se)4(CZTSSe) solar cells has shown more than 10% enhancement in cell performance after storage at room temperature for a week, with a significant improvement in...A study of the self-healing phenomenon of Cu2ZnSn(S, Se)4(CZTSSe) solar cells has shown more than 10% enhancement in cell performance after storage at room temperature for a week, with a significant improvement in the open-circuit photovoltage(V(oc)) and fill factor(F F). In addition, up to 10.45% power conversion efficiency(PCE) has been achieved.No obvious change in crystallinity, crystal phase, optical absorption or elemental distribution in the CZTSSe films was detected on examining the x-ray diffraction(XRD) pattern, Raman spectrum, ultraviolet-visible(UV-Vis), and TOF-SIMS.Further investigations on the charge carrier concentration, charge radiative recombination, and band structure suggest that the enhancement in PCE stems mainly from a reduction in deep defects of the CZTSSe semiconductor film.展开更多
The switching behavior of antiferroelectric domain structures under the applied electric field is not fully understood.In this work,by using the phase field simulation,we have studied the polarization switching proper...The switching behavior of antiferroelectric domain structures under the applied electric field is not fully understood.In this work,by using the phase field simulation,we have studied the polarization switching property of antiferroelectric domains.Our results indicate that the ferroelectric domains nucleate preferably at the boundaries of the antiferroelectric domains,and antiferroelectrics with larger initial domain sizes possess a higher coercive electric field as demonstrated by hysteresis loops.Moreover,we introduce charge defects into the sample and numerically investigate their influence.It is also shown that charge defects can induce local ferroelectric domains,which could suppress the saturation polarization and narrow the enclosed area of the hysteresis loop.Our results give insights into understanding the antiferroelectric phase transformation and optimizing the energy storage property in experiments.展开更多
Experiments on maxillofacial bone tissue engineering showed the promising result;however, its healing mechanisms and effectiveness had not been fully understood. The aim of this study is to compare the bone healing me...Experiments on maxillofacial bone tissue engineering showed the promising result;however, its healing mechanisms and effectiveness had not been fully understood. The aim of this study is to compare the bone healing mechanism and osteogenic capacity between bovine bone mineral loaded with hAMSC and autogenous bone graft in the reconstruction of critical size mandibular bone defect. Critical size defects were made at the mandible of 45 New Zealand white rabbits reconstructed with BBM-hAMSC, BBM alone, and ABG, respectively. At the end of first, second, and twelfth weeks, five rabbits from each experimental week were sacrificed for histology and immunohistochemistry staining. Expressions of vascular endothelial growth factor (VEGF), bone mor-phogenic proteins-2 (BMP2), Runx2 and the amount of angiogenesis were analyzed in the first and second week groups, while expressions of Runx2, osteocalcin, collagen type-I fibres, trabecular area and bone incorporation were analyzed in the twelfth week groups. The result showed that expressions of VEGF, BMP2 and Runx2 as well as the amount of angiogenesis were higher in ABG compared with BBM-hAMSC group in the first and second weeks of healing. The result of twelfth week of healing showed that expressions of Runx2 and osteocalcin as well as the thickness of collagen type-I fibres were significantly higher in BBM-hAMSC compared to ABG group, while there was no statistically difference in trabecular area and bone incorporation between BBM-hAMSC and ABG group. This study concluded that early healing activities were higher in auto-genous bone graft than in BBM-hAMSC, while osteogenic activities in the late stage of healing were higher in BBM-hAMSC compared to autogenous bone graft. It was also concluded that the osteo-genic capacity of BBM-hAMSC was comparable to autogenous bone graft in the reconstruction of critical size defect in the mandible.展开更多
