Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one...Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration.展开更多
Presented is a new testing system based on using the factor models and self-organizing feature maps as well as the method of filtering undesirable environment influence. Testing process is described by the factor mode...Presented is a new testing system based on using the factor models and self-organizing feature maps as well as the method of filtering undesirable environment influence. Testing process is described by the factor model with simplex structure, which represents the influences of genetics and environmental factors on the observed parameters - the answers to the questions of the test subjects in one case and for the time, which is spent on responding to each test question to another. The Monte Carlo method is applied to get sufficient samples for training self-organizing feature maps, which are used to estimate model goodness-of-fit measures and, consequently, ability level. A prototype of the system is implemented using the Raven's Progressive Matrices (Advanced Progressive Matrices) - an intelligence test of abstract reasoning. Elimination of environment influence results is performed by comparing the observed and predicted answers to the test tasks using the Kalman filter, which is adapted to solve the problem. The testing procedure is optimized by reducing the number of tasks using the distribution of measures to belong to different ability levels after performing each test task provided the required level of conclusion reliability is obtained.展开更多
A new clustering algorithm called fuzzy self-organizing feature maps is introduced. It can process not only the exact digital inputs, but also the inexact or fuzzy non-digital inputs, such as natural language inputs. ...A new clustering algorithm called fuzzy self-organizing feature maps is introduced. It can process not only the exact digital inputs, but also the inexact or fuzzy non-digital inputs, such as natural language inputs. Simulation results show that the new algorithm is superior to original Kohonen’s algorithm in clustering performance and learning rate.展开更多
The ongoing COVID-19 has become a worldwide pandemic with increasing confirmed cases and deaths across the globe.By July 2022,the number of cumulative confirmed cases reported to the World Health Organization(WHO)has ...The ongoing COVID-19 has become a worldwide pandemic with increasing confirmed cases and deaths across the globe.By July 2022,the number of cumulative confirmed cases reported to the World Health Organization(WHO)has risen to 550 million,with more than 6 million deaths in total.The analysis of its epidemic risk remains the focus of attention all over the world for a long time.The Self-organizing feature map(SOM),a vector quantization method,offers a data mapping approach to tracking the response of time series data on a well-trained map.This study aims at a trajectory tracking of COVID-19 epidemic risk in 237 countries measured by the number of new confirmed cases and deaths per day for over one year.A hybrid clustering method uses SOM and K-means to generate a risk map and then displays the trajectory of daily risk on the map.The experimental results demonstrate the promising functionality of SOM for trajectory tracking and give experts insights into the dynamic changes of COVID-19 risk.展开更多
Amino acids are the dominant organic components of processed animal proteins,however there has been limited investigation of differences in their composition between various protein sources.Information on these differ...Amino acids are the dominant organic components of processed animal proteins,however there has been limited investigation of differences in their composition between various protein sources.Information on these differences will not only be helpful for their further utilization but also provide fundamental information for developing species-specific identification methods.In this study,self-organizing feature maps(SOFM) were used to visualize amino acid composition of fish meal,and meat and bone meal(MBM) produced from poultry,ruminants and swine.SOFM display the similarities and differences in amino acid composition between protein sources and effectively improve data transparency.Amino acid composition was shown to be useful for distinguishing fish meal from MBM due to their large concentration differences between glycine,lysine and proline.However,the amino acid composition of the three MBMs was quite similar.The SOFM results were consistent with those obtained by analysis of variance and principal component analysis but more straightforward.SOFM was shown to have a robust sample linkage capacity and to be able to act as a powerful means to link different sample for further data mining.展开更多
Most methods for classification of remote sensing data are based on the statistical parameter evaluation with the assumption that the samples obey the normal distribution. How-ever, more accurate classification result...Most methods for classification of remote sensing data are based on the statistical parameter evaluation with the assumption that the samples obey the normal distribution. How-ever, more accurate classification results can be obtained with the neural network method through getting knowledge from environments and adjusting the parameter (or weight) step by step by a specific measurement. This paper focuses on the double-layer structured Kohonen self-organizing feature map (SOFM), for which all neurons within the two layers are linked one another and those of the competition layers are linked as well along the sides. Therefore, the self-adapting learning ability is improved due to the effective competition and suppression in this method. The SOFM has become a hot topic in the research area of remote sensing data classi-fication. The Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) is a new satellite-borne remote sensing instrument with three 15-m resolution bands and three 30-m resolution bands at the near infrared. The ASTER data of Dagang district, Tianjin Munici-pality is used as the test data in this study. At first, the wavelet fusion is carried out to make the spatial resolutions of the ASTER data identical; then, the SOFM method is applied to classifying the land cover types. The classification results are compared with those of the maximum likeli-hood method (MLH). As a consequence, the classification accuracy of SOFM increases about by 7% in general and, in particular, it is almost as twice as that of the MLH method in the town.展开更多
