In order to investigate the joint torque-based Cartesian impedance control strategies and the influence of compensations for friction, an experimental study on the identification of friction parameters, friction compe...In order to investigate the joint torque-based Cartesian impedance control strategies and the influence of compensations for friction, an experimental study on the identification of friction parameters, friction compensation and the Cartesian impedance control are developed for the harmonic drive robot, by using the sensors available in the joint itself. Different from the conventional Cartesian impedance control schemes which are mostly based on the robot end force/torque information, five joint torque-based Cartesian impedance control schemes are considered, including the force-based schemes in Cartesian/joint space, the position-based schemes in Cartesian/joint space and the stiffness control. Four of them are verified by corresponding experiments with/without friction compensations. By comparison, it is found that the force-based impedance control strategy is more suitable than the position-based one for the robot based on joint torque feedback and the friction has even a positive effect on Cartesian impedance control stability.展开更多
The rolling bearing friction torque which is characterized by its uncertainty and nonlinearity affects heavily the dynamic performance of a system such as missiles, spacecrafts and radars, etc. It is difficult to use ...The rolling bearing friction torque which is characterized by its uncertainty and nonlinearity affects heavily the dynamic performance of a system such as missiles, spacecrafts and radars, etc. It is difficult to use the classical statistical theory to evaluate the dynamic evaluation of the rolling bearing friction torque for the lack of prior information about both probability distribution and trends. For this reason, based on the information poor system theory and combined with the correlation dimension in chaos theory, the concepts about the mean of the dynamic fluctuant range (MDFR) and the grey relation are proposed to resolve the problem about evaluating the nonlinear characteristic and the dynamic uncertainty of the rolling bearing friction torque. Friction torque experiments are done for three types of the rolling bearings marked with HKTA, HKTB and HKTC separately; meantime, the correlation dimension and MDFR are calculated to describe the nonlinear characteristic and the dynamic uncertainty of the friction torque, respectively. And the experiments reveal that there is a certain grey relation between the nonlinear characteristic and the dynamic uncertainty of the rolling bearing friction torque, viz. MDFR will become the nonlinear increasing trend with the correlation dimension increasing. Under the condition of fewer characteristic data and the lack of prior information about both probability distribution and trends, the unitive evaluation for the nonlinear characteristic and the dynamic uncertainty of the rolling bearing friction torque is realized with the grey confidence level of 87.7%-96.3%.展开更多
The hydro-viscous drive(HVD)has been widely used in fan transmission in vehicles,fans,and scraper conveyors for step-less speed regulation or soft starting.In the mixed friction stage,the contact,friction,and torque c...The hydro-viscous drive(HVD)has been widely used in fan transmission in vehicles,fans,and scraper conveyors for step-less speed regulation or soft starting.In the mixed friction stage,the contact,friction,and torque characteristics of friction pairs are very complex and change at any time.The characteristics of the frictional and hydrodynamic lubrication states were studied in order to calculate and predict the friction and torque characteristics of the friction pairs in the mixed friction stage.The fluid torque was calculated by applying the average shear stress model and the load-carrying capacity of asperity was determined on the basis of the fractal contact theory.In addition,the contact friction coefficient of the friction pairs was taken into consideration and measured by using the MM1000-Ⅲfriction and wear testing machine.The asperity friction torque and total torque in the mixed friction stage were obtained and finally,the test rig for the torque characteristics was set up.The results show that the contribution to the total torque is shared by the oil film and the asperity friction.The friction coefficient decreases sharply at first and then increases with a change in the relative rotational speed,following the Stribeck curve closely,and the contact frictional coefficient slowly decreases with increase in the pressure between the friction pairs.The torque between the friction pairs is provided by the asperity friction,and the torque due to the oil film reduces to zero.When the thickness of the oil film is small,a major contribution to the total torque is due to the asperity friction.The total torque also increases with the decrease in the film thickness ratio.Therefore,by theoretical analysis and experimental verification,the torque of the friction pairs in the mixed friction stage can be accurately calculated using the average shear stress model and asperity friction torque model.展开更多