Numerous irradiation-induced gas bubbles are created in the nuclear fuel during irradiation, leading to the change of microstructure and the degradation of mechanical and thermal properties. The grain size of fuel is ...Numerous irradiation-induced gas bubbles are created in the nuclear fuel during irradiation, leading to the change of microstructure and the degradation of mechanical and thermal properties. The grain size of fuel is one of the important factors affecting bubble evolution. In current study, we first predict the thermodynamic behaviors of point defects as well as the interplay between vacancy and gas atom in both UO_(2) and U_(3)Si_(2) according to ab initio approach. Then, we establish the irradiation-induced bubble phase-field model to investigate the formation and evolution of intra-and inter-granular gas bubbles. The effects of fission rate and temperature on the evolutions of bubble morphologies in UO_(2) and U_(3)Si_(2) have been revealed. Especially, a comparison of porosities under different grain sizes is examined and analyzed. To understand the thermal conductivity as functions of grain size and porosity, the heat transfer capability of U_(3)Si_(2) is evaluated.展开更多
A set of metallic specimens containing fatigue cracks with different sizes were tested using eddy current pulsed thermography(ECPT),therefore the relations between heating response of the crack area and the crack leng...A set of metallic specimens containing fatigue cracks with different sizes were tested using eddy current pulsed thermography(ECPT),therefore the relations between heating response of the crack area and the crack length was studied.The numerical and experimental results both showed that the increase of the crack length enhanced the crack heating response under specific test conditions.A particular form of calculated response signal,which is linearly related to the crack length,was introduced to provide a quantitative evaluation of crack length.展开更多
Fluoride mediated nano-sized ZSM-5 (ZSM-5-F) with a high Si/AI ratio of 181 was fabricated using a seed-induction method and evaluated the catalysis of the methanol to propylene (MTP) reaction. High propylene sele...Fluoride mediated nano-sized ZSM-5 (ZSM-5-F) with a high Si/AI ratio of 181 was fabricated using a seed-induction method and evaluated the catalysis of the methanol to propylene (MTP) reaction. High propylene selectivity (45%) was similar to ZSM-5-OH synthesized via a hydroxide route. However, ZSM- 5-F showed much longer lifetime (305 h) compared with ZSM-5-OH (157 h) in spite of similar crystal size and aluminum content. Characterization by NH3-TPD. Py-IR, OH-IR, SEM, TG-DTA, XRD and 1H MAS NMR techniques indicated that the enhanced catalytic performance of ZSM-S-F is attributed to the fewer structural defects in the form of internal silanol groups and silanol nests.展开更多
When heavy machines and large scaled receiver system of communication equipment are manufactured, it always needs to produce large-sized steel castings, aluminum castings and etc. Some defects of hot cracking by therm...When heavy machines and large scaled receiver system of communication equipment are manufactured, it always needs to produce large-sized steel castings, aluminum castings and etc. Some defects of hot cracking by thermal stress often appear during solidification process as these castings are produced, which results in failure of castings. Therefore predicting the effects of technological parameters for production of castings on the thermal stress during solidification process becomes an important means. In this paper, the mathematical models have been established and numerical calculation of temperature fields by using finite difference method (FDM) and then thermal stress fields by using finite element method (FEM) during solidification process of castings have been carried out. The technological parameters of production have been optimized by the results of calculation and the defects of hot cracking have been eliminated. Modeling and simulation of 3D thermal stress during solidification processes of large-sized castings provided a scientific basis, which promoted further development of advanced manufacturing technique.展开更多
为了解决金属表面缺陷检测的漏检、误检等问题,提出了一种改进YOLOv3算法。首先,使用动态激活函数替换主干特征提取网络中所有残差块的激活函数,并加入了混合注意力机制,强化其对复杂缺陷目标的特征提取能力。然后,在特征金字塔网络部...为了解决金属表面缺陷检测的漏检、误检等问题,提出了一种改进YOLOv3算法。首先,使用动态激活函数替换主干特征提取网络中所有残差块的激活函数,并加入了混合注意力机制,强化其对复杂缺陷目标的特征提取能力。然后,在特征金字塔网络部分新增一个104×104的特征层,并将浅层网络与深层网络进行逐层特征融合,增强算法对小缺陷目标检测的敏感性。最后,利用K-Means++聚类算法替换K-Means聚类算法,筛选出适用于金属表面缺陷检测的最优先验框尺寸,使目标定位更加准确。实验结果表明,改进YOLOv3算法的每秒检测帧数(frames per second,FPS)可达到32.3,平均精度均值(mean average precision,mAP)可达到78.69%,检测性能得到了明显提升。展开更多
基金supported by grants from the Guangzhou Science and Technology Program Key Project(Grant No.201803010044)Guangdong Province College Characteristic Innovation Project(2019KTSCX011)+2 种基金Guangdong Province Natural Sciences Fund Project(2021A1515012480)the Key Areas Research and Development Program of Guangzhou(202103030003)Guangdong Province Special Fund Projects(Yueziranzihe,2021,No.50).
