In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an expo...In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an exponent of -2 in the frequency domain, which is similar to the current and sea water temperature spectra in the actual ocean and the universal Garrett and Munk deep ocean internal wave model [Geophysical Fluid Dynamics 2 (1972) 225; J. Geophys. Res. 80 (1975) 291]. The influence of the ratio of the driving force to the spring coefficient to SOC behaviors in the model is also discussed.展开更多
The original Olami-Feder-Christensen (OFC) model, which displays a robust power-law behavior, is a quasistatic two-dimensional version of the Burridge-Knopoff spring-block model of earthquakes. In this paper, we int...The original Olami-Feder-Christensen (OFC) model, which displays a robust power-law behavior, is a quasistatic two-dimensional version of the Burridge-Knopoff spring-block model of earthquakes. In this paper, we introduce a modified OFC model based on heterogeneous network, improving the redistribution rule of the original model. It can be seen as a generalization of the originM OFC model We numerically investigate the influence of the parameters θandβ, which respectively control the intensity of the evolutive mechanism of the topological growth and the inner selection dynamics in our networks, and find that there are two distinct phases in the parameter space (θ,β). Meanwhile, we study the influence of the control parameter a either. Increasing a, the earthquake behavior of the model transfers from local to global.展开更多
A simple model for a set of integrate-and-fire neurons based on the weighted network is introduced. By considering the neurobiological phenomenon in brain development and the difference of the synaptic strength, we co...A simple model for a set of integrate-and-fire neurons based on the weighted network is introduced. By considering the neurobiological phenomenon in brain development and the difference of the synaptic strength, we construct weighted networks develop with link additions and followed by selective edge removal. The network exhibits the small-world and scale-free properties with high network efficiency. The model displays an avalanche activity on a power-law distribution. We investigate the effect of selective edge removal and the neuron refractory period on the self-organized criticality of the system.展开更多
A modified Olami Feder-Christensen model of self-organized criticality on a square lattice with the properties of small world networks has been studied.We find that our model displays power-law behavior and the expone...A modified Olami Feder-Christensen model of self-organized criticality on a square lattice with the properties of small world networks has been studied.We find that our model displays power-law behavior and the exponent τ of the model depends on φ,the density of long-range connections in our network.展开更多
A self-organized criticality model of a thermal sandpile is formulated for the first time to simulate the dynamic process with interaction between avalanche events on the fast time scale and diffusive transports on th...A self-organized criticality model of a thermal sandpile is formulated for the first time to simulate the dynamic process with interaction between avalanche events on the fast time scale and diffusive transports on the slow time scale. The main characteristics of the model are that both particle and energy avalanches of sand grains are considered simultaneously. Properties of intermittent transport and improved confinement are analyzed in detail. The results imply that the intermittent phenomenon such as blobs in the low confinement mode as well as edge localized modes in the high confinement mode observed in tokamak experiments are not only determined by the edge plasma physics, but also affected by the core plasma dynamics.展开更多
The dynamical behavior in the cortical brain network of macaque is studied by modelling each cortical areawith a subnetwork of interacting excitable neurons.We find that the avalanche of our model on different levels ...The dynamical behavior in the cortical brain network of macaque is studied by modelling each cortical areawith a subnetwork of interacting excitable neurons.We find that the avalanche of our model on different levels exhibitspower-law.Furthermore the power-law exponent of the distribution and the average avalanche size are affected by thetopology of the network.展开更多
Effects of vertex activity have been analyzed on a weighted evolving network.The network is characterized by the probability distribution of vertex strength,each edge weight and evolution of the strength of vertices w...Effects of vertex activity have been analyzed on a weighted evolving network.The network is characterized by the probability distribution of vertex strength,each edge weight and evolution of the strength of vertices with different vertex activities.The model exhibits self-organized criticality behavior.The probability distribution of avalanche size for different network sizes is also shown.In addition,there is a power law relation between the size and the duration of an avalanche and the average of avalanche size has been studied for different vertex activities.展开更多