The wind stress acquired from European Centre for Medium-Range Weather Forecasts (ECMWF), National Centers for Environmental Prediction (NCEP) climate models and QSCAT satellite observations are analyzed by using ...The wind stress acquired from European Centre for Medium-Range Weather Forecasts (ECMWF), National Centers for Environmental Prediction (NCEP) climate models and QSCAT satellite observations are analyzed by using frequency-wavenumber spectrum method. The spectrum of two climate models, i.e., ECMWF and NCEP, is similar for both 10 m wind data and model output wind stress data, which indicates that both the climate models capture the key feature of wind stress. While the QSCAT wind stress data shows the similar characteristics with the two climate models in both spectrum domain and the spatial distribution, but with a factor of approximately 1.25 times larger than that of climate models in energy. These differences show the uncertainty in the different wind stress products, which inevitably cause the atmospheric faction torque uncertainties on solid Earth with a 60% departure in annual amplitude, and furtherly affect the precise estimation of the Earth's rotation.展开更多
The present research introduces a unique concept of scarf joint technique in friction stir welding(FSW) of aluminum alloy AA 6061-T6 plates and an investigation on weld quality.A new joint configuration with two disti...The present research introduces a unique concept of scarf joint technique in friction stir welding(FSW) of aluminum alloy AA 6061-T6 plates and an investigation on weld quality.A new joint configuration with two distinct scarf angles(75°and 60°) was considered in this study.The various aspects of welding were compared with contemporary simple square butt(SSB) joint configuration.Welding was carried out at a constant tool rotation speed(TRS),tool traverse speed(TTS) and tool tilt angle of 1100 rpm,2 mm/s and2°,respectively.The results are analyzed in terms of force and torque distribution,microstructure,macrostructure,and mechanical property perspective for different joint configurations.The study reveals the minimum amount of force and torque at 60°scarf angle joint configuration compared to that of square butt joint configuration.Macro study shows that all the joints were defect-free,and a prominent onion ring was present in the lower portion of the weld nugget(WN).Fine equiaxed grains with a minimum average grain size diameter of 6.82 μm were obtained in the WN of scarf joint configuration(SJC).The maximum ultimate tensile strength(UTS) and maximum average NZ hardness of 267 MPa and83.82 HV0.1were obtained in SJC3 at a scarf angle of 60°.It has been observed from the investigation that the joint efficiency increases from 72.5%(SSB) to 86%(SJC3) at a 60° scarf angle.This unique characteristic may lay an impetus on probable joint strength enhancement technique without increasing the production cost.展开更多
The dynamic torque of continuous drive friction welding is a key technique parameter in the friction welding process. A number of measuring methods of dynamic torque on continuous drive friction welding have been in...The dynamic torque of continuous drive friction welding is a key technique parameter in the friction welding process. A number of measuring methods of dynamic torque on continuous drive friction welding have been introduced in the paper, and a new method VCMM, (Voltage and Current of Major Moytor) for measuring dynamic torque through measuring the main motor's stator voltage and current of a continuous drive friction welding machine has been proposed. The VCMM method has such merits as convenience, accuracy, reliability, and high antijamming ability.展开更多
A nonlinear observer of friction torque is formulated for valve controlled servomotor system. The effect of the observer is studied with simulating method and its applied condition is analyzed. When the above observer...A nonlinear observer of friction torque is formulated for valve controlled servomotor system. The effect of the observer is studied with simulating method and its applied condition is analyzed. When the above observer is not suitable foe use, a simple PID controlling method with variable parameters is presented. The method has been proved to be effective by the experimental results.展开更多
Tire and rubber track interchangeable chassis combines the advantages of tire and rubber track,which can greatly improve the maneuverability of military construction machinery.However,there is almost no effective calc...Tire and rubber track interchangeable chassis combines the advantages of tire and rubber track,which can greatly improve the maneuverability of military construction machinery.However,there is almost no effective calculation model for the real-time static steering torque.When the relative sliding speed is greater than 0.01 m/s,the influence of friction heating can not be ignored.An improved LuGre model is established to calculate the static real-time steering torque of tire and rubber track interchangeable chassis.Firstly,the friction heating model between rubber and ground is established.Combined with the influence of temperature on the dynamic performance of rubber material,the influence of friction heating on the stiffness and friction coefficient of rubber track is analyzed,and the improved LuGre friction model is established.The steering torque of tire and rubber track interchangeable chassis is affected by rubber material properties,steering speed,pavement type,and ambient temperature.Compared with the original Lu Gre model,the improved LuGre model captures the change in friction torque during multiple in-situ turns due to frictional heating.The error with the experimental data is small,which verifies the effectiveness of the improved LuGre model.展开更多
