期刊文献+
共找到327篇文章
< 1 2 17 >
每页显示 20 50 100
3D Ice Shape Description Method Based on BLSOM Neural Network
1
作者 ZHU Bailiu ZUO Chenglin 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第S01期70-80,共11页
When checking the ice shape calculation software,its accuracy is judged based on the proximity between the calculated ice shape and the typical test ice shape.Therefore,determining the typical test ice shape becomes t... When checking the ice shape calculation software,its accuracy is judged based on the proximity between the calculated ice shape and the typical test ice shape.Therefore,determining the typical test ice shape becomes the key task of the icing wind tunnel tests.In the icing wind tunnel test of the tail wing model of a large amphibious aircraft,in order to obtain accurate typical test ice shape,the Romer Absolute Scanner is used to obtain the 3D point cloud data of the ice shape on the tail wing model.Then,the batch-learning self-organizing map(BLSOM)neural network is used to obtain the 2D average ice shape along the model direction based on the 3D point cloud data of the ice shape,while its tolerance band is calculated using the probabilistic statistical method.The results show that the combination of 2D average ice shape and its tolerance band can represent the 3D characteristics of the test ice shape effectively,which can be used as the typical test ice shape for comparative analysis with the calculated ice shape. 展开更多
关键词 icing wind tunnel test ice shape batch-learning self-organizing map neural network 3D point cloud
下载PDF
Optimization of a crude distillation unit using a combination of wavelet neural network and line-up competition algorithm 被引量:3
2
作者 Bin Shi Xu Yang Liexiang Yan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第8期1013-1021,共9页
The modeling and optimization of an industrial-scale crude distillation unit (CDU) are addressed. The main spec- ifications and base conditions of CDU are taken from a crude oil refinery in Wuhan, China. For modelin... The modeling and optimization of an industrial-scale crude distillation unit (CDU) are addressed. The main spec- ifications and base conditions of CDU are taken from a crude oil refinery in Wuhan, China. For modeling of a com- plicated CDU, an improved wavelet neural network (WNN) is presented to model the complicated CDU, in which novel parametric updating laws are developed to precisely capture the characteristics of CDU. To address CDU in an economically optimal manner, an economic optimization algorithm under prescribed constraints is presented. By using a combination of WNN-based optimization model and line-up competition algorithm (LCA), the supe- rior performance of the proposed approach is verified. Compared with the base operating condition, it is validat- ed that the increments of products including kerosene and diesel are up to 20% at least by increasing less than 5% duties of intermediate coolers such as second pump-around (PA2) and third Dump-around (PA3). 展开更多
关键词 Crude oil distillation Wavelet neural network Line-up competition algorithm Optimization
下载PDF
Application of Self-Organizing Feature Map Neural Network Based on K-means Clustering in Network Intrusion Detection 被引量:5
3
作者 Ling Tan Chong Li +1 位作者 Jingming Xia Jun Cao 《Computers, Materials & Continua》 SCIE EI 2019年第7期275-288,共14页
Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one... Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration. 展开更多
关键词 K-means clustering self-organizing feature map neural network network security intrusion detection NSL-KDD data set
下载PDF
Modified imperialist competitive algorithm-based neural network to determine shear strength of concrete beams reinforced with FRP 被引量:6
4
作者 Amir HASANZADE-INALLU Panam ZARFAM Mehdi NIKOO 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第11期3156-3174,共19页
Fiber reinforced polymers (FRPs), unlike steel, are corrosion-resistant and therefore are of interest;however, their use is hindered because their brittle shear is formulated in most specifications using limited data ... Fiber reinforced polymers (FRPs), unlike steel, are corrosion-resistant and therefore are of interest;however, their use is hindered because their brittle shear is formulated in most specifications using limited data available at the time. We aimed to predict the shear strength of concrete beams reinforced with FRP bars and without stirrups by compiling a relatively large database of 198 previously published test results (available in appendix). To model shear strength, an artificial neural network was trained by an ensemble of Levenberg-Marquardt and imperialist competitive algorithms. The results suggested superior accuracy of model compared to equations available in specifications and literature. 展开更多