The rotation invariant feature of the target is obtained using the multi-direction feature extraction property of the steerable filter. Combining the morphological operation top-hat transform with the self-organizing ...The rotation invariant feature of the target is obtained using the multi-direction feature extraction property of the steerable filter. Combining the morphological operation top-hat transform with the self-organizing feature map neural network, the adaptive topological region is selected. Using the erosion operation, the topological region shrinkage is achieved. The steerable filter based morphological self-organizing feature map neural network is applied to automatic target recognition of binary standard patterns and real world infrared sequence images. Compared with Hamming network and morphological shared-weight networks respectively, the higher recognition correct rate, robust adaptability, quick training, and better generalization of the proposed method are achieved.展开更多
A comprehensive understanding of spatial distribution and clustering patterns of gravels is of great significance for ecological restoration and monitoring.However,traditional methods for studying gravels are low-effi...A comprehensive understanding of spatial distribution and clustering patterns of gravels is of great significance for ecological restoration and monitoring.However,traditional methods for studying gravels are low-efficiency and have many errors.This study researched the spatial distribution and cluster characteristics of gravels based on digital image processing technology combined with a self-organizing map(SOM)and multivariate statistical methods in the grassland of northern Tibetan Plateau.Moreover,the correlation of morphological parameters of gravels between different cluster groups and the environmental factors affecting gravel distribution were analyzed.The results showed that the morphological characteristics of gravels in northern region(cluster C)and southern region(cluster B)of the Tibetan Plateau were similar,with a low gravel coverage,small gravel diameter,and elongated shape.These regions were mainly distributed in high mountainous areas with large topographic relief.The central region(cluster A)has high coverage of gravels with a larger diameter,mainly distributed in high-altitude plains with smaller undulation.Principal component analysis(PCA)results showed that the gravel distribution of cluster A may be mainly affected by vegetation,while those in clusters B and C could be mainly affected by topography,climate,and soil.The study confirmed that the combination of digital image processing technology and SOM could effectively analyzed the spatial distribution characteristics of gravels,providing a new mode for gravel research.展开更多
Clustering analysis is one of the main concerns in data mining.A common approach to the clustering process is to bring together points that are close to each other and separate points that are away from each other.The...Clustering analysis is one of the main concerns in data mining.A common approach to the clustering process is to bring together points that are close to each other and separate points that are away from each other.Therefore,measuring the distance between sample points is crucial to the effectiveness of clustering.Filtering features by label information and mea-suring the distance between samples by these features is a common supervised learning method to reconstruct distance metric.However,in many application scenarios,it is very expensive to obtain a large number of labeled samples.In this paper,to solve the clustering problem in the few supervised sample and high data dimensionality scenarios,a novel semi-supervised clustering algorithm is proposed by designing an improved prototype network that attempts to reconstruct the distance metric in the sample space with a small amount of pairwise supervised information,such as Must-Link and Cannot-Link,and then cluster the data in the new metric space.The core idea is to make the similar ones closer and the dissimilar ones further away through embedding mapping.Extensive experiments on both real-world and synthetic datasets show the effectiveness of this algorithm.Average clustering metrics on various datasets improved by 8%compared to the comparison algorithm.展开更多