A point to? point positioning control of systems with highly nonlinear frictions is studied. In view of variable frictions caused by the changes of load torque, an experimental comparison was made between the valve?...A point to? point positioning control of systems with highly nonlinear frictions is studied. In view of variable frictions caused by the changes of load torque, an experimental comparison was made between the valve? controlled hydraulic motor servo system with PID control and that with friction compensation control. Experimental results show that the gross steady errors are caused by frictions when the system is controlled by the conventional proportional control algorithm. Although the errors can be reduced by introducing the integral control, the limit cycle oscillation and the long setting time are caused. The positioning error for a constant load torque can be eliminated by using fixed friction compensation, but poor positioning accuracy is caused by the same fixed friction compensation when the load torques varies greatly. The dynamic friction compensation based on the error and change in error measurements can significantly improve the position precision in a broad range of the changes of load torque.展开更多
This manuscript presents an innovative methodology for the assessment of the friction torque of ball slewing bearings.The methodology aims to overcome the limitations of state-of-the-art approaches,especially when the...This manuscript presents an innovative methodology for the assessment of the friction torque of ball slewing bearings.The methodology aims to overcome the limitations of state-of-the-art approaches,especially when the friction torque is conditioned by the preload of the balls.To this end,the authors propose to simulate the preload scatter when solving the load distribution problem,prior to the friction torque calculation.This preload scatter allows to simulate a progressive transition of the balls from a four-point contact state to a two-point contact one.By implementing this capability into an analytical model,the authors achieve a successful correlation with experimental results.Nonetheless,depending on the stiffness of the structures to which the bearing is assembled,it is demonstrated that the rigid ring assumption can lead to inaccurate friction torque results when a tilting moment is applied.The methodology described in this research work is meant to have a practical application.Therefore,the manuscript provides guidelines about how to use and tune the analytical model to get a reliable friction torque prediction tool.展开更多
A new type control method in friction welding is suggested in this pa- per,that is compositive control method of friction torque and friction time,it called Mt control method for short.The principle of Mt control meth...A new type control method in friction welding is suggested in this pa- per,that is compositive control method of friction torque and friction time,it called Mt control method for short.The principle of Mt control method and its feature are concisely explained.展开更多
The tooth surface friction stiffness and friction torque coefficient equations of cylindrical gear are derived.On the basis of factors such as time varying friction coefficient and mesh stiffness,support stiffness,tor...The tooth surface friction stiffness and friction torque coefficient equations of cylindrical gear are derived.On the basis of factors such as time varying friction coefficient and mesh stiffness,support stiffness,torsional stiffness and comprehensive error,the dynamic equations of the gear trains with bending torsional coupling are established.Using the Fourier series method,the total response of the system is obtained,and the influence of friction on it is analyzed.The results show that when the spur gear enters the meshing,the frictional amplitude of the tooth surface is larger than that of the gear when it is withdrawn from engagement,and the meshing force fluctuates greatly.The frictional force and dynamic meshing force of the herringbone gear tooth surface are relatively stable,and the fluctuation amplitude is much smaller than that of the spur gear.The amplitude of the bearing vibration is not affected by the friction,but the friction has a certain influence on the bearing force of the output shaft.The first order natural frequency of the split stage and the power confluence stage has a large influence on the vibration of the bearing force.In general,the natural frequency of the power confluence stage has a large proportion of influence.展开更多
The influence of the tool profiles on the thermo-mechanical interaction between AA6061-T6 workpiece and tool during friction stir welding was investigated. A customized experimental setup was employed to measure the f...The influence of the tool profiles on the thermo-mechanical interaction between AA6061-T6 workpiece and tool during friction stir welding was investigated. A customized experimental setup was employed to measure the feature points temperature and tool spindle torque in the process of FSW. Microstructure and tensile properties of stir zone (SZ) were characterized. Results indicate that the shoulder and pin geometries were responsible for the heat generation, tool torque variation at the plunging stage as well as the cross section contour of SZ, respectively. Finer grains in SZ resulted from flutes on shoulder and grooves on pin. Flat faces on the pin resulted in inhomogeneous grain size. Weld with higher 0.2% yield strength of 173 MPa was obtained by using the cylindrical pin tool while higher elongation weld of 32.0% was produced with triflat threaded pin tool.展开更多
