Cognitive radio(CR) is regarded as a promising technology for providing a high spectral efficiency to mobile users by using heterogeneous wireless network architectures and dynamic spectrum access techniques.However,c...Cognitive radio(CR) is regarded as a promising technology for providing a high spectral efficiency to mobile users by using heterogeneous wireless network architectures and dynamic spectrum access techniques.However,cognitive radio networks(CRNs)may also impose some challenges due to the ever increasing complexity of network architecture,the increasing complexity with configuration and management of large-scale networks,fluctuating nature of the available spectrum,diverse Quality-of-Service(QoS)requirements of various applications,and the intensifying difficulties of centralized control,etc.Spectrum management functions with self-organization features can be used to address these challenges and realize this new network paradigm.In this paper,fundamentals of CR,including spectrum sensing,spectrum management,spectrum mobility and spectrum sharing,have been surveyed,with their paradigms of self-organization being emphasized.Variant aspects of selforganization paradigms in CRNs,including critical functionalities of Media Access Control(MAC)- and network-layer operations,are surveyed and compared.Furthermore,new directions and open problems in CRNs are also identified in this survey.展开更多
In networked control systems (NCS),the control performance depends on not only the control algorithm but also the communication protocol stack.The performance degradation introduced by the heterogeneous and dynamic ...In networked control systems (NCS),the control performance depends on not only the control algorithm but also the communication protocol stack.The performance degradation introduced by the heterogeneous and dynamic communication environment has intensified the need for the reconfigurable protocol stack.In this paper,a novel architecture for the reconfigurable protocol stack is proposed,which is a unified specification of the protocol components and service interfaces supporting both static and dynamic reconfiguration for existing industrial communication standards.Within the architecture,a triple-level self-organization structure is designed to manage the dynamic reconfiguration procedure based on information exchanges inside and outside the protocol stack.Especially,the protocol stack can be self-adaptive to various environment and system requirements through the reconfiguration of working mode,routing and scheduling table.Finally,the study on the protocol of dynamic address management is conducted for the system of controller area network (CAN).The results show the efficiency of our self-organizing architecture for the implementation of a reconfigurable protocol stack.展开更多
Image compression consists of two main parts: encoding and decoding. One of the important problems of the fractal theory is the long encoding implementation time, which hindered the acceptance of fractal image compres...Image compression consists of two main parts: encoding and decoding. One of the important problems of the fractal theory is the long encoding implementation time, which hindered the acceptance of fractal image compression as a practical method. The long encoding time results from the need to perform a large number of domain-range matches, the total encoding time is the product of the number of matches and the time to perform each match. In order to improve encoding speed, a hybrid method combining features extraction and self-organization network has been provided, which is based on the feature extraction approach the comparison pixels by pixels between the feature of range blocks and domains blocks. The efficiency of the new method was been proved by examples.展开更多
In this paper, a new mechanism for the emergence of scale-free distribution is proposed. It is more realistic than the existing mechanism. Based on our mechanism, a model responsible for the scale-free distribution wi...In this paper, a new mechanism for the emergence of scale-free distribution is proposed. It is more realistic than the existing mechanism. Based on our mechanism, a model responsible for the scale-free distribution with an exponent in a range of 3-to-5 is given. Moreover, this model could also reproduce the exponential distribution that is discovered in some real networks. Finally, the analytical result of the model is given and the simulation shows the validity of our result,展开更多
Wireless Sensor Networks for Rainfall Monitoring (RM-WSNs) is a sensor network for the large-scale regional and moving rainfall monitoring,which could be controlled deployment. Delivery delay and cross-cluster calcula...Wireless Sensor Networks for Rainfall Monitoring (RM-WSNs) is a sensor network for the large-scale regional and moving rainfall monitoring,which could be controlled deployment. Delivery delay and cross-cluster calculation leads to information inaccuracy by the existing dynamic collabo-rative self-organization algorithm in WSNs. In this letter,a Local Dynamic Cluster Self-organization algorithm (LDCS) is proposed for the large-scale regional and moving target monitoring in RM-WSNs. The algorithm utilizes the resource-rich node in WSNs as the cluster head,which processes target information obtained by sensor nodes in cluster. The cluster head shifts with the target moving in chance and re-groups a new cluster. The target information acquisition is limited in the dynamic cluster,which can reduce information across-clusters transfer delay and improve the real-time of information acquisition. The simulation results show that,LDCS can not only relieve the problem of "too frequent leader switches" in IDSQ,also make full use of the history monitoring information of target and con-tinuous monitoring of sensor nodes that failed in DCS.展开更多