文摘Resorption and loss of alveolar bone leads to oral dysfunction and loss of natural or implant teeth. Biomimetic delivery of growth factors based on stem cell recruitment and osteogenic differentiation, as the key steps in natural alveolar bone regenerative process, has been an area of intense research in recent years. A mesoporous self-healing hydrogel(DFH) with basic fibroblast growth factor(bFGF) entrapment and transforming growth factor β3(TGFβ3)-loaded chitosan microspheres(CMs) was developed. The formulation was optimized by multiple tests of self-healing, in-bottle inversion, SEM, rheological, swelling rate and in vitro degradation. In vitro tubule formation assays, cell migration assays, and osteogenic differentiation assays confirmed the ability of DFH to promote blood vessels, recruit stem cells, and promote osteogenic differentiation. The optimum DFH formula is 0.05 ml 4ArmPEG-DF(20%) added to 1 ml CsGlu(2%) containing bFGF(80 ng) and TGFβ3-microspheres(5 mg). The results of in vitro release studied by Elisa kit, indicated an 95% release of b FGF in7 d and long-term sustained release of TGFβ3. For alveolar defects rat models, the expression levels of CD29 and CD45, the bone volume fraction, trabecular number, and trabecular thickness of new bone monitored by Micro-CT in DFH treatment groups were significantly higher than others(*P < 0.05, vs Model). HE and Masson staining show the same results.In conclusion, DFH is a design of bionic alveolar remodelling microenvironment, that is in early time microvessels formed by b FGF provide nutritious to recruited endogenous stem cells, then TGFβ3 slowly released speed up the process of new bones formation to common facilitate rat alveolar defect repair. The DFH with higher regenerative efficiency dovetails nicely with great demand due to the requirement of complicated biological processes.
基金King Saud University,through Vice Deanship of Research Chairs
文摘The aim of the present real time in vivo micro-computed tomography (pCT) and histologic experiment was to assess the efficacy of guided bone regeneration (GBR) around standardized calvarial critical size defects (CSD) using bone marrow-derived mesenchymal stem cells (BMSCs), and collagen membrane (CM) with and without tricalcium phosphate (TCP) graft material. In the calvaria of nine female Sprague-Dawley rats, full-thickness CSD (diameter 4.6 mm) were created under general anesthesia. Treatment-wise, rats were divided into three groups. In group 1, CSD was covered with a resorbable CM; in group 2, BMSCs were filled in CSD and covered with CM; and in group 3, TCP soaked in BMSCs was placed in CSD and covered with CM. All defects were closed using resorbable sutures. Bone volume and bone mineral density of newly formed bone (NFB) and remaining TCP particles and rate of new bone formation was determined at baseline, 2, 4, 6, and 10 weeks using in vivo pCT. At the lOth week, the rats were killed and calvarial segments were assessed histologically. The results showed that the hardness of NFB was similar to that of the native bone in groups I and 2 as compared to the NFB in group 3. Likewise, values for the modulus of elasticity were also significantly higher in group 3 compared to groups 1 and 2. This suggests that TCP when used in combination with BMSCs and without CM was unable to form bone of significant strength that could possibly provide mechanical "lock" between the natural bone and NFB. The use of BMSCs as adjuncts to conventional GBR initiated new bone formation as early as 2 weeks of treatment compared to when GBR is attempted without adiunct BMSC therapy.