The feature space extracted from vibration signals with various faults is often nonlinear and of high dimension.Currently,nonlinear dimensionality reduction methods are available for extracting low-dimensional embeddi...The feature space extracted from vibration signals with various faults is often nonlinear and of high dimension.Currently,nonlinear dimensionality reduction methods are available for extracting low-dimensional embeddings,such as manifold learning.However,these methods are all based on manual intervention,which have some shortages in stability,and suppressing the disturbance noise.To extract features automatically,a manifold learning method with self-organization mapping is introduced for the first time.Under the non-uniform sample distribution reconstructed by the phase space,the expectation maximization(EM) iteration algorithm is used to divide the local neighborhoods adaptively without manual intervention.After that,the local tangent space alignment(LTSA) algorithm is adopted to compress the high-dimensional phase space into a more truthful low-dimensional representation.Finally,the signal is reconstructed by the kernel regression.Several typical states include the Lorenz system,engine fault with piston pin defect,and bearing fault with outer-race defect are analyzed.Compared with the LTSA and continuous wavelet transform,the results show that the background noise can be fully restrained and the entire periodic repetition of impact components is well separated and identified.A new way to automatically and precisely extract the impulsive components from mechanical signals is proposed.展开更多
The traditional Chinese-English translation model tends to translate some source words repeatedly,while mistakenly ignoring some words.Therefore,we propose a novel English-Chinese neural machine translation based on s...The traditional Chinese-English translation model tends to translate some source words repeatedly,while mistakenly ignoring some words.Therefore,we propose a novel English-Chinese neural machine translation based on self-organizing mapping neural network and deep feature matching.In this model,word vector,two-way LSTM,2D neural network and other deep learning models are used to extract the semantic matching features of question-answer pairs.Self-organizing mapping(SOM)is used to classify and identify the sentence feature.The attention mechanism-based neural machine translation model is taken as the baseline system.The experimental results show that this framework significantly improves the adequacy of English-Chinese machine translation and achieves better results than the traditional attention mechanism-based English-Chinese machine translation model.展开更多
By employing the unique phenological feature of winter wheat extracted from peak before winter (PBW) and the advantages of moderate resolution imaging spectroradiometer (MODIS) data with high temporal resolution a...By employing the unique phenological feature of winter wheat extracted from peak before winter (PBW) and the advantages of moderate resolution imaging spectroradiometer (MODIS) data with high temporal resolution and intermediate spatial resolution, a remote sensing-based model for mapping winter wheat on the North China Plain was built through integration with Landsat images and land-use data. First, a phenological window, PBW was drawn from time-series MODIS data. Next, feature extraction was performed for the PBW to reduce feature dimension and enhance its information. Finally, a regression model was built to model the relationship of the phenological feature and the sample data. The amount of information of the PBW was evaluated and compared with that of the main peak (MP). The relative precision of the mapping reached up to 92% in comparison to the Landsat sample data, and ranged between 87 and 96% in comparison to the statistical data. These results were sufficient to satisfy the accuracy requirements for winter wheat mapping at a large scale. Moreover, the proposed method has the ability to obtain the distribution information for winter wheat in an earlier period than previous studies. This study could throw light on the monitoring of winter wheat in China by using unique phenological feature of winter wheat.展开更多
Fault diagnosis and monitoring are very important for complex chemical process. There are numerous methods that have been studied in this field, in which the effective visualization method is still challenging. In ord...Fault diagnosis and monitoring are very important for complex chemical process. There are numerous methods that have been studied in this field, in which the effective visualization method is still challenging. In order to get a better visualization effect, a novel fault diagnosis method which combines self-organizing map (SOM) with Fisher discriminant analysis (FDA) is proposed. FDA can reduce the dimension of the data in terms of maximizing the separability of the classes. After feature extraction by FDA, SOM can distinguish the different states on the output map clearly and it can also be employed to monitor abnormal states. Tennessee Eastman (TE) process is employed to illustrate the fault diagnosis and monitoring performance of the proposed method. The result shows that the SOM integrated with FDA method is efficient and capable for real-time monitoring and fault diagnosis in complex chemical process.展开更多
Aiming at the problem existing in the computer aided design process that how to express the design intents with high-level engineering terminologies, a mechanical product self-organized semantic feature evolution tech...Aiming at the problem existing in the computer aided design process that how to express the design intents with high-level engineering terminologies, a mechanical product self-organized semantic feature evolution technology for axiomatic design is proposed, so that the constraint relations between mechanical parts could be expressed in a semantic form which is more suitable for designers. By describing the evolution rules for semantic constraint information, the abstract expression of design semantics in mechanical product evolution process is realized and the constraint relations between parts are mapped to the geometric level from the semantic level; With semantic feature relation graph, the abstract semantic description, the semantic relative structure and the semantic constraint information are linked together; And the methods of semantic feature self-organized evolution are classified. Finally, combining a design example of domestic high-speed elevator, how to apply the theory to practical product development is illustrated and this method and its validity is described and verified. According to the study results, the designers are able to represent the design intents at an advanced semantic level in a more intuitional and natural way and the automation, recursion and visualization for mechanical product axiomatic design are also realized.展开更多