Mechanical properties and material mixing patterns of friction stir spot welded (FSSW) joints of dissimilar aluminum alloys were investigated.Two aluminum alloys typically used in automotive applications,5052-H32 and ...Mechanical properties and material mixing patterns of friction stir spot welded (FSSW) joints of dissimilar aluminum alloys were investigated.Two aluminum alloys typically used in automotive applications,5052-H32 and 6061-T6,were selected.During the experiment,the process parameters including the z-axis force and torque histories were measured as a function of the tool displacement.The mechanical properties were investigated by microhardness measurements of the joint,and the material mixing in the stir zone was investigated by EPMA.The experimental results illustrate different process parameter histories,material mixing in the stir zone and material properties including microhardness distributions for FSSW joints of dissimilar aluminum alloys,likely due to different mechanical behaviors of the selected aluminum alloys in the FSSW process temperature range.展开更多
基金The National Natural Science Foundation of China(No.60675045)the National High Technology Research and Development Program of China (863Program) (No.2006AA04Z255)
文摘In order to investigate the joint torque-based Cartesian impedance control strategies and the influence of compensations for friction, an experimental study on the identification of friction parameters, friction compensation and the Cartesian impedance control are developed for the harmonic drive robot, by using the sensors available in the joint itself. Different from the conventional Cartesian impedance control schemes which are mostly based on the robot end force/torque information, five joint torque-based Cartesian impedance control schemes are considered, including the force-based schemes in Cartesian/joint space, the position-based schemes in Cartesian/joint space and the stiffness control. Four of them are verified by corresponding experiments with/without friction compensations. By comparison, it is found that the force-based impedance control strategy is more suitable than the position-based one for the robot based on joint torque feedback and the friction has even a positive effect on Cartesian impedance control stability.
基金supported by National Natural Science Foundation of China (Grant No. 50675011)Doctoral Scientific Research Enabling Foundation of Henan University of Science and Technology,China (Grant No. 09001318)
文摘The rolling bearing friction torque which is characterized by its uncertainty and nonlinearity affects heavily the dynamic performance of a system such as missiles, spacecrafts and radars, etc. It is difficult to use the classical statistical theory to evaluate the dynamic evaluation of the rolling bearing friction torque for the lack of prior information about both probability distribution and trends. For this reason, based on the information poor system theory and combined with the correlation dimension in chaos theory, the concepts about the mean of the dynamic fluctuant range (MDFR) and the grey relation are proposed to resolve the problem about evaluating the nonlinear characteristic and the dynamic uncertainty of the rolling bearing friction torque. Friction torque experiments are done for three types of the rolling bearings marked with HKTA, HKTB and HKTC separately; meantime, the correlation dimension and MDFR are calculated to describe the nonlinear characteristic and the dynamic uncertainty of the friction torque, respectively. And the experiments reveal that there is a certain grey relation between the nonlinear characteristic and the dynamic uncertainty of the rolling bearing friction torque, viz. MDFR will become the nonlinear increasing trend with the correlation dimension increasing. Under the condition of fewer characteristic data and the lack of prior information about both probability distribution and trends, the unitive evaluation for the nonlinear characteristic and the dynamic uncertainty of the rolling bearing friction torque is realized with the grey confidence level of 87.7%-96.3%.
基金Supported by National Natural Science Foundation of China(Grant Nos.51805351,U1810123)
文摘The hydro-viscous drive(HVD)has been widely used in fan transmission in vehicles,fans,and scraper conveyors for step-less speed regulation or soft starting.In the mixed friction stage,the contact,friction,and torque characteristics of friction pairs are very complex and change at any time.The characteristics of the frictional and hydrodynamic lubrication states were studied in order to calculate and predict the friction and torque characteristics of the friction pairs in the mixed friction stage.The fluid torque was calculated by applying the average shear stress model and the load-carrying capacity of asperity was determined on the basis of the fractal contact theory.In addition,the contact friction coefficient of the friction pairs was taken into consideration and measured by using the MM1000-Ⅲfriction and wear testing machine.The asperity friction torque and total torque in the mixed friction stage were obtained and finally,the test rig for the torque characteristics was set up.The results show that the contribution to the total torque is shared by the oil film and the asperity friction.The friction coefficient decreases sharply at first and then increases with a change in the relative rotational speed,following the Stribeck curve closely,and the contact frictional coefficient slowly decreases with increase in the pressure between the friction pairs.The torque between the friction pairs is provided by the asperity friction,and the torque due to the oil film reduces to zero.When the thickness of the oil film is small,a major contribution to the total torque is due to the asperity friction.The total torque also increases with the decrease in the film thickness ratio.Therefore,by theoretical analysis and experimental verification,the torque of the friction pairs in the mixed friction stage can be accurately calculated using the average shear stress model and asperity friction torque model.