关键词 concrete shear strength fiber reinforced polymer (FRP) artificial neural networks (ANNs) Levenberg-Marquardt algorithm imperialist competitive algorithm (ICA)
下载PDF
New results on global exponential stability of competitive neural networks with different time scales and time-varying delays 被引量:1
5
作者 崔宝同 陈君 楼旭阳 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第5期1670-1677,共8页
This paper studies the global exponential stability of competitive neural networks with different time scales and time-varying delays. By using the method of the proper Lyapunov functions and inequality technique, som... This paper studies the global exponential stability of competitive neural networks with different time scales and time-varying delays. By using the method of the proper Lyapunov functions and inequality technique, some sufficient conditions are presented for global exponential stability of delay competitive neural networks with different time scales. These conditions obtained have important leading significance in the designs and applications of global exponential stability for competitive neural networks. Finally, an example with its simulation is provided to demonstrate the usefulness of the proposed criteria. 展开更多
关键词 competitive neural network different time scale global exponential stability DELAY
下载PDF
Waterlogging risk assessment based on self-organizing map(SOM)artificial neural networks:a case study of an urban storm in Beijing 被引量:2
6
作者 LAI Wen-li WANG Hong-rui +2 位作者 WANG Cheng ZHANG Jie ZHAO Yong 《Journal of Mountain Science》 SCIE CSCD 2017年第5期898-905,共8页
Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annu... Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annuallyinthe urban area of Beijing, the capital of China. Based on a selforganizing map(SOM) artificial neural network(ANN), a graded waterlogging risk assessment was conducted on 56 low-lying points in Beijing, China. Social risk factors, such as Gross domestic product(GDP), population density, and traffic congestion, were utilized as input datasets in this study. The results indicate that SOM-ANNis suitable for automatically and quantitatively assessing risks associated with waterlogging. The greatest advantage of SOM-ANN in the assessment of waterlogging risk is that a priori knowledge about classification categories and assessment indicator weights is not needed. As a result, SOM-ANN can effectively overcome interference from subjective factors,producing classification results that are more objective and accurate. In this paper, the risk level of waterlogging in Beijing was divided into five grades. The points that were assigned risk grades of IV or Vwere located mainly in the districts of Chaoyang, Haidian, Xicheng, and Dongcheng. 展开更多
关键词 Waterlogging risk assessment self-organizing map(SOM) neural network Urban storm
下载PDF
A SPEECH RECOGNITION METHOD USING COMPETITIVE AND SELECTIVE LEARNING NEURAL NETWORKS
7
作者 徐雄 胡光锐 严永红 《Journal of Shanghai Jiaotong university(Science)》 EI 2000年第2期10-13,共4页
On the basis of asymptotic theory of Gersho, the isodistortion principle of vector clustering was discussed and a kind of competitive and selective learning method (CSL) which may avoid local optimization and have exc... On the basis of asymptotic theory of Gersho, the isodistortion principle of vector clustering was discussed and a kind of competitive and selective learning method (CSL) which may avoid local optimization and have excellent result in application to clusters of HMM model was also proposed. In combining the parallel, self organizational hierarchical neural networks (PSHNN) to reclassify the scores of every form output by HMM, the CSL speech recognition rate is obviously elevated. 展开更多
关键词 SPEECH recognition competitIVE LEARNING classification neural networks Document code:A
下载PDF
Research of Dynamic Competitive Learning in Neural Networks
8
作者 PANHao CENLi ZHONGLuo 《Wuhan University Journal of Natural Sciences》 EI CAS 2005年第2期368-370,共3页