A simplified Olami-Feder-Christensen model on a random network has been studied. We propose a new toppling rule -- when there is an unstable site toppling, the energy of the site is redistributed to its nearest neighb...A simplified Olami-Feder-Christensen model on a random network has been studied. We propose a new toppling rule -- when there is an unstable site toppling, the energy of the site is redistributed to its nearest neighbors randomly not averagely. The simulation results indicate that the model displays self-organized criticality when the system is conservative, and the avalanche size probability distribution of the system obeys finite size scaling. When the system is nonconservative, the model does not display scaling behavior. Simulation results of our model with different nearest neighbors q is also compared, which indicates that the spatial topology does not alter the critical behavior of the system.展开更多
Defining a basin under a critical state (or a self-organized criticality) that has the potential to initiate landslides, debris flows, and subsequent sediment disasters, is a key issue for disaster prevention. The L...Defining a basin under a critical state (or a self-organized criticality) that has the potential to initiate landslides, debris flows, and subsequent sediment disasters, is a key issue for disaster prevention. The Lushan Hot Spring area in Nantou County, Taiwan, suffered serious sediment disasters after typhoons Sinlaku and Jangmi in aoo8, and following Typhoon Morakot in 2009. The basin's internal slope instability after the typhoons brought rain was examined using the landslide frequency-area distribution. The critical state indices attributed to landslide frequency-area distribution are discussed and the marginally unstable characteristics of the study area indicated. The landslides were interpreted from Spot 5 images before and after disastrous events. The results of the analysis show that the power-law landslide frequency-area curves in the basin for different rainfall-induced events tend to coincide with a single line. The temporal trend of the rainfall- induced landslide frequency-area distribution shows 1If noise and scale invariance. A trend exists for landslide frequency-area distribution in log-log space for larger landslides controlled by the historical maximum accumulated rainfall brought by typhoons. The unstable state of the basin, including landslides, breached dams, and debris flows, are parts of the basin's self-organizing processes. The critical state of landslide frequency-area distribution could be estimated by a critical exponent of 1.0. The distribution could be used for future estimation of the potential landslide magnitude for disaster mitigation and to identify the current state of a basin for management.展开更多
Based on an integrate-and-fire mechanism, we investigate self-organized criticality of a simple neuron model on a modified BA scale-free network with aging nodes. In our model, we find that the distribution of avalanc...Based on an integrate-and-fire mechanism, we investigate self-organized criticality of a simple neuron model on a modified BA scale-free network with aging nodes. In our model, we find that the distribution of avalanche size follows power-law behavior. The critical exponent τ depends on the aging exponent α. The structures of the network with aging of nodes change with an increase of α. The different topological structures lead to different behaviors in models of integrate-and-fire neurons.展开更多
It is shown that the cortical brain network of the macaque displays a hierarchically clustered organizationand the neuron network shows small-world properties.Now the two factors will be considered in our model and th...It is shown that the cortical brain network of the macaque displays a hierarchically clustered organizationand the neuron network shows small-world properties.Now the two factors will be considered in our model and thedynamical behavior of the model will be studied.We study the characters of the model and find that the distribution ofavalanche size of the model follows power-law behavior.展开更多
A simple model for a set of interacting idealized neurons in scale-free networks is introduced. The basic elements of the model are endowed with the main features of a neuron function. We find that our model displays ...A simple model for a set of interacting idealized neurons in scale-free networks is introduced. The basic elements of the model are endowed with the main features of a neuron function. We find that our model displays powerlaw behavior of avalanche sizes and generates long-range temporal correlation. More importantly, we find different dynamical behavior for nodes with different connectivity in the scale-free networks.展开更多
A modified evolution model of self-organized criticality on generalized Barabasi-Albert (GBA).scale-free networks is investigated. In our model, we find that spatial and temporal correlations exhibit critical behavi...A modified evolution model of self-organized criticality on generalized Barabasi-Albert (GBA).scale-free networks is investigated. In our model, we find that spatial and temporal correlations exhibit critical behaviors. More importantly, these critical behaviors change with the parameter b, which weights the distance in comparison with the degree in the GBA network evolution.展开更多