基金supported by research projects of National Basic Research Program of China (2012CB957802)the National Natural Science Foundation of China (41321063, 41374087)Open Fund of the State Key Laboratory of Geodesy and Earth's Dynamics (2014-2-1-E)
文摘The wind stress acquired from European Centre for Medium-Range Weather Forecasts (ECMWF), National Centers for Environmental Prediction (NCEP) climate models and QSCAT satellite observations are analyzed by using frequency-wavenumber spectrum method. The spectrum of two climate models, i.e., ECMWF and NCEP, is similar for both 10 m wind data and model output wind stress data, which indicates that both the climate models capture the key feature of wind stress. While the QSCAT wind stress data shows the similar characteristics with the two climate models in both spectrum domain and the spatial distribution, but with a factor of approximately 1.25 times larger than that of climate models in energy. These differences show the uncertainty in the different wind stress products, which inevitably cause the atmospheric faction torque uncertainties on solid Earth with a 60% departure in annual amplitude, and furtherly affect the precise estimation of the Earth's rotation.
基金the Ministry of Human Resource and Development,Government of India for providing the financial assistantship in the form of fellowship。
文摘The present research introduces a unique concept of scarf joint technique in friction stir welding(FSW) of aluminum alloy AA 6061-T6 plates and an investigation on weld quality.A new joint configuration with two distinct scarf angles(75°and 60°) was considered in this study.The various aspects of welding were compared with contemporary simple square butt(SSB) joint configuration.Welding was carried out at a constant tool rotation speed(TRS),tool traverse speed(TTS) and tool tilt angle of 1100 rpm,2 mm/s and2°,respectively.The results are analyzed in terms of force and torque distribution,microstructure,macrostructure,and mechanical property perspective for different joint configurations.The study reveals the minimum amount of force and torque at 60°scarf angle joint configuration compared to that of square butt joint configuration.Macro study shows that all the joints were defect-free,and a prominent onion ring was present in the lower portion of the weld nugget(WN).Fine equiaxed grains with a minimum average grain size diameter of 6.82 μm were obtained in the WN of scarf joint configuration(SJC).The maximum ultimate tensile strength(UTS) and maximum average NZ hardness of 267 MPa and83.82 HV0.1were obtained in SJC3 at a scarf angle of 60°.It has been observed from the investigation that the joint efficiency increases from 72.5%(SSB) to 86%(SJC3) at a 60° scarf angle.This unique characteristic may lay an impetus on probable joint strength enhancement technique without increasing the production cost.
文摘The dynamic torque of continuous drive friction welding is a key technique parameter in the friction welding process. A number of measuring methods of dynamic torque on continuous drive friction welding have been introduced in the paper, and a new method VCMM, (Voltage and Current of Major Moytor) for measuring dynamic torque through measuring the main motor's stator voltage and current of a continuous drive friction welding machine has been proposed. The VCMM method has such merits as convenience, accuracy, reliability, and high antijamming ability.
文摘A nonlinear observer of friction torque is formulated for valve controlled servomotor system. The effect of the observer is studied with simulating method and its applied condition is analyzed. When the above observer is not suitable foe use, a simple PID controlling method with variable parameters is presented. The method has been proved to be effective by the experimental results.
基金funded by the National Key Research and Development Program of China(Grant No.2016YFC0802900)。
文摘Tire and rubber track interchangeable chassis combines the advantages of tire and rubber track,which can greatly improve the maneuverability of military construction machinery.However,there is almost no effective calculation model for the real-time static steering torque.When the relative sliding speed is greater than 0.01 m/s,the influence of friction heating can not be ignored.An improved LuGre model is established to calculate the static real-time steering torque of tire and rubber track interchangeable chassis.Firstly,the friction heating model between rubber and ground is established.Combined with the influence of temperature on the dynamic performance of rubber material,the influence of friction heating on the stiffness and friction coefficient of rubber track is analyzed,and the improved LuGre friction model is established.The steering torque of tire and rubber track interchangeable chassis is affected by rubber material properties,steering speed,pavement type,and ambient temperature.Compared with the original Lu Gre model,the improved LuGre model captures the change in friction torque during multiple in-situ turns due to frictional heating.The error with the experimental data is small,which verifies the effectiveness of the improved LuGre model.