文摘Recently, porous titanium granules (PTGs) have been indicated for the preservation of the dimensions of post-extraction sockets, as a filler in sinus lift procedures and for the treatment of peri-implant and periodontal defects, based on the osteoconductivity and dimensional stability of the titanium granules. However, there is a lack of information regarding the use of this material in larger defects and in conjunction with membranes. The objective of this study is to test the behavior of PTGs used to fill critical size defects in rabbit tibiae, with and without membranes. Critical defects were created in both tibiae of rabbits, divided randomly into three groups: Group A (defect filled with PTG), Group B (defect filled with PTG+collagen membrane) and a control group (empty defect). After six weeks, histomorphometric analysis was performed. The results showed more defect closures at the cortical area (87.37%±2.2%) and more bone formation at the marrow area (57.6%± 1.3%) in Group B, in comparison with the other groups (P〈0.05); the use of membranes improved the material stability expressed as more percentages of the original material when membranes were used (P〈0.05). Finally, inflammatory reactions were observed when the granules were not protected by membranes. In spite of the limitations of this animal study, it may be concluded that PTG particles are osteoconductive and allow bone growth. The PTG particles must be covered by a membrane, especially when grafting larger defects, in order to control particle migration, promote clot stabilization and separate the PTG graft from undesired soft tissue cells.
基金financially supported by the Natural Science Foundation of China(21978312,21908235 and 21802155)the Key Research Program of Frontier Sciences,CAS(QYZDB–SSW–JS C043)+1 种基金Foundation of State Key Laboratory of Highefficiency Utilization of Coal and Green Chemical Engineering(2019-KF-05 and 2018-K22)Supported by Shanxi Scholarship Council of China and Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province are also greatly appreciated。
文摘The effects of crystallite size on the physicochemical properties and surface defects of pure monoclinic ZrO_(2) catalysts for isobutene synthesis were studied.We prepared a series of monoclinic ZrO_(2) catalysts with different crystallite size by changing calcination temperature and evaluated their catalytic performance for isobutene synthesis from syngas.ZrO_(2) with small crystalline size showed higher CO conversion and isobutene selectivity,while samples with large crystalline size preferred to form dimethyl ether(DME)instead of hydrocarbons,much less to isobutene.Oxygen defects(ODefects)analyzed by X-ray photoelectron spectroscopy(XPS)provided evidence that more ODefectsoccupied on the surface of ZrO_(2) catalysts with smaller crystalline size.Electron paramagnetic resonance(EPR)and ultraviolet–visible diffuse reflectance(UV–vis DRS)confirmed the presence of high concentration of surface defects and Zr3+on mZrO_(2)-5.9 sample,respectively.In situ diffuse reflectance infrared Fourier transform spectroscopy(in situ DRIFTS)analysis indicated that the adsorption strength of formed formate species on catalyst reduced as the crystalline size decreased.These results suggested that surface defects were responsible for CO activation and further influenced the adsorption strength of surface species,and thus the products distribution changed.This study provides an in-depth insight for active sites regulation of ZrO_(2) catalyst in CO hydrogenation reaction.
基金supported by the National Natural Science Foundation of China (10772096)
文摘The Bauschinger and size effects in the thinfilm plasticity theory arising from the defect-energy of geometrically necessary dislocations (GNDs) are analytically investigated in this paper. Firstly, this defect-energy is deduced based on the elastic interactions of coupling dislocations (or pile-ups) moving on the closed neighboring slip plane. This energy is a quadratic function of the GNDs density, and includes an elastic interaction coefficient and an energetic length scale L. By incorporating it into the work- conjugate strain gradient plasticity theory of Gurtin, an energetic stress associated with this defect energy is obtained, which just plays the role of back stress in the kinematic hardening model. Then this back-stress hardening model is used to investigate the Bauschinger and size effects in the tension problem of single crystal Al films with passivation layers. The tension stress in the film shows a reverse dependence on the film thickness h. By comparing it with discrete-dislocation simulation results, the length scale L is determined, which is just several slip plane spacing, and accords well with our physical interpretation for the defect- energy. The Bauschinger effect after unloading is analyzed by combining this back-stress hardening model with a friction model. The effects of film thickness and pre-strain on the reversed plastic strain after unloading are quantified and qualitatively compared with experiment results.