Introduce a method of generation of new units within a cluster and aalgorithm of generating new clusters. The model automatically builds up its dynamically growinginternal representation structure during the learning ... Introduce a method of generation of new units within a cluster and aalgorithm of generating new clusters. The model automatically builds up its dynamically growinginternal representation structure during the learning process. Comparing model with other typicalclassification algorithm such as the Kohonen's self-organizing map, the model realizes a multilevelclassification of the input pattern with an optional accuracy and gives a strong support possibilityfor the parallel computational main processor. The idea is suitable for the high-level storage ofcomplex datas structures for object recognition. 展开更多
关键词 dynamic competitive learning knowledge representation neural network
下载PDF
A Self-Organizing Memory Neural Network for Aerosol Concentration Prediction
9
作者 Qiang Liu Yanyun Zou Xiaodong Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第6期617-637,共21页
Haze-fog,which is an atmospheric aerosol caused by natural or man-made factors,seriously affects the physical and mental health of human beings.PM2.5(a particulate matter whose diameter is smaller than or equal to 2.5... Haze-fog,which is an atmospheric aerosol caused by natural or man-made factors,seriously affects the physical and mental health of human beings.PM2.5(a particulate matter whose diameter is smaller than or equal to 2.5 microns)is the chief culprit causing aerosol.To forecast the condition of PM2.5,this paper adopts the related the meteorological data and air pollutes data to predict the concentration of PM2.5.Since the meteorological data and air pollutes data are typical time series data,it is reasonable to adopt a machine learning method called Single Hidden-Layer Long Short-Term Memory Neural Network(SSHL-LSTMNN)containing memory capability to implement the prediction.However,the number of neurons in the hidden layer is difficult to decide unless manual testing is operated.In order to decide the best structure of the neural network and improve the accuracy of prediction,this paper employs a self-organizing algorithm,which uses Information Processing Capability(IPC)to adjust the number of the hidden neurons automatically during a learning phase.In a word,to predict PM2.5 concentration accurately,this paper proposes the SSHL-LSTMNN to predict PM2.5 concentration.In the experiment,not only the hourly precise prediction but also the daily longer-term prediction is taken into account.At last,the experimental results reflect that SSHL-LSTMNN performs the best. 展开更多
关键词 Haze-fog PM2.5 forecasting time series data machine learning long shortterm MEMORY neural network self-organIZING algorithm information processing CAPABILITY
下载PDF
An Interval-valued Fuzzy Competitive Neural Network
10
作者 邓冠男 邹开其 《Journal of Donghua University(English Edition)》 EI CAS 2006年第6期137-140,共4页
Because interval value is quite natural in clustering, an interval-valued fuzzy competitive neural network is proposed. Firstly, this paper proposes several definitions of distance relating to interval number. And the... Because interval value is quite natural in clustering, an interval-valued fuzzy competitive neural network is proposed. Firstly, this paper proposes several definitions of distance relating to interval number. And then, it indicates the method of preprocessing input data, the structure of the network and the learning algorithm of the interval-valued fuzzy competitive neural network. This paper also analyses the principle of the learning algorithm. At last, an experiment is used to test the validity of the network. 展开更多
关键词 fuzzy competitive neural network interval value distance.
下载PDF
Enhanced Self-Organizing Map Neural Network for DNA Sequence Classification
11
作者 Marghny Mohamed Abeer A. Al-Mehdhar +1 位作者 Mohamed Bamatraf Moheb R. Girgis 《Intelligent Information Management》 2013年第1期25-33,共9页