A lattice model for a set of pulse-coupled integrate-and-fire neurons with small world structure is introduced.We find that our model displays the power-law behavior accompanied with the large-scale synchronized activ...A lattice model for a set of pulse-coupled integrate-and-fire neurons with small world structure is introduced.We find that our model displays the power-law behavior accompanied with the large-scale synchronized activities among the units. And the different connectivity topologies lead to different behaviors in models of integrate-and-fire neurons.展开更多
Effects of aging and self-organized criticality in a pulse-coupled integrate-and-fire neuron model based on small world networks have been studied. We give the degree distribution of aging network, average shortest p...Effects of aging and self-organized criticality in a pulse-coupled integrate-and-fire neuron model based on small world networks have been studied. We give the degree distribution of aging network, average shortest path length, the diameter of our network, and the clustering coefficient, and find that our neuron model displays the power-law behavior, and with the number of added links increasing, the effects of aging become smaller and smaller. This shows that if the brain works at the self-organized criticality state, it can relieve some effects caused by aging.展开更多
This paper presents a new line importance degree evaluation index for the propagation of cascading failures, which is used to quantify transmission lines for cascade spread. And propose an improved capital matching mo...This paper presents a new line importance degree evaluation index for the propagation of cascading failures, which is used to quantify transmission lines for cascade spread. And propose an improved capital matching model, according to the results of the evaluation, to enhanced robustness of the power system. The simulation results proved that in the case of the same system, the new model can inhibit cascade spread, reduce the probability of large-scale blackouts.展开更多
The origin of power-law distributions in self-organized criticality is investigated by treating the variation of the number of active sites in the system as a stochastic process. An avalanche is then regarded as a fir...The origin of power-law distributions in self-organized criticality is investigated by treating the variation of the number of active sites in the system as a stochastic process. An avalanche is then regarded as a first-return random walk process in a one-dimensional lattice. We assume that the variation of the number of active sites has three possibilities in each update: to increase by 1 with probability f1, to decrease by 1 with probability f2, or remain unchanged with probability 1 - f1 - f2. This mimics the dynamics in the system. Power-law distributions of the lifetime are found when the random walk is unbiased with equal probability to move in opposite directions. This shows that power-law distributions in self-organized criticality may be caused by the balance of competitive interactions.展开更多
How to reduce downtime and improve availability of the complex equipment is very important. Although the unscheduled downtime(USDT) issues of the equipment are very complex, the self-organized criticality(SOC) is ...How to reduce downtime and improve availability of the complex equipment is very important. Although the unscheduled downtime(USDT) issues of the equipment are very complex, the self-organized criticality(SOC) is the right theory to study complex systems evolution and opens up a new window to the investigation of disasters, such as the sudden failure of the equipment. Firstly,SOC theory and its validation method are introduced. Then an SOC validation method for USDT of the equipment is proposed based on the above theory. Case study is done on bottleneck equipment in a factory and corresponding data pre-process work is done. The rescaled-range(R/S) analysis method is used to calculate the Hurst exponent of USDT time-series data in order to determine the long-range correlation of USDT data on time scale;at the same time the spatial power-law characteristic of USDT time series data is studied. The result shows that the characteristics of SOC are revealed in USDT data of the equipment according to the criterion of SOC. In addition, based on the characteristics of SOC,the overall framework of the prediction method for major sudden failure of the equipment is proposed based on SOC.展开更多
Utilizing the dissipative structure theory, the evolutionary process of vibrating liquefaction in saturated granules was analyzed. When the irreversible force increases to some degree, the system will be in a state fa...Utilizing the dissipative structure theory, the evolutionary process of vibrating liquefaction in saturated granules was analyzed. When the irreversible force increases to some degree, the system will be in a state far from equilibrium, and the new structure probably occurs. According to synergetics, the equation of liquefaction evolution was deduced, and the evolutionary process was analyzed by dynamics. The evolutionary process of vibrating liquefaction is a process in which the period doubling accesses to chaos, and the fluctuation is the original driving force of system evolution. The liquefaction process was also analyzed by fractal geometry. The steady process of vibrating liquefaction obeys the scaling form, and shows self-organized criticality in the course of vibration. With the increment of the recurrence number, the stress of saturated granules will decrease rapidly or lose completely, and the strain will increase rapidly, so that the granules can not sustain load and the "avalanche" phenomenon takes place.展开更多