文摘A point to? point positioning control of systems with highly nonlinear frictions is studied. In view of variable frictions caused by the changes of load torque, an experimental comparison was made between the valve? controlled hydraulic motor servo system with PID control and that with friction compensation control. Experimental results show that the gross steady errors are caused by frictions when the system is controlled by the conventional proportional control algorithm. Although the errors can be reduced by introducing the integral control, the limit cycle oscillation and the long setting time are caused. The positioning error for a constant load torque can be eliminated by using fixed friction compensation, but poor positioning accuracy is caused by the same fixed friction compensation when the load torques varies greatly. The dynamic friction compensation based on the error and change in error measurements can significantly improve the position precision in a broad range of the changes of load torque.
基金supported by the German Federal Ministry for Economic Affairs and Climate Action through the iBAC project with grant number 0324344A.
文摘This manuscript presents an innovative methodology for the assessment of the friction torque of ball slewing bearings.The methodology aims to overcome the limitations of state-of-the-art approaches,especially when the friction torque is conditioned by the preload of the balls.To this end,the authors propose to simulate the preload scatter when solving the load distribution problem,prior to the friction torque calculation.This preload scatter allows to simulate a progressive transition of the balls from a four-point contact state to a two-point contact one.By implementing this capability into an analytical model,the authors achieve a successful correlation with experimental results.Nonetheless,depending on the stiffness of the structures to which the bearing is assembled,it is demonstrated that the rigid ring assumption can lead to inaccurate friction torque results when a tilting moment is applied.The methodology described in this research work is meant to have a practical application.Therefore,the manuscript provides guidelines about how to use and tune the analytical model to get a reliable friction torque prediction tool.
文摘A new type control method in friction welding is suggested in this pa- per,that is compositive control method of friction torque and friction time,it called Mt control method for short.The principle of Mt control method and its feature are concisely explained.
基金supported by the National Natural Science Foundation of China (No. 51475226)
文摘The tooth surface friction stiffness and friction torque coefficient equations of cylindrical gear are derived.On the basis of factors such as time varying friction coefficient and mesh stiffness,support stiffness,torsional stiffness and comprehensive error,the dynamic equations of the gear trains with bending torsional coupling are established.Using the Fourier series method,the total response of the system is obtained,and the influence of friction on it is analyzed.The results show that when the spur gear enters the meshing,the frictional amplitude of the tooth surface is larger than that of the gear when it is withdrawn from engagement,and the meshing force fluctuates greatly.The frictional force and dynamic meshing force of the herringbone gear tooth surface are relatively stable,and the fluctuation amplitude is much smaller than that of the spur gear.The amplitude of the bearing vibration is not affected by the friction,but the friction has a certain influence on the bearing force of the output shaft.The first order natural frequency of the split stage and the power confluence stage has a large influence on the vibration of the bearing force.In general,the natural frequency of the power confluence stage has a large proportion of influence.
基金financial support from the Independent Innovation Plan of Colleges and Universities in Ji’nanthe Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘The influence of the tool profiles on the thermo-mechanical interaction between AA6061-T6 workpiece and tool during friction stir welding was investigated. A customized experimental setup was employed to measure the feature points temperature and tool spindle torque in the process of FSW. Microstructure and tensile properties of stir zone (SZ) were characterized. Results indicate that the shoulder and pin geometries were responsible for the heat generation, tool torque variation at the plunging stage as well as the cross section contour of SZ, respectively. Finer grains in SZ resulted from flutes on shoulder and grooves on pin. Flat faces on the pin resulted in inhomogeneous grain size. Weld with higher 0.2% yield strength of 173 MPa was obtained by using the cylindrical pin tool while higher elongation weld of 32.0% was produced with triflat threaded pin tool.
基金Project supported by Development Program of Local Science Park by the ULSAN Metropolitan City and the MESTProject supported by Basic Science Research Program,the National Research Foundation of Korea(2011-0026072)
文摘Mechanical properties and material mixing patterns of friction stir spot welded (FSSW) joints of dissimilar aluminum alloys were investigated.Two aluminum alloys typically used in automotive applications,5052-H32 and 6061-T6,were selected.During the experiment,the process parameters including the z-axis force and torque histories were measured as a function of the tool displacement.The mechanical properties were investigated by microhardness measurements of the joint,and the material mixing in the stir zone was investigated by EPMA.The experimental results illustrate different process parameter histories,material mixing in the stir zone and material properties including microhardness distributions for FSSW joints of dissimilar aluminum alloys,likely due to different mechanical behaviors of the selected aluminum alloys in the FSSW process temperature range.