To design microstructure and microhardness in the additive manufacturing(AM)of nickel(Ni)-based superalloys,the present work develops a novel data-driven approach that combines physics-based models,experimental measur...To design microstructure and microhardness in the additive manufacturing(AM)of nickel(Ni)-based superalloys,the present work develops a novel data-driven approach that combines physics-based models,experimental measurements,and a data-mining method.The simulation is based on a computational thermal-fluid dynamics(CtFD)model,which can obtain thermal behavior,solidification parameters such as cooling rate,and the dilution of solidified clad.Based on the computed thermal information,dendrite arm spacing and microhardness are estimated using well-tested mechanistic models.Experimental microstructure and microhardness are determined and compared with the simulated values for validation.To visualize process-structure-properties(PSPs)linkages,the simulation and experimental datasets are input to a data-mining model-a self-organizing map(SOM).The design windows of the process parameters under multiple objectives can be obtained from the visualized maps.The proposed approaches can be utilized in AM and other data-intensive processes.Data-driven linkages between process,structure,and properties have the potential to benefit online process monitoring control in order to derive an ideal microstructure and mechanical properties.展开更多
Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal...Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal and inter-annual variations of the SCS surface circulation are identified through the evolution of the characteristic circulation patterns.The annual cycle of the SCS general circulation patterns is described as a change between two opposite basin-scale SW-NE oriented gyres embedded with eddies: low sea surface height anomaly (SSHA) (cyclonic) in winter and high SSHA (anticyclonic) in summer half year. The transition starts from July—August (January—February) with a high (low) SSHA tongue east of Vietnam around 12°~14° N, which develops into a big anticyclonic (cyclonic) gyre while moving eastward to the deep basin. During the transitions, a dipole structure, cyclonic (anticyclonic) in the north and anticyclonic (cyclonic) in the south, may be formed southeast off Vietnam with a strong zonal jet around 10°~12° N. The seasonal variation is modulated by the interannual variations. Besides the strong 1997/1998 event in response to the peak Pacific El Nio in 1997, the overall SCS sea level is found to have a significant rise during 1999~2001, however, in summer 2004 the overall SCS sea level is lower and the basin-wide anticyclonic gyre becomes weaker than the other years.展开更多
Water resources are scarce in arid or semiarid areas,which not only limits economic development,but also threatens the survival of mankind.The local communities around the Hangjinqi gasfield depend on groundwater sour...Water resources are scarce in arid or semiarid areas,which not only limits economic development,but also threatens the survival of mankind.The local communities around the Hangjinqi gasfield depend on groundwater sources for water supply.A clear understanding of the groundwater hydrogeochemical characteristics and the groundwater quality and its seasonal cycle is invaluable and indispensable for groundwater protection and management.In this study,self-organizing maps were used in combination with the quantization and topographic errors and K-means clustering method to investigate groundwater chemistry datasets.The Piper and Gibbs diagrams and saturation index were systematically applied to investigate the hydrogeochemical characteristics of groundwater from both rainy and dry seasons.Further,the entropy-weighted theory was used to characterize groundwater quality and assess its seasonal variability and suitability for drinking purposes.Our hydrochemical groundwater dataset,consisting of 10 parameters measured during both dry and rainy seasons,was classified into 6 clusters,and the Piper diagram revealed three hydrochemical facies:Cl-Na type(clusters 1,2 and 3),mixed type(clusters 4 and 5),and HCO3-Ca type(cluster 6).The Gibbs diagram and saturation index suggested thatweathering of rock-forming mineralswere the primary process controlling groundwater chemical composition and validated the credibility and practicality of the clustering results.Two-thirds of 45 groundwater samples were categorized as excellent-or good-quality and were suitable as drinking water.Cluster changes within the same and different clusters from the dry season to the rainy season were detected in approximately 78%of the collected samples.The main factors affecting the groundwater quality were hydrogeochemical characteristics,and dry season groundwater quality was better than rainy season groundwater quality.Based on this work,such results can be used to investigate the seasonal variation of hydrogeochemical characteristics and assess water quality accurately in the others similar area.展开更多
文摘Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration.