Research on particulate characteristics has been an important frontier in physics and chemistry during the past decades. It has however been mostly focused on granular materials with short-range interactions. In this ...Research on particulate characteristics has been an important frontier in physics and chemistry during the past decades. It has however been mostly focused on granular materials with short-range interactions. In this work, it was found that the power law of particle size distribution applied to the long-range interacting system of floating dust in air, from which we deduced that self-organized criticality might hold for floating dust just as granular materials with short-range interactions. This feature may reveal underlying kinetic mechanisms, important in dispersed particle systems. In industry, power law of size distribution of dispersed particles can be used to investigate the change of dust size, and the power law parameter could be taken as an important index for dust separation.展开更多
基金supported by the Key Project of National Natural Science Foundation of China under Grant No.40730842the Knowledge Innovation Program of the Chinese Academy of Sciences under Grant No.KZCX2-YW-201the Postdoctoral Special Fund for the Innovation Program of the Shandong Province
文摘In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an exponent of -2 in the frequency domain, which is similar to the current and sea water temperature spectra in the actual ocean and the universal Garrett and Munk deep ocean internal wave model [Geophysical Fluid Dynamics 2 (1972) 225; J. Geophys. Res. 80 (1975) 291]. The influence of the ratio of the driving force to the spring coefficient to SOC behaviors in the model is also discussed.
基金Supported by the National Natural Science Foundation of China under Grant No.10675060
文摘The original Olami-Feder-Christensen (OFC) model, which displays a robust power-law behavior, is a quasistatic two-dimensional version of the Burridge-Knopoff spring-block model of earthquakes. In this paper, we introduce a modified OFC model based on heterogeneous network, improving the redistribution rule of the original model. It can be seen as a generalization of the originM OFC model We numerically investigate the influence of the parameters θandβ, which respectively control the intensity of the evolutive mechanism of the topological growth and the inner selection dynamics in our networks, and find that there are two distinct phases in the parameter space (θ,β). Meanwhile, we study the influence of the control parameter a either. Increasing a, the earthquake behavior of the model transfers from local to global.
基金Supported by National Natural Science Foundation of China under Grant No.10675060the Doctoral Foundation of Ministry of Education of China under Grant No.2002055009
文摘A simple model for a set of integrate-and-fire neurons based on the weighted network is introduced. By considering the neurobiological phenomenon in brain development and the difference of the synaptic strength, we construct weighted networks develop with link additions and followed by selective edge removal. The network exhibits the small-world and scale-free properties with high network efficiency. The model displays an avalanche activity on a power-law distribution. We investigate the effect of selective edge removal and the neuron refractory period on the self-organized criticality of the system.
文摘A modified Olami Feder-Christensen model of self-organized criticality on a square lattice with the properties of small world networks has been studied.We find that our model displays power-law behavior and the exponent τ of the model depends on φ,the density of long-range connections in our network.
基金Supported by the National Natural Science Foundation of China under Grant No 11275061the National Magnetic Confinement Fusion Science Program under Grant No 2014GB108002
文摘A self-organized criticality model of a thermal sandpile is formulated for the first time to simulate the dynamic process with interaction between avalanche events on the fast time scale and diffusive transports on the slow time scale. The main characteristics of the model are that both particle and energy avalanches of sand grains are considered simultaneously. Properties of intermittent transport and improved confinement are analyzed in detail. The results imply that the intermittent phenomenon such as blobs in the low confinement mode as well as edge localized modes in the high confinement mode observed in tokamak experiments are not only determined by the edge plasma physics, but also affected by the core plasma dynamics.
基金National Natural Science Foundation of China under Grant No.10675060
文摘The dynamical behavior in the cortical brain network of macaque is studied by modelling each cortical areawith a subnetwork of interacting excitable neurons.We find that the avalanche of our model on different levels exhibitspower-law.Furthermore the power-law exponent of the distribution and the average avalanche size are affected by thetopology of the network.
