The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learn...The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learning of BNs structures by general genetic algorithms is liable to converge to local extremum. To resolve efficiently this problem, a self-organizing genetic algorithm (SGA) based method for constructing BNs from databases is presented. This method makes use of a self-organizing mechanism to develop a genetic algorithm that extended the crossover operator from one to two, providing mutual competition between them, even adjusting the numbers of parents in recombination (crossover/recomposition) schemes. With the K2 algorithm, this method also optimizes the genetic operators, and utilizes adequately the domain knowledge. As a result, with this method it is able to find a global optimum of the topology of BNs, avoiding premature convergence to local extremum. The experimental results proved to be and the convergence of the SGA was discussed.展开更多
A new multi-modal optimization algorithm called the self-organizing worm algorithm (SOWA) is presented for optimization of multi-modal functions. The main idea of this algorithm can be described as follows: dispers...A new multi-modal optimization algorithm called the self-organizing worm algorithm (SOWA) is presented for optimization of multi-modal functions. The main idea of this algorithm can be described as follows: disperse some worms equably in the domain; the worms exchange the information each other and creep toward the nearest high point; at last they will stop on the nearest high point. All peaks of multi-modal function can be found rapidly through studying and chasing among the worms. In contrast with the classical multi-modal optimization algorithms, SOWA is provided with a simple calculation, strong convergence, high precision, and does not need any prior knowledge. Several simulation experiments for SOWA are performed, and the complexity of SOWA is analyzed amply. The results show that SOWA is very effective in optimization of multi-modal functions.展开更多
Haze-fog,which is an atmospheric aerosol caused by natural or man-made factors,seriously affects the physical and mental health of human beings.PM2.5(a particulate matter whose diameter is smaller than or equal to 2.5...Haze-fog,which is an atmospheric aerosol caused by natural or man-made factors,seriously affects the physical and mental health of human beings.PM2.5(a particulate matter whose diameter is smaller than or equal to 2.5 microns)is the chief culprit causing aerosol.To forecast the condition of PM2.5,this paper adopts the related the meteorological data and air pollutes data to predict the concentration of PM2.5.Since the meteorological data and air pollutes data are typical time series data,it is reasonable to adopt a machine learning method called Single Hidden-Layer Long Short-Term Memory Neural Network(SSHL-LSTMNN)containing memory capability to implement the prediction.However,the number of neurons in the hidden layer is difficult to decide unless manual testing is operated.In order to decide the best structure of the neural network and improve the accuracy of prediction,this paper employs a self-organizing algorithm,which uses Information Processing Capability(IPC)to adjust the number of the hidden neurons automatically during a learning phase.In a word,to predict PM2.5 concentration accurately,this paper proposes the SSHL-LSTMNN to predict PM2.5 concentration.In the experiment,not only the hourly precise prediction but also the daily longer-term prediction is taken into account.At last,the experimental results reflect that SSHL-LSTMNN performs the best.展开更多
To enhance the clustering ability of self-organization network, this paper introduces a quantum inspired self-organization clustering algorithm. First, the clustering samples and the weight values in the competitive l...To enhance the clustering ability of self-organization network, this paper introduces a quantum inspired self-organization clustering algorithm. First, the clustering samples and the weight values in the competitive layer are mapped to the qubits on the Bloch sphere, and then, the winning node is obtained by computing the spherical distance between sample and weight value. Finally, the weight values of the winning nodes and its neighborhood are updated by rotating them to the sample on the Bloch sphere until the convergence. The clustering results of IRIS sample show that the proposed approach is obviously superior to the classical self-organization network and the K-mean clustering algorithm.展开更多