文摘Presented is a new testing system based on using the factor models and self-organizing feature maps as well as the method of filtering undesirable environment influence. Testing process is described by the factor model with simplex structure, which represents the influences of genetics and environmental factors on the observed parameters - the answers to the questions of the test subjects in one case and for the time, which is spent on responding to each test question to another. The Monte Carlo method is applied to get sufficient samples for training self-organizing feature maps, which are used to estimate model goodness-of-fit measures and, consequently, ability level. A prototype of the system is implemented using the Raven's Progressive Matrices (Advanced Progressive Matrices) - an intelligence test of abstract reasoning. Elimination of environment influence results is performed by comparing the observed and predicted answers to the test tasks using the Kalman filter, which is adapted to solve the problem. The testing procedure is optimized by reducing the number of tasks using the distribution of measures to belong to different ability levels after performing each test task provided the required level of conclusion reliability is obtained.
文摘A new clustering algorithm called fuzzy self-organizing feature maps is introduced. It can process not only the exact digital inputs, but also the inexact or fuzzy non-digital inputs, such as natural language inputs. Simulation results show that the new algorithm is superior to original Kohonen’s algorithm in clustering performance and learning rate.
基金National Office of Philosophy and Social Sciences(19AZD019)National Ethnic Affairs Commission(2020-GMB-015).
文摘The ongoing COVID-19 has become a worldwide pandemic with increasing confirmed cases and deaths across the globe.By July 2022,the number of cumulative confirmed cases reported to the World Health Organization(WHO)has risen to 550 million,with more than 6 million deaths in total.The analysis of its epidemic risk remains the focus of attention all over the world for a long time.The Self-organizing feature map(SOM),a vector quantization method,offers a data mapping approach to tracking the response of time series data on a well-trained map.This study aims at a trajectory tracking of COVID-19 epidemic risk in 237 countries measured by the number of new confirmed cases and deaths per day for over one year.A hybrid clustering method uses SOM and K-means to generate a risk map and then displays the trajectory of daily risk on the map.The experimental results demonstrate the promising functionality of SOM for trajectory tracking and give experts insights into the dynamic changes of COVID-19 risk.
基金supported by the International Science and Technology Cooperation Project,Ministry of Science and Technology,China(2015DFG32170)
文摘Amino acids are the dominant organic components of processed animal proteins,however there has been limited investigation of differences in their composition between various protein sources.Information on these differences will not only be helpful for their further utilization but also provide fundamental information for developing species-specific identification methods.In this study,self-organizing feature maps(SOFM) were used to visualize amino acid composition of fish meal,and meat and bone meal(MBM) produced from poultry,ruminants and swine.SOFM display the similarities and differences in amino acid composition between protein sources and effectively improve data transparency.Amino acid composition was shown to be useful for distinguishing fish meal from MBM due to their large concentration differences between glycine,lysine and proline.However,the amino acid composition of the three MBMs was quite similar.The SOFM results were consistent with those obtained by analysis of variance and principal component analysis but more straightforward.SOFM was shown to have a robust sample linkage capacity and to be able to act as a powerful means to link different sample for further data mining.
文摘Most methods for classification of remote sensing data are based on the statistical parameter evaluation with the assumption that the samples obey the normal distribution. How-ever, more accurate classification results can be obtained with the neural network method through getting knowledge from environments and adjusting the parameter (or weight) step by step by a specific measurement. This paper focuses on the double-layer structured Kohonen self-organizing feature map (SOFM), for which all neurons within the two layers are linked one another and those of the competition layers are linked as well along the sides. Therefore, the self-adapting learning ability is improved due to the effective competition and suppression in this method. The SOFM has become a hot topic in the research area of remote sensing data classi-fication. The Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) is a new satellite-borne remote sensing instrument with three 15-m resolution bands and three 30-m resolution bands at the near infrared. The ASTER data of Dagang district, Tianjin Munici-pality is used as the test data in this study. At first, the wavelet fusion is carried out to make the spatial resolutions of the ASTER data identical; then, the SOFM method is applied to classifying the land cover types. The classification results are compared with those of the maximum likeli-hood method (MLH). As a consequence, the classification accuracy of SOFM increases about by 7% in general and, in particular, it is almost as twice as that of the MLH method in the town.
