In this paper,self-piercing riveting(SPR)and friction self-piercing riveting(F-SPR)processes were employed to join aluminum alloy AA5182-O sheets.Parallel studies were carried out to compare the two processes in terms...In this paper,self-piercing riveting(SPR)and friction self-piercing riveting(F-SPR)processes were employed to join aluminum alloy AA5182-O sheets.Parallel studies were carried out to compare the two processes in terms of joint macrogeometry,tooling force,microhardness,quasi-static mechanical performance,and fatigue behavior.The results indicate that the F-SPR process formed both rivet–sheet interlocking and sheet–sheet solid-state bonding,whereas the SPR process only contained rivet–sheet interlocking.For the same rivet flaring,the F-SPR process required 63%less tooling force than the SPR process because of the softening effect of frictional heat and the lower rivet hardness of F-SPR.The decrease in the switch depth of the F-SPR resulted in more hardening of the aluminum alloy surrounding the rivet.The higher hardness of aluminum and formation of solid-state bonding enhanced the F-SPR joint stiffness under lap-shear loading,which contributed to the higher quasi-static lap-shear strength and longer fatigue life compared to those of the SPR joints.展开更多
Self-piercing riveting(SPR)is a cold forming technique used to fasten together two or more sheets of materials with a rivet without the need to predrill a hole.The application of SPR in the automotive sector has becom...Self-piercing riveting(SPR)is a cold forming technique used to fasten together two or more sheets of materials with a rivet without the need to predrill a hole.The application of SPR in the automotive sector has become increasingly popular mainly due to the growing use of lightweight materials in transportation applications.However,SPR joining of these advanced light materials remains a challenge as these materials often lack a good combination of high strength and ductility to resist the large plastic deformation induced by the SPR process.In this paper,SPR joints of advanced materials and their corresponding failure mechanisms are discussed,aiming to provide the foundation for future improvement of SPR joint quality.This paper is divided into three major sections:1)joint failures focusing on joint defects originated from the SPR process and joint failure modes under different mechanical loading conditions,2)joint corrosion issues,and 3)joint optimisation via process parameters and advanced techniques.展开更多
A new testing methodology was developed to quantitively study galvanic corrosion of AZ31B and thermoset carbon-fiber–reinforced polymer spot-joined by a friction self-piercing riveting process.Pre-defined areas of AZ...A new testing methodology was developed to quantitively study galvanic corrosion of AZ31B and thermoset carbon-fiber–reinforced polymer spot-joined by a friction self-piercing riveting process.Pre-defined areas of AZ31B in the joint were exposed in 0.1 M NaCl solution over time.Massive galvanic corrosion of AZ31B was observed as exposure time increased.The measured volume loss was converted into corrosion current that was at least 48 times greater than the corrosion current of AZ31B without galvanic coupling.Ninety percent of the mechanical joint integrity was retained for corroded F-SPR joints to 200 h and then decreased because of the massive volume loss of AZ31B。展开更多
Friction self-piercing riveting(F-SPR)process based on a pip die has been invented to solve the cracking problems in riveting high-strength and low-ductility light metals,such as magnesium alloys,cast aluminum,and 7 s...Friction self-piercing riveting(F-SPR)process based on a pip die has been invented to solve the cracking problems in riveting high-strength and low-ductility light metals,such as magnesium alloys,cast aluminum,and 7 series aluminum alloys.In this paper,in order to solve quality issues caused by the misalignment between rivet and pip-die in F-SPR,a flat-die based F-SPR process was proposed and employed to join 1.27 mm-thick AA6061-T6 to 3 mm-thick AZ31B.The results indicate that a 1.0 mm die distance is effective to avoid rivet upset and insufficient flaring.As the feed rate increases,the heat input in the whole process decreases,resulting in a larger riveting force,which in turn increases both the bottom thickness and interlock amount.Besides,solid-state bonding,including Al-Mg intermetallic compounds(IMCs),Al-Mg mechanical mixture,and Al-Fe atom interdiffusion was observed at the joint interfaces.The upper Al layer was softened,but the lower Mg layer was hardened,and both sheets exhibited a narrowed affected region with the increase of feed rate,while the rivet hardness shows no obvious change.Three fracture modes appeared accompanying the variations in lap-shear strength and energy absorption as the feed rate increased from 2 mm/s to 8 mm/s.Finally,the F-SPR process using a flat die was compared to those using a pip die and a flat bottom die to show the advantage of flat die on coping with the misalignment problem.展开更多