在锶(钡) 二溴对甲偶氮甲磺显色体系中,应用 Kohonen神经网络优选波长,用遗传算法优化确定BP神经网络结构和参数,得到优化结构的网络,即 KNN GA BP ANN(29 3 3 2),学习速率η=0.233 3,动量因子α=0.974 7。用优化了的神经网络解析锶、...在锶(钡) 二溴对甲偶氮甲磺显色体系中,应用 Kohonen神经网络优选波长,用遗传算法优化确定BP神经网络结构和参数,得到优化结构的网络,即 KNN GA BP ANN(29 3 3 2),学习速率η=0.233 3,动量因子α=0.974 7。用优化了的神经网络解析锶、钡配合物的混合吸收光谱,不经分离光度法同时测定锶和钡。将BP ANN 、KNN BP ANN与KNN GA BP ANN三种神经网络方法的分析结果进行比较,表明 KNN GA BP ANN最优。锶和钡的配合物的表观摩尔吸光系数分别为εSr635=6.9×104L·mol-1·cm-1,εBa634=8.0×104L·mol-1·cm-1。展开更多
In this paper, we use the cellular automation model to imitate earthquake process and draw some conclusionsof general applicability. First, it is confirmed that earthquake process has some ordering characters, and it ...In this paper, we use the cellular automation model to imitate earthquake process and draw some conclusionsof general applicability. First, it is confirmed that earthquake process has some ordering characters, and it isshown that both the existence and their mutual arrangement of faults could obviously influence the overallcharacters of earthquake process. Then the characters of each stage of model evolution are explained withself-organized critical state theory. Finally, earthquake sequences produced by the models are analysed interms pf algorithmic complexity and the result shows that AC-values of algorithmic complexity could be usedto study earthquake process and evolution.展开更多
QoS Optimization is an important part of LTE SON, but not yet defined in the specification. We discuss modeling the problem of QoS optimization, improve the fitness function, then provide an algorithm based on MPSO to...QoS Optimization is an important part of LTE SON, but not yet defined in the specification. We discuss modeling the problem of QoS optimization, improve the fitness function, then provide an algorithm based on MPSO to search the optimal QoS parameter value set for LTE networks. Simulation results show that the algorithm converges more quickly and more accurately than the GA which can be applied in LTE SON.展开更多
A novel notion of self-organization whose major property is that it brings about the execution of semantic intelligence as spontaneous physico-chemical processes in an unspecified ever-changing non-uniform environment...A novel notion of self-organization whose major property is that it brings about the execution of semantic intelligence as spontaneous physico-chemical processes in an unspecified ever-changing non-uniform environment is introduced. Its greatest advantage is that the covariance of causality encapsulated in any piece of semantic intelligence is provided with a great diversity of its individuality viewed as the properties of the current response and its reproducibility viewed as causality encapsulated in any of the homeostatic patterns. Alongside, the consistency of the functional metrics, which is always Euclidean, with any metrics of the space-time renders the proposed notion of self-organization ubiquitously available.展开更多
文摘The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learning of BNs structures by general genetic algorithms is liable to converge to local extremum. To resolve efficiently this problem, a self-organizing genetic algorithm (SGA) based method for constructing BNs from databases is presented. This method makes use of a self-organizing mechanism to develop a genetic algorithm that extended the crossover operator from one to two, providing mutual competition between them, even adjusting the numbers of parents in recombination (crossover/recomposition) schemes. With the K2 algorithm, this method also optimizes the genetic operators, and utilizes adequately the domain knowledge. As a result, with this method it is able to find a global optimum of the topology of BNs, avoiding premature convergence to local extremum. The experimental results proved to be and the convergence of the SGA was discussed.
基金the National Natural Science Foundation of China (70572045).
文摘A new multi-modal optimization algorithm called the self-organizing worm algorithm (SOWA) is presented for optimization of multi-modal functions. The main idea of this algorithm can be described as follows: disperse some worms equably in the domain; the worms exchange the information each other and creep toward the nearest high point; at last they will stop on the nearest high point. All peaks of multi-modal function can be found rapidly through studying and chasing among the worms. In contrast with the classical multi-modal optimization algorithms, SOWA is provided with a simple calculation, strong convergence, high precision, and does not need any prior knowledge. Several simulation experiments for SOWA are performed, and the complexity of SOWA is analyzed amply. The results show that SOWA is very effective in optimization of multi-modal functions.