Self-organization theory informs an analysis on the evolution of labor self-organizations (LSOs), but lacks technical analysis on the evolution of their organizational structures. Fortunately, complex network technolo...Self-organization theory informs an analysis on the evolution of labor self-organizations (LSOs), but lacks technical analysis on the evolution of their organizational structures. Fortunately, complex network technology offers a new approach to analyzing these structures. Built on an extension of the Barabási-Albert (BA) model, we can simulate the evolution of LSOs by analyzing indicators including the clustering coefficient, degree distribution (DD) and average path length (APL) of workers, thereby demonstrating the evolving patterns of LSOs. Accordingly, governmental mechanism designs based on such patterns may not only stimulate energy growth and functional realization of LSOs, but also reduce the social percussions of abrupt evolutions. A comparative analysis of the evolutionary trajectories of LSOs in China and the U.S. finds that the U.S. government’s mechanism designs for protecting capitalism not only prevented the effective gathering of workers, but also prolonged the history of industrial conflicts. Such mechanism designs also led to the early dispersion and decline of LSOs and hindered the evolution of the working class. In contrast, the Chinese government established a socialist system that allowed workers to become the underlying force of socialist productivity. This design reduced labor strife while accelerating the evolution of workers towards higher stages.展开更多
To enhance the clustering ability of self-organization network, this paper introduces a quantum inspired self-organization clustering algorithm. First, the clustering samples and the weight values in the competitive l...To enhance the clustering ability of self-organization network, this paper introduces a quantum inspired self-organization clustering algorithm. First, the clustering samples and the weight values in the competitive layer are mapped to the qubits on the Bloch sphere, and then, the winning node is obtained by computing the spherical distance between sample and weight value. Finally, the weight values of the winning nodes and its neighborhood are updated by rotating them to the sample on the Bloch sphere until the convergence. The clustering results of IRIS sample show that the proposed approach is obviously superior to the classical self-organization network and the K-mean clustering algorithm.展开更多
Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one...Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration.展开更多
In traditional networks , the authentication is performed by certificate authoritys(CA),which can't be built in distributed mobile Ad Hoc Networks however. In this pa per, we propose a fully self-organized public k...In traditional networks , the authentication is performed by certificate authoritys(CA),which can't be built in distributed mobile Ad Hoc Networks however. In this pa per, we propose a fully self-organized public key management based on bidirectional trust model without any centralized authority that allows users to generate their public-private key pairs, to issue certificates, and the trust relation spreads rationally according to the truly human relations. In contrast with the traditional self-organized public-key management, the average certificates paths get more short, the authentication passing rate gets more high and the most important is that the bidirectional trust based model satisfys the trust re quirement of hosts better.展开更多
To achieve the higher resource efficiency, Coverage and Capacity Optimization(CCO) as an important role of the network self-healing and self-optimization, has become a focus topic in wireless Self-Organized Network(SO...To achieve the higher resource efficiency, Coverage and Capacity Optimization(CCO) as an important role of the network self-healing and self-optimization, has become a focus topic in wireless Self-Organized Network(SON). In this paper, a novel CCO scheme is proposed to maximize utility function of the integrated coverage and capacity. It starts with the analysis on the throughput proportional fairness(PF) algorithm and then proposes the novel Coverage and Capacity Proportional Fairness(CCPF) allocation algorithm along with a proof of the algorithms convergence. This proposed algorithm is applied in a coverage capacity optimization scheme which can guarantee the reasonable network capacity by the coverage range accommodation. Next, we simulate the proposed CCO scheme based on telecom operators' real network data and compare with three typical resource allocation algorithms: round robin(RR), proportional fairness(PF) and max C/I. In comparison of the PF algorithm, the numerical results show that our algorithm increases the average throughput by 1.54 and 1.96 times with constructed theoretical data and derived real network data respectively.展开更多