基金supported by National Natural Science Foundation of China under Grant No.10675060
文摘Effects of vertex activity have been analyzed on a weighted evolving network.The network is characterized by the probability distribution of vertex strength,each edge weight and evolution of the strength of vertices with different vertex activities.The model exhibits self-organized criticality behavior.The probability distribution of avalanche size for different network sizes is also shown.In addition,there is a power law relation between the size and the duration of an avalanche and the average of avalanche size has been studied for different vertex activities.
文摘A simplified Olami-Feder-Christensen model on a random network has been studied. We propose a new toppling rule -- when there is an unstable site toppling, the energy of the site is redistributed to its nearest neighbors randomly not averagely. The simulation results indicate that the model displays self-organized criticality when the system is conservative, and the avalanche size probability distribution of the system obeys finite size scaling. When the system is nonconservative, the model does not display scaling behavior. Simulation results of our model with different nearest neighbors q is also compared, which indicates that the spatial topology does not alter the critical behavior of the system.
基金Financial supports under contract NSC 99-2625-M-415-003-MY3 (Chinese Taipei) are appreciated
文摘Defining a basin under a critical state (or a self-organized criticality) that has the potential to initiate landslides, debris flows, and subsequent sediment disasters, is a key issue for disaster prevention. The Lushan Hot Spring area in Nantou County, Taiwan, suffered serious sediment disasters after typhoons Sinlaku and Jangmi in aoo8, and following Typhoon Morakot in 2009. The basin's internal slope instability after the typhoons brought rain was examined using the landslide frequency-area distribution. The critical state indices attributed to landslide frequency-area distribution are discussed and the marginally unstable characteristics of the study area indicated. The landslides were interpreted from Spot 5 images before and after disastrous events. The results of the analysis show that the power-law landslide frequency-area curves in the basin for different rainfall-induced events tend to coincide with a single line. The temporal trend of the rainfall- induced landslide frequency-area distribution shows 1If noise and scale invariance. A trend exists for landslide frequency-area distribution in log-log space for larger landslides controlled by the historical maximum accumulated rainfall brought by typhoons. The unstable state of the basin, including landslides, breached dams, and debris flows, are parts of the basin's self-organizing processes. The critical state of landslide frequency-area distribution could be estimated by a critical exponent of 1.0. The distribution could be used for future estimation of the potential landslide magnitude for disaster mitigation and to identify the current state of a basin for management.
基金The project supported by National Natural Science Foundation of China under Grant No. 10675060 and the Doctoral Foundation of Ministry of Education of China
文摘Based on an integrate-and-fire mechanism, we investigate self-organized criticality of a simple neuron model on a modified BA scale-free network with aging nodes. In our model, we find that the distribution of avalanche size follows power-law behavior. The critical exponent τ depends on the aging exponent α. The structures of the network with aging of nodes change with an increase of α. The different topological structures lead to different behaviors in models of integrate-and-fire neurons.
基金supported by National Natural Science Foundation of China under Grant No.10675060
文摘It is shown that the cortical brain network of the macaque displays a hierarchically clustered organizationand the neuron network shows small-world properties.Now the two factors will be considered in our model and thedynamical behavior of the model will be studied.We study the characters of the model and find that the distribution ofavalanche size of the model follows power-law behavior.
基金The project supported by National Natural Science Foundation of China under Grant No. 90203008 and the Doctoral Foundation of the Ministry of Education of China.
文摘A simple model for a set of interacting idealized neurons in scale-free networks is introduced. The basic elements of the model are endowed with the main features of a neuron function. We find that our model displays powerlaw behavior of avalanche sizes and generates long-range temporal correlation. More importantly, we find different dynamical behavior for nodes with different connectivity in the scale-free networks.
基金The project supported by National Natural Science Foundation of China under Grant No. 90203008 and the Doctoral Foundation of Ministry of Education of China
文摘A modified evolution model of self-organized criticality on generalized Barabasi-Albert (GBA).scale-free networks is investigated. In our model, we find that spatial and temporal correlations exhibit critical behaviors. More importantly, these critical behaviors change with the parameter b, which weights the distance in comparison with the degree in the GBA network evolution.
文摘A lattice model for a set of pulse-coupled integrate-and-fire neurons with small world structure is introduced.We find that our model displays the power-law behavior accompanied with the large-scale synchronized activities among the units. And the different connectivity topologies lead to different behaviors in models of integrate-and-fire neurons.