文摘The rotation invariant feature of the target is obtained using the multi-direction feature extraction property of the steerable filter. Combining the morphological operation top-hat transform with the self-organizing feature map neural network, the adaptive topological region is selected. Using the erosion operation, the topological region shrinkage is achieved. The steerable filter based morphological self-organizing feature map neural network is applied to automatic target recognition of binary standard patterns and real world infrared sequence images. Compared with Hamming network and morphological shared-weight networks respectively, the higher recognition correct rate, robust adaptability, quick training, and better generalization of the proposed method are achieved.
基金funded by the National Natural Science Foundation of China(41971226,41871357)the Major Research and Development and Achievement Transformation Projects of Qinghai,China(2022-QY-224)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA28110502,XDA19030303).
文摘A comprehensive understanding of spatial distribution and clustering patterns of gravels is of great significance for ecological restoration and monitoring.However,traditional methods for studying gravels are low-efficiency and have many errors.This study researched the spatial distribution and cluster characteristics of gravels based on digital image processing technology combined with a self-organizing map(SOM)and multivariate statistical methods in the grassland of northern Tibetan Plateau.Moreover,the correlation of morphological parameters of gravels between different cluster groups and the environmental factors affecting gravel distribution were analyzed.The results showed that the morphological characteristics of gravels in northern region(cluster C)and southern region(cluster B)of the Tibetan Plateau were similar,with a low gravel coverage,small gravel diameter,and elongated shape.These regions were mainly distributed in high mountainous areas with large topographic relief.The central region(cluster A)has high coverage of gravels with a larger diameter,mainly distributed in high-altitude plains with smaller undulation.Principal component analysis(PCA)results showed that the gravel distribution of cluster A may be mainly affected by vegetation,while those in clusters B and C could be mainly affected by topography,climate,and soil.The study confirmed that the combination of digital image processing technology and SOM could effectively analyzed the spatial distribution characteristics of gravels,providing a new mode for gravel research.
文摘Clustering analysis is one of the main concerns in data mining.A common approach to the clustering process is to bring together points that are close to each other and separate points that are away from each other.Therefore,measuring the distance between sample points is crucial to the effectiveness of clustering.Filtering features by label information and mea-suring the distance between samples by these features is a common supervised learning method to reconstruct distance metric.However,in many application scenarios,it is very expensive to obtain a large number of labeled samples.In this paper,to solve the clustering problem in the few supervised sample and high data dimensionality scenarios,a novel semi-supervised clustering algorithm is proposed by designing an improved prototype network that attempts to reconstruct the distance metric in the sample space with a small amount of pairwise supervised information,such as Must-Link and Cannot-Link,and then cluster the data in the new metric space.The core idea is to make the similar ones closer and the dissimilar ones further away through embedding mapping.Extensive experiments on both real-world and synthetic datasets show the effectiveness of this algorithm.Average clustering metrics on various datasets improved by 8%compared to the comparison algorithm.
基金supported by National Natural Science Foundation of China(Grant No.51075323)
文摘The feature space extracted from vibration signals with various faults is often nonlinear and of high dimension.Currently,nonlinear dimensionality reduction methods are available for extracting low-dimensional embeddings,such as manifold learning.However,these methods are all based on manual intervention,which have some shortages in stability,and suppressing the disturbance noise.To extract features automatically,a manifold learning method with self-organization mapping is introduced for the first time.Under the non-uniform sample distribution reconstructed by the phase space,the expectation maximization(EM) iteration algorithm is used to divide the local neighborhoods adaptively without manual intervention.After that,the local tangent space alignment(LTSA) algorithm is adopted to compress the high-dimensional phase space into a more truthful low-dimensional representation.Finally,the signal is reconstructed by the kernel regression.Several typical states include the Lorenz system,engine fault with piston pin defect,and bearing fault with outer-race defect are analyzed.Compared with the LTSA and continuous wavelet transform,the results show that the background noise can be fully restrained and the entire periodic repetition of impact components is well separated and identified.A new way to automatically and precisely extract the impulsive components from mechanical signals is proposed.
文摘The traditional Chinese-English translation model tends to translate some source words repeatedly,while mistakenly ignoring some words.Therefore,we propose a novel English-Chinese neural machine translation based on self-organizing mapping neural network and deep feature matching.In this model,word vector,two-way LSTM,2D neural network and other deep learning models are used to extract the semantic matching features of question-answer pairs.Self-organizing mapping(SOM)is used to classify and identify the sentence feature.The attention mechanism-based neural machine translation model is taken as the baseline system.The experimental results show that this framework significantly improves the adequacy of English-Chinese machine translation and achieves better results than the traditional attention mechanism-based English-Chinese machine translation model.