We propose a self-organized optimization mechanism to improve the transport capacity of complex gradient networks. We find that, regardless of network topology, the congestion pressure can be strongly reduced by the s...We propose a self-organized optimization mechanism to improve the transport capacity of complex gradient networks. We find that, regardless of network topology, the congestion pressure can be strongly reduced by the self-organized optimization mechanism. Furthermore, the random scale-free topology is more efficient to reduce congestion compared with the random Poisson topology under the optimization mechanism. The reason is that the optimization mechanism introduces the correlations between the gradient field and the local topology of the substrate network. Due to the correlations, the cutoff degree of the gradient network is strongly reduced and the number of the nodes exerting their maximal transport capacity consumedly increases. Our work presents evidence supporting the idea that scale-free networks can efficiently improve their transport capacity by self- organized mechanism under gradient-driven transport mode.展开更多
Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annu...Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annuallyinthe urban area of Beijing, the capital of China. Based on a selforganizing map(SOM) artificial neural network(ANN), a graded waterlogging risk assessment was conducted on 56 low-lying points in Beijing, China. Social risk factors, such as Gross domestic product(GDP), population density, and traffic congestion, were utilized as input datasets in this study. The results indicate that SOM-ANNis suitable for automatically and quantitatively assessing risks associated with waterlogging. The greatest advantage of SOM-ANN in the assessment of waterlogging risk is that a priori knowledge about classification categories and assessment indicator weights is not needed. As a result, SOM-ANN can effectively overcome interference from subjective factors,producing classification results that are more objective and accurate. In this paper, the risk level of waterlogging in Beijing was divided into five grades. The points that were assigned risk grades of IV or Vwere located mainly in the districts of Chaoyang, Haidian, Xicheng, and Dongcheng.展开更多
The original Olami-Feder-Christensen (OFC) model, which displays a robust power-law behavior, is a quasistatic two-dimensional version of the Burridge-Knopoff spring-block model of earthquakes. In this paper, we int...The original Olami-Feder-Christensen (OFC) model, which displays a robust power-law behavior, is a quasistatic two-dimensional version of the Burridge-Knopoff spring-block model of earthquakes. In this paper, we introduce a modified OFC model based on heterogeneous network, improving the redistribution rule of the original model. It can be seen as a generalization of the originM OFC model We numerically investigate the influence of the parameters θandβ, which respectively control the intensity of the evolutive mechanism of the topological growth and the inner selection dynamics in our networks, and find that there are two distinct phases in the parameter space (θ,β). Meanwhile, we study the influence of the control parameter a either. Increasing a, the earthquake behavior of the model transfers from local to global.展开更多
A modified Olami Feder-Christensen model of self-organized criticality on a square lattice with the properties of small world networks has been studied.We find that our model displays power-law behavior and the expone...A modified Olami Feder-Christensen model of self-organized criticality on a square lattice with the properties of small world networks has been studied.We find that our model displays power-law behavior and the exponent τ of the model depends on φ,the density of long-range connections in our network.展开更多
In order to improve the performance of peer-to-peer files sharing system under mobile distributed en- vironments, a novel always-optimally-coordinated (AOC) criterion and corresponding candidate selection algorithm ...In order to improve the performance of peer-to-peer files sharing system under mobile distributed en- vironments, a novel always-optimally-coordinated (AOC) criterion and corresponding candidate selection algorithm are proposed in this paper. Compared with the traditional min-hops criterion, the new approach introduces a fuzzy knowledge combination theory to investigate several important factors that influence files transfer success rate and efficiency. Whereas the min-hops based protocols only ask the nearest candidate peer for desired files, the selection algorithm based on AOC comprehensively considers users' preferences and network requirements with flexible balancing rules. Furthermore, its advantage also expresses in the independence of specified resource discovering protocols, allowing for scalability. The simulation results show that when using the AOC based peer selection algorithm, system performance is much better than the rain-hops scheme, with files successful transfer rate improved more than 50% and transfer time re- duced at least 20%.展开更多
The dynamical behavior in the cortical brain network of macaque is studied by modelling each cortical areawith a subnetwork of interacting excitable neurons.We find that the avalanche of our model on different levels ...The dynamical behavior in the cortical brain network of macaque is studied by modelling each cortical areawith a subnetwork of interacting excitable neurons.We find that the avalanche of our model on different levels exhibitspower-law.Furthermore the power-law exponent of the distribution and the average avalanche size are affected by thetopology of the network.展开更多