The self-piercing riveting (SPR) process was used to join 2.0-mm-thick aluminum alloy 6061-T6 and 1.2-mm-thick mild steel SPFC340 sheets. SPR joints produced with a conventional flat-bottom die and conicalsection dies...The self-piercing riveting (SPR) process was used to join 2.0-mm-thick aluminum alloy 6061-T6 and 1.2-mm-thick mild steel SPFC340 sheets. SPR joints produced with a conventional flat-bottom die and conicalsection dies were investigated both experimentally and numerically. Lap shear tests were conducted under quasistatic conditions to evaluate the load-carrying capability of these SPR joints. The effect of variation in die geometry (such as variation in the die groove shape, cone height, and die radius) on the main mechanical response of the joints, namely the peak load and energy absorption, was discussed. The results showed that SPR joints produced with the conical-section dies exhibited a failure mode similar to those produced with a conventional die. All the joints failed by tearing of the top steel sheet. Cracks that occurred in the bottom aluminum alloy 6061-T6 sheet around the rivet leg were a result of tangential tensile stress. The cone height of a conical-section die is the most important parameter affecting the surface quality of Al/steel SPR joints. Conical-section dies with a moderate convex can ensure a good surface quality during the SPR process. In addition, SPR joints with single conical-section die allow higher tensile strength and energy absorption compared to those with double conical-section die.展开更多
Self-piercing riveting(SPR)has been widely used in automobile industry,and the strength prediction of SPR joints always attracts the attention of researchers.In this work,a prediction method of the cross-tension stren...Self-piercing riveting(SPR)has been widely used in automobile industry,and the strength prediction of SPR joints always attracts the attention of researchers.In this work,a prediction method of the cross-tension strength of SPR joints was proposed on the basis of finite element(FE)simulation and extreme gradient boosting decision tree(XGBoost)algorithm.An FE model of SPR process was established to simulate the plastic deformations of rivet and substrate materials and verified in terms of cross-sectional dimensions of SPR joints.The residual mechanical field from SPR process simulation was imported into a 2D FE model for the cross-tension testing simulation of SPR joints,and cross-tension strengths from FE simulation show a good consistence with the experiment result.Based on the verified FE model,the mechanical properties and thickness of substrate materials were varied and then used for FE simulation to obtain cross-tension strengths of a number of SPR joints,which were used to train the regression model based on the XGBoost algorithm in order to achieve prediction for cross-tension strength of SPR joints.Results show that the cross-tension strengths of SPR steel/aluminum joints could be successfully predicted by the XGBoost regression model with a respective error less than 7.6%compared to experimental values.展开更多
The application of magnesium alloys to automobiles is increasing due to their superior specific strength and specific stiffness.In this study,an upper sheet of AZ31 magnesium alloy and a lower sheet of cold-rolled ste...The application of magnesium alloys to automobiles is increasing due to their superior specific strength and specific stiffness.In this study,an upper sheet of AZ31 magnesium alloy and a lower sheet of cold-rolled steel were joined by self-piercing riveting(SPR),a method commonly used to join automotive panels.A cross-shaped specimen was fabricated with a punching force of 35 kN,which exhibited the best joint strength for the SPR joint specimen geometry.Monotonic and fatigue strengths were evaluated using cross-shaped specimens at loading angles of 0°,45°,and 90°.The load amplitude corresponding to the fatigue endurance limit was assumed to be at 106 cycles,and the fatigue ratios(=fatigue endurance limit/static strength)at the loading angles of 0°,45°,and 90°are 22%,13%,and 9%,respectively.For all three loading angle specimens,fatigue cracks initiated at the triple point where the rivet shank,the upper sheet and the lower sheet are in contact with each other,with the cracks propagating through the thickness of the upper sheet and ultimately leading to fracture.The fatigue lifetimes were evaluated through the von-Mises stress,maximum principal stress,and equivalent stress intensity factor.It was found that the fatigue lifetimes could be evaluated most appropriately through the maximum principal stress.展开更多
Carbon fiber reinforced polymer(CFRP) and AZ31B Mg alloy were joined by the friction self-piercing riveting(F-SPR) with different steel rivet shank sizes. With the increase of rivet shank size, lap shear fracture load...Carbon fiber reinforced polymer(CFRP) and AZ31B Mg alloy were joined by the friction self-piercing riveting(F-SPR) with different steel rivet shank sizes. With the increase of rivet shank size, lap shear fracture load and mechanical interlock distance increased. Ultrafine grains were formed at the joint in AZ31B as a result of dynamic recrystallization, which contributed to the higher hardness. Fatigue life of the CFRP-AZ31B joint was studied at various peak loads of 0.5, 1, 2, and 3 kN and compared with the resistance spot welded AZ31B-AZ31B from the open literature. The fatigue performance was better at higher peak load(>2 kN) and comparable to that of resistance spot welding of AZ31B to AZ31B at lower peak loads(<1 kN). From fractography, the crack initiation for lower peak load(<1 kN) case was observed at the fretting positions on the top and bottom surfaces of AZ31B sheet. When peak load was increased, fretting between the rivet and the top of AZ31B became more dominant to initiate a crack during fatigue testing.展开更多