基金supported by the open research fund of the Key Laboratory of Agri-informatics,Ministry of Agriculture and the fund of Outstanding Agricultural Researcher,Ministry of Agriculture,China
文摘By employing the unique phenological feature of winter wheat extracted from peak before winter (PBW) and the advantages of moderate resolution imaging spectroradiometer (MODIS) data with high temporal resolution and intermediate spatial resolution, a remote sensing-based model for mapping winter wheat on the North China Plain was built through integration with Landsat images and land-use data. First, a phenological window, PBW was drawn from time-series MODIS data. Next, feature extraction was performed for the PBW to reduce feature dimension and enhance its information. Finally, a regression model was built to model the relationship of the phenological feature and the sample data. The amount of information of the PBW was evaluated and compared with that of the main peak (MP). The relative precision of the mapping reached up to 92% in comparison to the Landsat sample data, and ranged between 87 and 96% in comparison to the statistical data. These results were sufficient to satisfy the accuracy requirements for winter wheat mapping at a large scale. Moreover, the proposed method has the ability to obtain the distribution information for winter wheat in an earlier period than previous studies. This study could throw light on the monitoring of winter wheat in China by using unique phenological feature of winter wheat.
基金Supported by the National Basic Research Program of China (2013CB733600), the National Natural Science Foundation of China (21176073), the Doctoral Fund of Ministry of Education of China (20090074110005), the Program for New Century Excellent Talents in University (NCET-09-0346), Shu Guang Project (09SG29) and the Fundamental Research Funds for the Central Universities.
文摘Fault diagnosis and monitoring are very important for complex chemical process. There are numerous methods that have been studied in this field, in which the effective visualization method is still challenging. In order to get a better visualization effect, a novel fault diagnosis method which combines self-organizing map (SOM) with Fisher discriminant analysis (FDA) is proposed. FDA can reduce the dimension of the data in terms of maximizing the separability of the classes. After feature extraction by FDA, SOM can distinguish the different states on the output map clearly and it can also be employed to monitor abnormal states. Tennessee Eastman (TE) process is employed to illustrate the fault diagnosis and monitoring performance of the proposed method. The result shows that the SOM integrated with FDA method is efficient and capable for real-time monitoring and fault diagnosis in complex chemical process.
基金National Natural Science Foundation of China (No.50505044)National Hi-tech Research and Development Program of China (863 Program,No.2007AA04Z 190)
文摘Aiming at the problem existing in the computer aided design process that how to express the design intents with high-level engineering terminologies, a mechanical product self-organized semantic feature evolution technology for axiomatic design is proposed, so that the constraint relations between mechanical parts could be expressed in a semantic form which is more suitable for designers. By describing the evolution rules for semantic constraint information, the abstract expression of design semantics in mechanical product evolution process is realized and the constraint relations between parts are mapped to the geometric level from the semantic level; With semantic feature relation graph, the abstract semantic description, the semantic relative structure and the semantic constraint information are linked together; And the methods of semantic feature self-organized evolution are classified. Finally, combining a design example of domestic high-speed elevator, how to apply the theory to practical product development is illustrated and this method and its validity is described and verified. According to the study results, the designers are able to represent the design intents at an advanced semantic level in a more intuitional and natural way and the automation, recursion and visualization for mechanical product axiomatic design are also realized.
基金Jian Cao,Gregory J.Wagner,and Wing K.Liu acknowledge support from the National Science Foundation(NSF)Cyber-Physical Systems(CPS)(CPS/CMMI-1646592)Hengyang Li acknowledges support from the Northwestern Data Science Initiative(DSI+6 种基金171474500210043324)Jian Cao,Gregory J.Wagner,Wing K.Liu,Jennifer L.Bennett,and Sarah J.Wolff acknowledge support from the Digital Manufacturing and Design Innovation Institute(DMDII15-07)Jian Cao,Wing K.Liu,Zhengtao Gan,and Jennifer L.Bennett acknowledge support from the Center for Hierarchical Materials Design(CHiMaD70NANB14H012)This work made use of facilities at DMG MORI and Northwestern UniversityIt also made use of the MatCI Facility,which receives support from the MRSEC Program(NSF DMR-168 1720139)of the Materials Research Center at Northwestern University.