It is shown that the cortical brain network of the macaque displays a hierarchically clustered organizationand the neuron network shows small-world properties.Now the two factors will be considered in our model and th...It is shown that the cortical brain network of the macaque displays a hierarchically clustered organizationand the neuron network shows small-world properties.Now the two factors will be considered in our model and thedynamical behavior of the model will be studied.We study the characters of the model and find that the distribution ofavalanche size of the model follows power-law behavior.展开更多
In this paper, transmission power control problem for uplink LTE network is investigated and a new autonomic uplink power control scheme was proposed based on utility function, which is a self- organized algorithm. Th...In this paper, transmission power control problem for uplink LTE network is investigated and a new autonomic uplink power control scheme was proposed based on utility function, which is a self- organized algorithm. The whole approach is based on the economic concept named utility function. Then a self-organized algorithm is distributed in each mobile users to control the transmission power and to maximize the transmission utility. The proposed scheme is solved through the Lagrange multiplier technique. It is proved that the utility function based algorithm optimal power level can be model. is applicable and the achieved based on our展开更多
A simple model for a set of interacting idealized neurons in scale-free networks is introduced. The basic elements of the model are endowed with the main features of a neuron function. We find that our model displays ...A simple model for a set of interacting idealized neurons in scale-free networks is introduced. The basic elements of the model are endowed with the main features of a neuron function. We find that our model displays powerlaw behavior of avalanche sizes and generates long-range temporal correlation. More importantly, we find different dynamical behavior for nodes with different connectivity in the scale-free networks.展开更多
Effects of vertex activity have been analyzed on a weighted evolving network.The network is characterized by the probability distribution of vertex strength,each edge weight and evolution of the strength of vertices w...Effects of vertex activity have been analyzed on a weighted evolving network.The network is characterized by the probability distribution of vertex strength,each edge weight and evolution of the strength of vertices with different vertex activities.The model exhibits self-organized criticality behavior.The probability distribution of avalanche size for different network sizes is also shown.In addition,there is a power law relation between the size and the duration of an avalanche and the average of avalanche size has been studied for different vertex activities.展开更多
基金ACKNOWLEDGEMENT This work was supported by National Natural Science Foundation of China (No. 61172050), Program for New Century Excellent Talents in University (NECT-12-0774), the open research fund of National Mobile Communications Research Laboratory, Southeast University (No.2013D12), the Foundation of Beijing Engineering and Technology Research Center for Convergence Networks and Ubiquitous Services. The corresponding author is Dr. Zhongshan Zhang.
文摘Cognitive radio(CR) is regarded as a promising technology for providing a high spectral efficiency to mobile users by using heterogeneous wireless network architectures and dynamic spectrum access techniques.However,cognitive radio networks(CRNs)may also impose some challenges due to the ever increasing complexity of network architecture,the increasing complexity with configuration and management of large-scale networks,fluctuating nature of the available spectrum,diverse Quality-of-Service(QoS)requirements of various applications,and the intensifying difficulties of centralized control,etc.Spectrum management functions with self-organization features can be used to address these challenges and realize this new network paradigm.In this paper,fundamentals of CR,including spectrum sensing,spectrum management,spectrum mobility and spectrum sharing,have been surveyed,with their paradigms of self-organization being emphasized.Variant aspects of selforganization paradigms in CRNs,including critical functionalities of Media Access Control(MAC)- and network-layer operations,are surveyed and compared.Furthermore,new directions and open problems in CRNs are also identified in this survey.
基金supported by National Natural Science Foundation of China (No. 60674081,No. 60834002,No. 61074145)
文摘In networked control systems (NCS),the control performance depends on not only the control algorithm but also the communication protocol stack.The performance degradation introduced by the heterogeneous and dynamic communication environment has intensified the need for the reconfigurable protocol stack.In this paper,a novel architecture for the reconfigurable protocol stack is proposed,which is a unified specification of the protocol components and service interfaces supporting both static and dynamic reconfiguration for existing industrial communication standards.Within the architecture,a triple-level self-organization structure is designed to manage the dynamic reconfiguration procedure based on information exchanges inside and outside the protocol stack.Especially,the protocol stack can be self-adaptive to various environment and system requirements through the reconfiguration of working mode,routing and scheduling table.Finally,the study on the protocol of dynamic address management is conducted for the system of controller area network (CAN).The results show the efficiency of our self-organizing architecture for the implementation of a reconfigurable protocol stack.