文摘Haze-fog,which is an atmospheric aerosol caused by natural or man-made factors,seriously affects the physical and mental health of human beings.PM2.5(a particulate matter whose diameter is smaller than or equal to 2.5 microns)is the chief culprit causing aerosol.To forecast the condition of PM2.5,this paper adopts the related the meteorological data and air pollutes data to predict the concentration of PM2.5.Since the meteorological data and air pollutes data are typical time series data,it is reasonable to adopt a machine learning method called Single Hidden-Layer Long Short-Term Memory Neural Network(SSHL-LSTMNN)containing memory capability to implement the prediction.However,the number of neurons in the hidden layer is difficult to decide unless manual testing is operated.In order to decide the best structure of the neural network and improve the accuracy of prediction,this paper employs a self-organizing algorithm,which uses Information Processing Capability(IPC)to adjust the number of the hidden neurons automatically during a learning phase.In a word,to predict PM2.5 concentration accurately,this paper proposes the SSHL-LSTMNN to predict PM2.5 concentration.In the experiment,not only the hourly precise prediction but also the daily longer-term prediction is taken into account.At last,the experimental results reflect that SSHL-LSTMNN performs the best.
文摘To enhance the clustering ability of self-organization network, this paper introduces a quantum inspired self-organization clustering algorithm. First, the clustering samples and the weight values in the competitive layer are mapped to the qubits on the Bloch sphere, and then, the winning node is obtained by computing the spherical distance between sample and weight value. Finally, the weight values of the winning nodes and its neighborhood are updated by rotating them to the sample on the Bloch sphere until the convergence. The clustering results of IRIS sample show that the proposed approach is obviously superior to the classical self-organization network and the K-mean clustering algorithm.
文摘在锶(钡) 二溴对甲偶氮甲磺显色体系中,应用 Kohonen神经网络优选波长,用遗传算法优化确定BP神经网络结构和参数,得到优化结构的网络,即 KNN GA BP ANN(29 3 3 2),学习速率η=0.233 3,动量因子α=0.974 7。用优化了的神经网络解析锶、钡配合物的混合吸收光谱,不经分离光度法同时测定锶和钡。将BP ANN 、KNN BP ANN与KNN GA BP ANN三种神经网络方法的分析结果进行比较,表明 KNN GA BP ANN最优。锶和钡的配合物的表观摩尔吸光系数分别为εSr635=6.9×104L·mol-1·cm-1,εBa634=8.0×104L·mol-1·cm-1。
文摘In this paper, we use the cellular automation model to imitate earthquake process and draw some conclusionsof general applicability. First, it is confirmed that earthquake process has some ordering characters, and it isshown that both the existence and their mutual arrangement of faults could obviously influence the overallcharacters of earthquake process. Then the characters of each stage of model evolution are explained withself-organized critical state theory. Finally, earthquake sequences produced by the models are analysed interms pf algorithmic complexity and the result shows that AC-values of algorithmic complexity could be usedto study earthquake process and evolution.
文摘QoS Optimization is an important part of LTE SON, but not yet defined in the specification. We discuss modeling the problem of QoS optimization, improve the fitness function, then provide an algorithm based on MPSO to search the optimal QoS parameter value set for LTE networks. Simulation results show that the algorithm converges more quickly and more accurately than the GA which can be applied in LTE SON.
文摘A novel notion of self-organization whose major property is that it brings about the execution of semantic intelligence as spontaneous physico-chemical processes in an unspecified ever-changing non-uniform environment is introduced. Its greatest advantage is that the covariance of causality encapsulated in any piece of semantic intelligence is provided with a great diversity of its individuality viewed as the properties of the current response and its reproducibility viewed as causality encapsulated in any of the homeostatic patterns. Alongside, the consistency of the functional metrics, which is always Euclidean, with any metrics of the space-time renders the proposed notion of self-organization ubiquitously available.