基金The project supported by National Natural Science Foundation of China under Grant No. 10675060
文摘Effects of aging and self-organized criticality in a pulse-coupled integrate-and-fire neuron model based on small world networks have been studied. We give the degree distribution of aging network, average shortest path length, the diameter of our network, and the clustering coefficient, and find that our neuron model displays the power-law behavior, and with the number of added links increasing, the effects of aging become smaller and smaller. This shows that if the brain works at the self-organized criticality state, it can relieve some effects caused by aging.
文摘This paper presents a new line importance degree evaluation index for the propagation of cascading failures, which is used to quantify transmission lines for cascade spread. And propose an improved capital matching model, according to the results of the evaluation, to enhanced robustness of the power system. The simulation results proved that in the case of the same system, the new model can inhibit cascade spread, reduce the probability of large-scale blackouts.
基金The project supported in part by National Natural Science Foundation of China under Grant Nos.10635020 and 10475032the Major Project of the Ministry of Education of China under Grant No.306022.
文摘The origin of power-law distributions in self-organized criticality is investigated by treating the variation of the number of active sites in the system as a stochastic process. An avalanche is then regarded as a first-return random walk process in a one-dimensional lattice. We assume that the variation of the number of active sites has three possibilities in each update: to increase by 1 with probability f1, to decrease by 1 with probability f2, or remain unchanged with probability 1 - f1 - f2. This mimics the dynamics in the system. Power-law distributions of the lifetime are found when the random walk is unbiased with equal probability to move in opposite directions. This shows that power-law distributions in self-organized criticality may be caused by the balance of competitive interactions.
基金supported by the National Natural Science Foundation of China(51075060)
文摘How to reduce downtime and improve availability of the complex equipment is very important. Although the unscheduled downtime(USDT) issues of the equipment are very complex, the self-organized criticality(SOC) is the right theory to study complex systems evolution and opens up a new window to the investigation of disasters, such as the sudden failure of the equipment. Firstly,SOC theory and its validation method are introduced. Then an SOC validation method for USDT of the equipment is proposed based on the above theory. Case study is done on bottleneck equipment in a factory and corresponding data pre-process work is done. The rescaled-range(R/S) analysis method is used to calculate the Hurst exponent of USDT time-series data in order to determine the long-range correlation of USDT data on time scale;at the same time the spatial power-law characteristic of USDT time series data is studied. The result shows that the characteristics of SOC are revealed in USDT data of the equipment according to the criterion of SOC. In addition, based on the characteristics of SOC,the overall framework of the prediction method for major sudden failure of the equipment is proposed based on SOC.
文摘Utilizing the dissipative structure theory, the evolutionary process of vibrating liquefaction in saturated granules was analyzed. When the irreversible force increases to some degree, the system will be in a state far from equilibrium, and the new structure probably occurs. According to synergetics, the equation of liquefaction evolution was deduced, and the evolutionary process was analyzed by dynamics. The evolutionary process of vibrating liquefaction is a process in which the period doubling accesses to chaos, and the fluctuation is the original driving force of system evolution. The liquefaction process was also analyzed by fractal geometry. The steady process of vibrating liquefaction obeys the scaling form, and shows self-organized criticality in the course of vibration. With the increment of the recurrence number, the stress of saturated granules will decrease rapidly or lose completely, and the strain will increase rapidly, so that the granules can not sustain load and the "avalanche" phenomenon takes place.
基金The present project is currently sponsored by the National Natural Science Foundation of China through Contract#50406018the Scientific Research Foundation for Returned Overseas Chinese Scholars.
文摘Research on particulate characteristics has been an important frontier in physics and chemistry during the past decades. It has however been mostly focused on granular materials with short-range interactions. In this work, it was found that the power law of particle size distribution applied to the long-range interacting system of floating dust in air, from which we deduced that self-organized criticality might hold for floating dust just as granular materials with short-range interactions. This feature may reveal underlying kinetic mechanisms, important in dispersed particle systems. In industry, power law of size distribution of dispersed particles can be used to investigate the change of dust size, and the power law parameter could be taken as an important index for dust separation.