文摘Image compression consists of two main parts: encoding and decoding. One of the important problems of the fractal theory is the long encoding implementation time, which hindered the acceptance of fractal image compression as a practical method. The long encoding time results from the need to perform a large number of domain-range matches, the total encoding time is the product of the number of matches and the time to perform each match. In order to improve encoding speed, a hybrid method combining features extraction and self-organization network has been provided, which is based on the feature extraction approach the comparison pixels by pixels between the feature of range blocks and domains blocks. The efficiency of the new method was been proved by examples.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60374037 and 60574036), the Program for New Century Excellent Talents of High Education of China(Grant No NCET 2005-290), The Special Research Fund for the Doctoral Program of High Education of China (Grant No 20050055013).Acknowledgments The authors would like to thank Réka Albert for useful discussion and are grateful to the anonymous referees for their valuable suggestions and comments, which have made this paper improved.
文摘In this paper, a new mechanism for the emergence of scale-free distribution is proposed. It is more realistic than the existing mechanism. Based on our mechanism, a model responsible for the scale-free distribution with an exponent in a range of 3-to-5 is given. Moreover, this model could also reproduce the exponential distribution that is discovered in some real networks. Finally, the analytical result of the model is given and the simulation shows the validity of our result,
基金Supported by the Key Projection of Science and Technology Research of Ministry of Education of China (107057)the Science & Technology Fund for Students of Hohai University (K200803)
文摘Wireless Sensor Networks for Rainfall Monitoring (RM-WSNs) is a sensor network for the large-scale regional and moving rainfall monitoring,which could be controlled deployment. Delivery delay and cross-cluster calculation leads to information inaccuracy by the existing dynamic collabo-rative self-organization algorithm in WSNs. In this letter,a Local Dynamic Cluster Self-organization algorithm (LDCS) is proposed for the large-scale regional and moving target monitoring in RM-WSNs. The algorithm utilizes the resource-rich node in WSNs as the cluster head,which processes target information obtained by sensor nodes in cluster. The cluster head shifts with the target moving in chance and re-groups a new cluster. The target information acquisition is limited in the dynamic cluster,which can reduce information across-clusters transfer delay and improve the real-time of information acquisition. The simulation results show that,LDCS can not only relieve the problem of "too frequent leader switches" in IDSQ,also make full use of the history monitoring information of target and con-tinuous monitoring of sensor nodes that failed in DCS.
基金a deliverable of the “Research on the Accounting of ‘Trade in Value-added’ in Chinese Services Sector and its Place in the Global Value Chain,” a project funded by the National Social Science Foundation of China(15BGJ036)“The Impacts of Economic Globalization on Entrepreneurship in China—Theoretical Research and Empirical Analysis,” a youth project funded by the National Natural Science Foundation of China(NSFC)(71603142)+3 种基金“Research on Approaches to Labor-Management Cooperation with Chinese Characteristics—A Labor Relations Evolutionary Perspective,” a Ministry of Education humanities and social sciences research youth project(16YJC790115)“Research on the Evolution of Labor Relations with Chinese Characteristics Since the 18th CPC National Congress,” a Shandong planned social sciences research project(16CZLJ05)“Research on the Evolution Mechanisms and Paths of the Marxist Labor System from a Complex Network Perspective,” a project funded by the China Postdoctoral Science Foundation(CPSF)(2017M612180)“Research on Mechanism Design of the Spatial Structure of Labor-Management Cooperation with Chinese Characteristics,” a Qingdao postdoctoral applied research project
文摘Self-organization theory informs an analysis on the evolution of labor self-organizations (LSOs), but lacks technical analysis on the evolution of their organizational structures. Fortunately, complex network technology offers a new approach to analyzing these structures. Built on an extension of the Barabási-Albert (BA) model, we can simulate the evolution of LSOs by analyzing indicators including the clustering coefficient, degree distribution (DD) and average path length (APL) of workers, thereby demonstrating the evolving patterns of LSOs. Accordingly, governmental mechanism designs based on such patterns may not only stimulate energy growth and functional realization of LSOs, but also reduce the social percussions of abrupt evolutions. A comparative analysis of the evolutionary trajectories of LSOs in China and the U.S. finds that the U.S. government’s mechanism designs for protecting capitalism not only prevented the effective gathering of workers, but also prolonged the history of industrial conflicts. Such mechanism designs also led to the early dispersion and decline of LSOs and hindered the evolution of the working class. In contrast, the Chinese government established a socialist system that allowed workers to become the underlying force of socialist productivity. This design reduced labor strife while accelerating the evolution of workers towards higher stages.