The artificial neural networks (ANNs), among different soft computing methodologies are widely used to meet the challenges thrown by the main objectives of data mining classification techniques, due to their robust, p... The artificial neural networks (ANNs), among different soft computing methodologies are widely used to meet the challenges thrown by the main objectives of data mining classification techniques, due to their robust, powerful, distributed, fault tolerant computing and capability to learn in a data-rich environment. ANNs has been used in several fields, showing high performance as classifiers. The problem of dealing with non numerical data is one major obstacle prevents using them with various data sets and several domains. Another problem is their complex structure and how hands to interprets. Self-Organizing Map (SOM) is type of neural systems that can be easily interpreted, but still can’t be used with non numerical data directly. This paper presents an enhanced SOM structure to cope with non numerical data. It used DNA sequences as the training dataset. Results show very good performance compared to other classifiers. For better evaluation both micro-array structure and their sequential representation as proteins were targeted as dataset accuracy is measured accordingly. 展开更多
关键词 BIOINFORMATICS Artificial neural networks self-organIZING Map CLASSIFICATION SEQUENCE ALIGNMENT
下载PDF
Research on the credit classification of practicing qualification personnel in construction market based on self-organizing neural network
12
作者 Fan Zhiqing Wang Xueqing Li Baolong 《Engineering Sciences》 EI 2011年第4期93-96,共4页
Combining with the characters of the practicing qualification personnel in construction market,evaluation method based on the self-organizing neural network is brought out to analyze the credit classification of the p... Combining with the characters of the practicing qualification personnel in construction market,evaluation method based on the self-organizing neural network is brought out to analyze the credit classification of the practicing qualification personnel. And the impact factors on the credit classification of the practicing qualification personnel,such as the number of neurons,the training steps,the dimension of neurons and the field of winning neurons are studied. Then a self-organizing competitive neural network is built. At last,a case study is conducted by taking practicing qualification personnel as an example. The research result reveals that the method can efficiently evaluate the credit of the practicing qualification personnel;thus,it could provide scientific advice to the construction enterprise to prevent relevant discreditable behaviors of some practicing qualification personnel. 展开更多
关键词 practicing qualification personnel CREDIT cluster analysis self-organizing neural network
下载PDF
Modeling and optimum operating conditions for FCCU using artificial neural network 被引量:6
13
作者 李全善 李大字 曹柳林 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1342-1349,共8页
A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF ... A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF neural network with the initial parameters obtained by k-means learning method. During the iteration procedure of the algorithm, the centers of the neural network were optimized by using the gradient method with these optimized width values. The computational efficiency was maintained by using the multi-threading technique. SODM-RBFNN consists of two RBF neural network models: one is a running model used to predict the product yields of fluid catalytic cracking unit(FCCU) and optimize its operating parameters; the other is a learning model applied to construct or correct a RBF neural network. The running model can be updated by the learning model according to an accuracy criterion. The simulation results of a five-lump kinetic model exhibit its accuracy and generalization capabilities, and practical application in FCCU illustrates its effectiveness. 展开更多
关键词 radial basis function(RBF) neural network self-organizing gradient descent double-model fluid catalytic cracking unit(FCCU)
下载PDF
English-Chinese Neural Machine Translation Based on Self-organizing Mapping Neural Network and Deep Feature Matching
14
作者 Shu Ma 《IJLAI Transactions on Science and Engineering》 2024年第3期1-8,共8页
The traditional Chinese-English translation model tends to translate some source words repeatedly,while mistakenly ignoring some words.Therefore,we propose a novel English-Chinese neural machine translation based on s... The traditional Chinese-English translation model tends to translate some source words repeatedly,while mistakenly ignoring some words.Therefore,we propose a novel English-Chinese neural machine translation based on self-organizing mapping neural network and deep feature matching.In this model,word vector,two-way LSTM,2D neural network and other deep learning models are used to extract the semantic matching features of question-answer pairs.Self-organizing mapping(SOM)is used to classify and identify the sentence feature.The attention mechanism-based neural machine translation model is taken as the baseline system.The experimental results show that this framework significantly improves the adequacy of English-Chinese machine translation and achieves better results than the traditional attention mechanism-based English-Chinese machine translation model. 展开更多