文摘The classical EPQ model has been used for a long ti me and is widely accepted and implemented. Nevertheless, the analysis for finding an economic lot size has based on a number of unrealistic assumptions. A common unrealistic assumption in using EPQ is that all units produced are of good quali ty. The classical EPQ model shows that the optimal lot size will generate minimum ma nufacturing cost, thus producing minimum setup cost and inventory cost. However, this is only true if all products manufactured in the process are assumed to be of good quality (i.e. all products are within the specification limits). In rea lity this is not the case, therefore, it is necessary to consider the cost of im perfect quality items, because this cost can influence the economic lot size. Ma ny studies and recent papers have indicated that there is a significant relation ship between economic production lot size and process/product quality. However, their models included either the imperfect quality items (not necessarily de fective) which are to be sold at a discounted price or defective items which can be reworked or rejected. The aim of this paper is to provide a framework to integrate three different sit uations (discounted pricing/rework/reject) into a single model. 100% inspection is performed in order to distinguish the amount of good quality items, imper fect quality items and defective items in each lot. In this paper, a mathematica l model is developed, and a numerical example is presented to illustrate the sol ution procedures. It is found that the economic production lot size tends to inc rease as the average percentage of imperfect quality items and defectives (rejec ted items) increases.
基金Project supported by the National Natural Science Foundation of China (20471012), Foundation for the Author of National Excellent Doctoral Dissertation of China (200322), the Research Fund for the Doctoral Program of Higher Education (20040141004) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry
文摘On the basis of the Li-site vacancy model, the non-stoichiometric defects in LN crystals, i.e., anti-site defects NbLi and corresponding lithium vacancy defects VLi, were investigated by the bond valence model. According to the valence sum rule, 4 VLi sites must emerge in the nearest lattices of NbLi, and thus form a neutral cluster with the center, NbLi(VLi)4Nb5O15. The bond graph of the defect cluster was given, which reveals the ideal chemical bonding characteristics of defect clusters. Combining the possible configuration of defect clusters and the ideal bond lengths in the bond graph, the size of defect clusters in the LN crystallographic frame is estimated as 0.9~1.2 nm in diameter.
基金Project supported by the National Key Fundamental Research and Development Project of China (Grant No 2005CB724206)
文摘This paper uses various mean-field approaches and the Monte Carlo simulation to calculate asymmetric simple exclusion processes with particles of arbitrary size in the successive defects system. In this system, the hopping probability p (p 〈 1) and the size d of particles are not constant, Through theoretical calculation and computer simulation, it obtains the exact theoretical results and finds that the theoretical results are in agreement with the computer simulation. These results are helpful in analysing the effect of traffic with different hopping probabilities p and sizes d of particle.
文摘BACKGROUND Critically sized bone defects represent a significant challenge to orthopaedic surgeons worldwide.These defects generally result from severe trauma or resection of a whole large tumour.Autologous bone grafts are the current gold standard for the reconstruction of such defects.However,due to increased patient morbidity and the need for a second operative site,other lines of treatment should be introduced.To find alternative unconventional therapies to manage such defects,bone tissue engineering using a combination of suitable bioactive factors,cells,and biocompatible scaffolds offers a promising new approach for bone regeneration.AIM To evaluate the healing capacity of platelet-rich fibrin(PRF)membranes seeded with allogeneic mesenchymal bone marrow-derived stem cells(BMSCs)on critically sized mandibular defects in a rat model.METHODS Sixty-three Sprague Dawley rats were subjected to bilateral bone defects of critical size in the mandibles created by a 5-mm diameter trephine bur.Rats were allocated to three equal groups of 21 rats each.Group I bone defects were irrigated with normal saline and designed as negative controls.Defects of group II were grafted with PRF membranes and served as positive controls,while defects of group III were grafted with PRF membranes seeded with allogeneic BMSCs.Seven rats from each group were killed at 1,2 and 4 wk.The mandibles were dissected and prepared for routine haematoxylin and eosin(HE)staining,Masson's trichrome staining and CD68 immunohistochemical staining.RESULTS Four weeks postoperatively,the percentage area of newly formed bone was significantly higher in group III(0.88±0.02)than in groups I(0.02±0.00)and II(0.60±0.02).The amount of granulation tissue formation was lower in group III(0.12±0.02)than in groups I(0.20±0.02)and II(0.40±0.02).The number of inflammatory cells was lower in group III(0.29±0.03)than in groups I(4.82±0.08)and II(3.09±0.07).CONCLUSION Bone regenerative quality of critically sized mandibular bone defects in rats was better promoted by PRF membranes seeded with BMSCs than with PRF membranes alone.
