针对室内移动机器人自定位算法定位精度不高、定位误差存在波动的问题,提出了一种RTFL(RFID tag floor based localization)定位算法与RSSI定位算法相结合的室内移动机器人自定位方法。由RTFL定位算法给定机器人位置估算初值和机器人所...针对室内移动机器人自定位算法定位精度不高、定位误差存在波动的问题,提出了一种RTFL(RFID tag floor based localization)定位算法与RSSI定位算法相结合的室内移动机器人自定位方法。由RTFL定位算法给定机器人位置估算初值和机器人所在的范围,通过基于RSSI的机器人自定位系统进行机器人位置的进一步精确定位。求解过程中,通过遗传算法求解极大似然方程组,并提出染色体的筛选和剔除策略。仿真实验结果表明,该方法在有效的时间内完成定位,平均定位误差为0.157 2 m,与传统的改进方法 0.332 14 m的定位误差相比,降低了近一倍。并且新方法受环境影响较小,鲁棒性较好,能够很好地满足室内移动机器人的定位要求。展开更多
文摘针对室内移动机器人自定位算法定位精度不高、定位误差存在波动的问题,提出了一种RTFL(RFID tag floor based localization)定位算法与RSSI定位算法相结合的室内移动机器人自定位方法。由RTFL定位算法给定机器人位置估算初值和机器人所在的范围,通过基于RSSI的机器人自定位系统进行机器人位置的进一步精确定位。求解过程中,通过遗传算法求解极大似然方程组,并提出染色体的筛选和剔除策略。仿真实验结果表明,该方法在有效的时间内完成定位,平均定位误差为0.157 2 m,与传统的改进方法 0.332 14 m的定位误差相比,降低了近一倍。并且新方法受环境影响较小,鲁棒性较好,能够很好地满足室内移动机器人的定位要求。