文摘To enhance the clustering ability of self-organization network, this paper introduces a quantum inspired self-organization clustering algorithm. First, the clustering samples and the weight values in the competitive layer are mapped to the qubits on the Bloch sphere, and then, the winning node is obtained by computing the spherical distance between sample and weight value. Finally, the weight values of the winning nodes and its neighborhood are updated by rotating them to the sample on the Bloch sphere until the convergence. The clustering results of IRIS sample show that the proposed approach is obviously superior to the classical self-organization network and the K-mean clustering algorithm.
文摘Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration.
基金Supported by the National Natural Science Funda-tion of China (60403027)
文摘In traditional networks , the authentication is performed by certificate authoritys(CA),which can't be built in distributed mobile Ad Hoc Networks however. In this pa per, we propose a fully self-organized public key management based on bidirectional trust model without any centralized authority that allows users to generate their public-private key pairs, to issue certificates, and the trust relation spreads rationally according to the truly human relations. In contrast with the traditional self-organized public-key management, the average certificates paths get more short, the authentication passing rate gets more high and the most important is that the bidirectional trust based model satisfys the trust re quirement of hosts better.
基金supported by the 863 Program (2015AA01A705)NSFC (61271187)
文摘To achieve the higher resource efficiency, Coverage and Capacity Optimization(CCO) as an important role of the network self-healing and self-optimization, has become a focus topic in wireless Self-Organized Network(SON). In this paper, a novel CCO scheme is proposed to maximize utility function of the integrated coverage and capacity. It starts with the analysis on the throughput proportional fairness(PF) algorithm and then proposes the novel Coverage and Capacity Proportional Fairness(CCPF) allocation algorithm along with a proof of the algorithms convergence. This proposed algorithm is applied in a coverage capacity optimization scheme which can guarantee the reasonable network capacity by the coverage range accommodation. Next, we simulate the proposed CCO scheme based on telecom operators' real network data and compare with three typical resource allocation algorithms: round robin(RR), proportional fairness(PF) and max C/I. In comparison of the PF algorithm, the numerical results show that our algorithm increases the average throughput by 1.54 and 1.96 times with constructed theoretical data and derived real network data respectively.
基金Supported by the Education Foundation of Hubei Province under Grant No D20120104
文摘We propose a self-organized optimization mechanism to improve the transport capacity of complex gradient networks. We find that, regardless of network topology, the congestion pressure can be strongly reduced by the self-organized optimization mechanism. Furthermore, the random scale-free topology is more efficient to reduce congestion compared with the random Poisson topology under the optimization mechanism. The reason is that the optimization mechanism introduces the correlations between the gradient field and the local topology of the substrate network. Due to the correlations, the cutoff degree of the gradient network is strongly reduced and the number of the nodes exerting their maximal transport capacity consumedly increases. Our work presents evidence supporting the idea that scale-free networks can efficiently improve their transport capacity by self- organized mechanism under gradient-driven transport mode.
基金supported by the National Key R&D Program of China (GrantN o.2016YFC0401407)National Natural Science Foundation of China (Grant Nos. 51479003 and 51279006)
文摘Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annuallyinthe urban area of Beijing, the capital of China. Based on a selforganizing map(SOM) artificial neural network(ANN), a graded waterlogging risk assessment was conducted on 56 low-lying points in Beijing, China. Social risk factors, such as Gross domestic product(GDP), population density, and traffic congestion, were utilized as input datasets in this study. The results indicate that SOM-ANNis suitable for automatically and quantitatively assessing risks associated with waterlogging. The greatest advantage of SOM-ANN in the assessment of waterlogging risk is that a priori knowledge about classification categories and assessment indicator weights is not needed. As a result, SOM-ANN can effectively overcome interference from subjective factors,producing classification results that are more objective and accurate. In this paper, the risk level of waterlogging in Beijing was divided into five grades. The points that were assigned risk grades of IV or Vwere located mainly in the districts of Chaoyang, Haidian, Xicheng, and Dongcheng.