关键词 Chinese-English translation model self-organizing mapping neural network Deep feature matching Deep learning
原文传递
A NOVEL INTRUSION DETECTION MODE BASED ON UNDERSTANDABLE NEURAL NETWORK TREES 被引量:1
15
作者 Xu Qinzhen Yang Luxi +1 位作者 Zhao Qiangfu He Zhenya 《Journal of Electronics(China)》 2006年第4期574-579,共6页
Several data mining techniques such as Hidden Markov Model (HMM), artificial neural network, statistical techniques and expert systems are used to model network packets in the field of intrusion detection. In this pap... Several data mining techniques such as Hidden Markov Model (HMM), artificial neural network, statistical techniques and expert systems are used to model network packets in the field of intrusion detection. In this paper a novel intrusion detection mode based on understandable Neural Network Tree (NNTree) is pre-sented. NNTree is a modular neural network with the overall structure being a Decision Tree (DT), and each non-terminal node being an Expert Neural Network (ENN). One crucial advantage of using NNTrees is that they keep the non-symbolic model ENN’s capability of learning in changing environments. Another potential advantage of using NNTrees is that they are actually “gray boxes” as they can be interpreted easily if the num-ber of inputs for each ENN is limited. We showed through experiments that the trained NNTree achieved a simple ENN at each non-terminal node as well as a satisfying recognition rate of the network packets dataset. We also compared the performance with that of a three-layer backpropagation neural network. Experimental results indicated that the NNTree based intrusion detection model achieved better performance than the neural network based intrusion detection model. 展开更多
关键词 Intrusion detection neural network Tree (NNTree) Expert neural network (ENN) Decision Tree (DT) self-organized feature learning
下载PDF
Comparison of Electric Load Forecasting between Using SOM and MLP Neural Network 被引量:1
16
作者 Sergio Valero Carolina Senabre +3 位作者 Miguel Lopez Juan Aparicio Antonio Gabaldon Mario Ortiz 《Journal of Energy and Power Engineering》 2012年第3期411-417,共7页
Electric load forecasting has been a major area of research in the last decade since the production of accurate short-term forecasts for electricity loads has proven to be a key to success for many of the decision mak... Electric load forecasting has been a major area of research in the last decade since the production of accurate short-term forecasts for electricity loads has proven to be a key to success for many of the decision makers in the energy sector, from power generation to operation of the system. The objective of this research is to analyze the capacity of the MLP (multilayer perceptron neural network) versus SOM (self-organizing map neural network) for short-term load forecasting. The MLP is one of the most commonly used networks. It can be used for classification problems, model construction, series forecasting and discrete control. On the other hand, the SOM is a type of artificial neural network that is trained using unsupervised data to produce a low-dimensional, discretized representation of an input space of training samples in a cell map. Historical data of real global load demand were used for the research. Both neural models provide good prediction results, but the results obtained with the SOM maps are markedly better Also the main advantage of SOM maps is that they reach good results as a network unsupervised. It is much easier to train and interpret the results. 展开更多
关键词 Short-term load forecasting SOM self-organizing map) multilayer perceptron neural network electricity markets.
下载PDF
A MULTILAYER FEEDFORWARD NEURAL NETWORK MODEL FOR VISUAL MOTION PERCEPTION
17
作者 杨先一 郭爱克 《Journal of Electronics(China)》 1992年第4期296-304,共9页