基金supported by the National Natural Science Foundation of China(Grant Nos.91733301,51761145042,91433205,11474333,51421002,51627803,and51572288) the International Partnership Program of the Chinese Academy of Sciences(Grant No.112111KYSB20170089)
文摘A study of the self-healing phenomenon of Cu2ZnSn(S, Se)4(CZTSSe) solar cells has shown more than 10% enhancement in cell performance after storage at room temperature for a week, with a significant improvement in the open-circuit photovoltage(V(oc)) and fill factor(F F). In addition, up to 10.45% power conversion efficiency(PCE) has been achieved.No obvious change in crystallinity, crystal phase, optical absorption or elemental distribution in the CZTSSe films was detected on examining the x-ray diffraction(XRD) pattern, Raman spectrum, ultraviolet-visible(UV-Vis), and TOF-SIMS.Further investigations on the charge carrier concentration, charge radiative recombination, and band structure suggest that the enhancement in PCE stems mainly from a reduction in deep defects of the CZTSSe semiconductor film.
基金Project supported by the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20190405)the LOEWE program of the State of Hesse,Germany,within the project FLAME(Fermi Level Engineering of Antiferroelectric Materials for Energy Storage and Insulation Systems)。
文摘The switching behavior of antiferroelectric domain structures under the applied electric field is not fully understood.In this work,by using the phase field simulation,we have studied the polarization switching property of antiferroelectric domains.Our results indicate that the ferroelectric domains nucleate preferably at the boundaries of the antiferroelectric domains,and antiferroelectrics with larger initial domain sizes possess a higher coercive electric field as demonstrated by hysteresis loops.Moreover,we introduce charge defects into the sample and numerically investigate their influence.It is also shown that charge defects can induce local ferroelectric domains,which could suppress the saturation polarization and narrow the enclosed area of the hysteresis loop.Our results give insights into understanding the antiferroelectric phase transformation and optimizing the energy storage property in experiments.
文摘Experiments on maxillofacial bone tissue engineering showed the promising result;however, its healing mechanisms and effectiveness had not been fully understood. The aim of this study is to compare the bone healing mechanism and osteogenic capacity between bovine bone mineral loaded with hAMSC and autogenous bone graft in the reconstruction of critical size mandibular bone defect. Critical size defects were made at the mandible of 45 New Zealand white rabbits reconstructed with BBM-hAMSC, BBM alone, and ABG, respectively. At the end of first, second, and twelfth weeks, five rabbits from each experimental week were sacrificed for histology and immunohistochemistry staining. Expressions of vascular endothelial growth factor (VEGF), bone mor-phogenic proteins-2 (BMP2), Runx2 and the amount of angiogenesis were analyzed in the first and second week groups, while expressions of Runx2, osteocalcin, collagen type-I fibres, trabecular area and bone incorporation were analyzed in the twelfth week groups. The result showed that expressions of VEGF, BMP2 and Runx2 as well as the amount of angiogenesis were higher in ABG compared with BBM-hAMSC group in the first and second weeks of healing. The result of twelfth week of healing showed that expressions of Runx2 and osteocalcin as well as the thickness of collagen type-I fibres were significantly higher in BBM-hAMSC compared to ABG group, while there was no statistically difference in trabecular area and bone incorporation between BBM-hAMSC and ABG group. This study concluded that early healing activities were higher in auto-genous bone graft than in BBM-hAMSC, while osteogenic activities in the late stage of healing were higher in BBM-hAMSC compared to autogenous bone graft. It was also concluded that the osteo-genic capacity of BBM-hAMSC was comparable to autogenous bone graft in the reconstruction of critical size defect in the mandible.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.U2167217,12205286,and 11905025)the National MCF Energy Research and Development Program of China (Grant No.2018YFE0308105)。
文摘Numerous irradiation-induced gas bubbles are created in the nuclear fuel during irradiation, leading to the change of microstructure and the degradation of mechanical and thermal properties. The grain size of fuel is one of the important factors affecting bubble evolution. In current study, we first predict the thermodynamic behaviors of point defects as well as the interplay between vacancy and gas atom in both UO_(2) and U_(3)Si_(2) according to ab initio approach. Then, we establish the irradiation-induced bubble phase-field model to investigate the formation and evolution of intra-and inter-granular gas bubbles. The effects of fission rate and temperature on the evolutions of bubble morphologies in UO_(2) and U_(3)Si_(2) have been revealed. Especially, a comparison of porosities under different grain sizes is examined and analyzed. To understand the thermal conductivity as functions of grain size and porosity, the heat transfer capability of U_(3)Si_(2) is evaluated.