文摘To design microstructure and microhardness in the additive manufacturing(AM)of nickel(Ni)-based superalloys,the present work develops a novel data-driven approach that combines physics-based models,experimental measurements,and a data-mining method.The simulation is based on a computational thermal-fluid dynamics(CtFD)model,which can obtain thermal behavior,solidification parameters such as cooling rate,and the dilution of solidified clad.Based on the computed thermal information,dendrite arm spacing and microhardness are estimated using well-tested mechanistic models.Experimental microstructure and microhardness are determined and compared with the simulated values for validation.To visualize process-structure-properties(PSPs)linkages,the simulation and experimental datasets are input to a data-mining model-a self-organizing map(SOM).The design windows of the process parameters under multiple objectives can be obtained from the visualized maps.The proposed approaches can be utilized in AM and other data-intensive processes.Data-driven linkages between process,structure,and properties have the potential to benefit online process monitoring control in order to derive an ideal microstructure and mechanical properties.
基金National Basic Research Program of China under contract No. 2007 CB816003the Key International Co-operative Proiect of the National Natural Science Foundation of China under contract No.40510073the International Cooperative Proiect of the Mini-stry of Science and Technology of China under contract No.2006DFB21630.
文摘Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal and inter-annual variations of the SCS surface circulation are identified through the evolution of the characteristic circulation patterns.The annual cycle of the SCS general circulation patterns is described as a change between two opposite basin-scale SW-NE oriented gyres embedded with eddies: low sea surface height anomaly (SSHA) (cyclonic) in winter and high SSHA (anticyclonic) in summer half year. The transition starts from July—August (January—February) with a high (low) SSHA tongue east of Vietnam around 12°~14° N, which develops into a big anticyclonic (cyclonic) gyre while moving eastward to the deep basin. During the transitions, a dipole structure, cyclonic (anticyclonic) in the north and anticyclonic (cyclonic) in the south, may be formed southeast off Vietnam with a strong zonal jet around 10°~12° N. The seasonal variation is modulated by the interannual variations. Besides the strong 1997/1998 event in response to the peak Pacific El Nio in 1997, the overall SCS sea level is found to have a significant rise during 1999~2001, however, in summer 2004 the overall SCS sea level is lower and the basin-wide anticyclonic gyre becomes weaker than the other years.
基金the National Natural Science Foundation of China(Nos.41972259 and 41572227)the National Key Research and Development Program of China(No.2018YFC0406404).
文摘Water resources are scarce in arid or semiarid areas,which not only limits economic development,but also threatens the survival of mankind.The local communities around the Hangjinqi gasfield depend on groundwater sources for water supply.A clear understanding of the groundwater hydrogeochemical characteristics and the groundwater quality and its seasonal cycle is invaluable and indispensable for groundwater protection and management.In this study,self-organizing maps were used in combination with the quantization and topographic errors and K-means clustering method to investigate groundwater chemistry datasets.The Piper and Gibbs diagrams and saturation index were systematically applied to investigate the hydrogeochemical characteristics of groundwater from both rainy and dry seasons.Further,the entropy-weighted theory was used to characterize groundwater quality and assess its seasonal variability and suitability for drinking purposes.Our hydrochemical groundwater dataset,consisting of 10 parameters measured during both dry and rainy seasons,was classified into 6 clusters,and the Piper diagram revealed three hydrochemical facies:Cl-Na type(clusters 1,2 and 3),mixed type(clusters 4 and 5),and HCO3-Ca type(cluster 6).The Gibbs diagram and saturation index suggested thatweathering of rock-forming mineralswere the primary process controlling groundwater chemical composition and validated the credibility and practicality of the clustering results.Two-thirds of 45 groundwater samples were categorized as excellent-or good-quality and were suitable as drinking water.Cluster changes within the same and different clusters from the dry season to the rainy season were detected in approximately 78%of the collected samples.The main factors affecting the groundwater quality were hydrogeochemical characteristics,and dry season groundwater quality was better than rainy season groundwater quality.Based on this work,such results can be used to investigate the seasonal variation of hydrogeochemical characteristics and assess water quality accurately in the others similar area.