The local visual motion detection mechanism used in the visual systems of primatescan only sense the motion component oriented perpendicularly to the contrast gradient of thebrightness pattern.But the visual system of... The local visual motion detection mechanism used in the visual systems of primatescan only sense the motion component oriented perpendicularly to the contrast gradient of thebrightness pattern.But the visual system of higher animals can adaptively determine the actualdirection of motion through a learning process.In this paper a multilayered feedforward neuralnetwork model for perception of visual motion is presented.This model employs W.Reichardt’selementary motion detectors array and T.Kohonen’s self-organizing feature map.We explored theself-organizing principles for perception of visual motion.The computer simulations show thatthis neural network is able to recognize the true direction of motion through an unsupervisedlearning process.In addition,the neurons with the same or similar motion direction selectivitytend to appear in“functional columns”which seem to be qualitatively similar to the corticalmotion columns observed by electrophysiological and cytohistochemical studies in certain higherareas such as MT.It proves that motion-detection by spatio-temporal coherences,mapping,co-operation,competition,and Hebb rule may be the basic principles for the self-organization ofvisual motion perception networks. 展开更多
关键词 neural network MOTION PERCEPTION self-organization Reichardt’s ALGORITHM Kohonen’s ALGORITHM
下载PDF
General Decay Synchronization of Competitive Fuzzy Neural Networks Involving Time Delays and Right-Hand Discontinuous Activation
18
作者 Mairemunisa Abudusaimaiti Abuduwali Abudukeremu 《Open Journal of Applied Sciences》 2024年第11期3243-3260,共18页
This paper discusses the general decay synchronization problem for a class of fuzzy competitive neural networks with time-varying delays and discontinuous activation functions. Firstly, based on the concept of Filippo... This paper discusses the general decay synchronization problem for a class of fuzzy competitive neural networks with time-varying delays and discontinuous activation functions. Firstly, based on the concept of Filippov solutions for right-hand discontinuous systems, some sufficient conditions for general decay synchronization of the considered system are obtained via designing a nonlinear feedback controller and applying discontinuous differential equation theory, Lyapunov functional methods and some inequality techniques. Finally, one numerical example is given to verify the effectiveness of the proposed theoretical results. The general decay synchronization considered in this article can better estimate the convergence rate of the system, and the exponential synchronization and polynomial synchronization can be seen as its special cases. 展开更多
关键词 competitive neural network Fuzzy General Decay Synchronization Discontinuous Activation Function
下载PDF
基于帝国竞争反向传播神经网络的断块油田开发顺序优化
19
作者 徐庆岩 孙晓飞 +3 位作者 翟光华 王瑞峰 雷诚 张瑾琳 《石油地质与工程》 CAS 2024年第3期77-81,89,共6页
明确断块油田群中断块的开发顺序是进行开发方案设计的前提条件。断块油田数量较少时,可以进行技术经济的组合对比,但是断块数量较多时会形成海量的组合,耗费时间也长。断块油田开发顺序评价的现有方法有权重评价法、层次分析法、综合... 明确断块油田群中断块的开发顺序是进行开发方案设计的前提条件。断块油田数量较少时,可以进行技术经济的组合对比,但是断块数量较多时会形成海量的组合,耗费时间也长。断块油田开发顺序评价的现有方法有权重评价法、层次分析法、综合模糊评判法等,这些方法在选择评价指标和指标权重上带有较强的主观性,无法做到完全客观的评价。因此本文提出一种基于帝国竞争算法改进的反向传播神经网络模型,首先采用Spearman相关系数法确定影响断块油田开发的主控因素,其次使用分段三次Hermite插值方法实现断块油田群开发数据库的扩充,最后在扩充后的大量数据库训练样本的基础上,基于帝国竞争算法改进的反向传播神经网络模型可以确定影响开发效果参数的权重并预测断块油田群中各断块油田的净现值,根据净现值大小可以确定每个断块的开发顺序。该方法以实际断块油田群的地质油藏数据库作为评价依据,断块油田的开发顺序更加的科学合理,项目整体的净现值也明显高于依靠传统方法确定的开发顺序组合,避免了人为主观性,也节省了数值模拟和经济评价的工作量,克服了现有方法的局限性,对于提高断块油田群开发综合效益具有重要意义。 展开更多
关键词 帝国竞争算法 反向传播神经网络 开发参数权重 投产顺序优化 断块油田群 净现值
下载PDF
基于图表示学习的社交网络群体竞争影响力识别
20
作者 刘鑫哲 方勇 +5 位作者 贾鹏 寇蒋恒 范希明 周小涵 潘睿 朱旭 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期218-228,共11页
群体竞争影响力识别是社交网络分析领域的一个必要研究,其任务是识别社交网络中任意两群体节点在相互竞争条件下的影响力,在舆情分析等实际场景中具有重要意义.在过去的几年里,许多研究集中在没有竞争对手的群体影响力识别.然而,竞争普... 群体竞争影响力识别是社交网络分析领域的一个必要研究,其任务是识别社交网络中任意两群体节点在相互竞争条件下的影响力,在舆情分析等实际场景中具有重要意义.在过去的几年里,许多研究集中在没有竞争对手的群体影响力识别.然而,竞争普遍存在于真实的社交网络中,因此研究群体竞争影响力识别任务十分必要.与非竞争场景下的群体影响力识别相比,群体竞争影响力识别存在竞争数据集的构建和群体对嵌入聚合等挑战.图表示学习(GRL)在社交网络分析领域取得了巨大的成功,可以将图结构表示成具有结构信息的低维嵌入,能够更好的反应节点之间的相互作用,提供比传统方法更丰富的信息.本文开创性的使用GRL来解决竞争场景下的群体影响力识别问题,并提出了一个基于GRL的框架.为了解决竞争数据集的构建问题,本文提出了一种基于影响力多样性的群体对构建方法.为了解决竞争群体对嵌入聚合问题,本文提出了一种基于求和相减的方法来聚合竞争群体对中节点的嵌入.本文在7个真实的社交网络上进行了大量实验来分析所提框架的有效性.实验结果表明所提框架优于基线方法. 展开更多
关键词 群体竞争影响力识别 社交网络分析 深度学习 图神经网络
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部