基金supported by the Open Foundation of Key Laboratory of Nondestructive Testing of Ministry of Education of Nanchang Aeronautical University
文摘A set of metallic specimens containing fatigue cracks with different sizes were tested using eddy current pulsed thermography(ECPT),therefore the relations between heating response of the crack area and the crack length was studied.The numerical and experimental results both showed that the increase of the crack length enhanced the crack heating response under specific test conditions.A particular form of calculated response signal,which is linearly related to the crack length,was introduced to provide a quantitative evaluation of crack length.
文摘Fluoride mediated nano-sized ZSM-5 (ZSM-5-F) with a high Si/AI ratio of 181 was fabricated using a seed-induction method and evaluated the catalysis of the methanol to propylene (MTP) reaction. High propylene selectivity (45%) was similar to ZSM-5-OH synthesized via a hydroxide route. However, ZSM- 5-F showed much longer lifetime (305 h) compared with ZSM-5-OH (157 h) in spite of similar crystal size and aluminum content. Characterization by NH3-TPD. Py-IR, OH-IR, SEM, TG-DTA, XRD and 1H MAS NMR techniques indicated that the enhanced catalytic performance of ZSM-S-F is attributed to the fewer structural defects in the form of internal silanol groups and silanol nests.
文摘When heavy machines and large scaled receiver system of communication equipment are manufactured, it always needs to produce large-sized steel castings, aluminum castings and etc. Some defects of hot cracking by thermal stress often appear during solidification process as these castings are produced, which results in failure of castings. Therefore predicting the effects of technological parameters for production of castings on the thermal stress during solidification process becomes an important means. In this paper, the mathematical models have been established and numerical calculation of temperature fields by using finite difference method (FDM) and then thermal stress fields by using finite element method (FEM) during solidification process of castings have been carried out. The technological parameters of production have been optimized by the results of calculation and the defects of hot cracking have been eliminated. Modeling and simulation of 3D thermal stress during solidification processes of large-sized castings provided a scientific basis, which promoted further development of advanced manufacturing technique.
文摘为了解决金属表面缺陷检测的漏检、误检等问题,提出了一种改进YOLOv3算法。首先,使用动态激活函数替换主干特征提取网络中所有残差块的激活函数,并加入了混合注意力机制,强化其对复杂缺陷目标的特征提取能力。然后,在特征金字塔网络部分新增一个104×104的特征层,并将浅层网络与深层网络进行逐层特征融合,增强算法对小缺陷目标检测的敏感性。最后,利用K-Means++聚类算法替换K-Means聚类算法,筛选出适用于金属表面缺陷检测的最优先验框尺寸,使目标定位更加准确。实验结果表明,改进YOLOv3算法的每秒检测帧数(frames per second,FPS)可达到32.3,平均精度均值(mean average precision,mAP)可达到78.69%,检测性能得到了明显提升。