基金Supported by the National Natural Science Foundation of China under Grant No.10675060
文摘The original Olami-Feder-Christensen (OFC) model, which displays a robust power-law behavior, is a quasistatic two-dimensional version of the Burridge-Knopoff spring-block model of earthquakes. In this paper, we introduce a modified OFC model based on heterogeneous network, improving the redistribution rule of the original model. It can be seen as a generalization of the originM OFC model We numerically investigate the influence of the parameters θandβ, which respectively control the intensity of the evolutive mechanism of the topological growth and the inner selection dynamics in our networks, and find that there are two distinct phases in the parameter space (θ,β). Meanwhile, we study the influence of the control parameter a either. Increasing a, the earthquake behavior of the model transfers from local to global.
文摘A modified Olami Feder-Christensen model of self-organized criticality on a square lattice with the properties of small world networks has been studied.We find that our model displays power-law behavior and the exponent τ of the model depends on φ,the density of long-range connections in our network.
基金supported by the National Nature Science Foundation of China(No.60672124)the National High Technology Research and Development Programme the of China(No.2007AA01Z221)
文摘In order to improve the performance of peer-to-peer files sharing system under mobile distributed en- vironments, a novel always-optimally-coordinated (AOC) criterion and corresponding candidate selection algorithm are proposed in this paper. Compared with the traditional min-hops criterion, the new approach introduces a fuzzy knowledge combination theory to investigate several important factors that influence files transfer success rate and efficiency. Whereas the min-hops based protocols only ask the nearest candidate peer for desired files, the selection algorithm based on AOC comprehensively considers users' preferences and network requirements with flexible balancing rules. Furthermore, its advantage also expresses in the independence of specified resource discovering protocols, allowing for scalability. The simulation results show that when using the AOC based peer selection algorithm, system performance is much better than the rain-hops scheme, with files successful transfer rate improved more than 50% and transfer time re- duced at least 20%.
基金National Natural Science Foundation of China under Grant No.10675060
文摘The dynamical behavior in the cortical brain network of macaque is studied by modelling each cortical areawith a subnetwork of interacting excitable neurons.We find that the avalanche of our model on different levels exhibitspower-law.Furthermore the power-law exponent of the distribution and the average avalanche size are affected by thetopology of the network.
基金supported by National Natural Science Foundation of China under Grant No.10675060
文摘It is shown that the cortical brain network of the macaque displays a hierarchically clustered organizationand the neuron network shows small-world properties.Now the two factors will be considered in our model and thedynamical behavior of the model will be studied.We study the characters of the model and find that the distribution ofavalanche size of the model follows power-law behavior.
文摘In this paper, transmission power control problem for uplink LTE network is investigated and a new autonomic uplink power control scheme was proposed based on utility function, which is a self- organized algorithm. The whole approach is based on the economic concept named utility function. Then a self-organized algorithm is distributed in each mobile users to control the transmission power and to maximize the transmission utility. The proposed scheme is solved through the Lagrange multiplier technique. It is proved that the utility function based algorithm optimal power level can be model. is applicable and the achieved based on our
基金The project supported by National Natural Science Foundation of China under Grant No. 90203008 and the Doctoral Foundation of the Ministry of Education of China.
文摘A simple model for a set of interacting idealized neurons in scale-free networks is introduced. The basic elements of the model are endowed with the main features of a neuron function. We find that our model displays powerlaw behavior of avalanche sizes and generates long-range temporal correlation. More importantly, we find different dynamical behavior for nodes with different connectivity in the scale-free networks.
基金supported by National Natural Science Foundation of China under Grant No.10675060
文摘Effects of vertex activity have been analyzed on a weighted evolving network.The network is characterized by the probability distribution of vertex strength,each edge weight and evolution of the strength of vertices with different vertex activities.The model exhibits self-organized criticality behavior.The probability distribution of avalanche size for different network sizes is also shown.In addition,there is a power law relation between the size and the duration of an avalanche and the average of avalanche size has been studied for different vertex activities.