This paper presents a new machine learning-based calibration framework for strength simulation models of self-piercing riveted(SPR)joints.Strength simulations were conducted through the integrated modeling of SPR join...This paper presents a new machine learning-based calibration framework for strength simulation models of self-piercing riveted(SPR)joints.Strength simulations were conducted through the integrated modeling of SPR joints from process to performance,while physical quasi-static tensile tests were performed on combinations of DP600 high-strength steel and 5754 aluminum alloy sheets under lap-shear loading conditions.A sensitivity study of the critical simulation parameters(e.g.,friction coefficient and scaling factor)was conducted using the controlled variables method and Sobol sensitivity analysis for feature selection.Subsequently,machine-learning-based surrogate models were used to train and accurately represent the mapping between the detailed joint profile and its load-displacement curve.Calibration of the simulation model is defined as a dual-objective optimization task to minimize errors in key load displacement features between simulations and experiments.A multi-objective genetic algorithm(MOGA)was chosen for optimization.The three combinations of SPR joints illustrated the effectiveness of the proposed framework,and good agreement was achieved between the calibrated models and experiments.展开更多
In lightweight automotive vehicles,the application of self-piercing rivet(SPR)joints is becoming increasingly widespread.Considering the importance of automotive service performance,the fatigue performance of SPR join...In lightweight automotive vehicles,the application of self-piercing rivet(SPR)joints is becoming increasingly widespread.Considering the importance of automotive service performance,the fatigue performance of SPR joints has received considerable attention.Therefore,this study proposes a data-driven approach to predict the fatigue life and failure modes of SPR joints.The dataset comprises three specimen types:cross-tensile,cross-peel,and tensile-shear.To ensure data consistency,a finite element analysis was employed to convert the external loads of the different specimens.Feature selection was implemented using various machine-learning algorithms to determine the model input.The Gaussian process regression algorithm was used to predict fatigue life,and its performance was compared with different kernel functions commonly used in the field.The results revealed that the Matern kernel exhibited an exceptional predictive capability for fatigue life.Among the data points,95.9%fell within the 3-fold error band,and the remaining 4.1%exceeded the 3-fold error band owing to inherent dispersion in the fatigue data.To predict the failure location,various tree and artificial neural network(ANN)models were compared.The findings indicated that the ANN models slightly outperformed the tree models.The ANN model accurately predicts the failure of joints with varying dimensions and materials.However,minor deviations were observed for the joints with the same sheet.Overall,this data-driven approach provided a reliable predictive model for estimating the fatigue life and failure location of SPR joints.展开更多
To fulfill the demands for higher quality,efficiency and flexibility in aviation industry,a multi-functional end effector is designed to automate the drilling and riveting processes in assembling carbon fiber reinforc...To fulfill the demands for higher quality,efficiency and flexibility in aviation industry,a multi-functional end effector is designed to automate the drilling and riveting processes in assembling carbon fiber reinforced polymer(CFRP)and aluminum components for a robotic aircraft assembly system.To meet the specific functional requirements for blind rivet installation on CFRP and aluminum materials,additional modules are incorporated on the end effector aside of the basic processing modules for drilling.And all of these processing modules allow for a onestep-drilling-countersinking process,hole inspection,automatic rivet feed,rivet geometry check,sealant application,rivet insertion and installation.Besides,to guarantee the better quality of the hole drilled and joints riveted,several online detection and adjustment measures are applied to this end effector,including the reference detection and perpendicular calibration,which could effectively ensure the positioning precision and perpendicular accuracy as demanded.Finally,the test result shows that this end effector is capable of producing each hole to a positioning precision within ±0.5 mm,aperpendicular accuracy within 0.3°,a diameter tolerance of H8,and a countersink depth tolerance of±0.01 mm.Moreover,it could drill and rivet up to three joints per minute,with acceptable shearing and tensile strength.展开更多
Interference fit riveting is an effective way to improve the fatigue life of aircraft.The accurate control of riveting interference of aircraft automatic drilling and riveting equipment is achieved by process paramete...Interference fit riveting is an effective way to improve the fatigue life of aircraft.The accurate control of riveting interference of aircraft automatic drilling and riveting equipment is achieved by process parameters including upsetting force and upset head height.It is valuable for aircraft manufacturing engineering.An approach to interference riveting process control based on the analysis of interference riveting stress field is proposed.According to assembly structure,the upsetting force is calculated by the material property and interference fit level,and the upset head height is deduced by the upsetting force.The experimental result shows that the interference fit level can be controlled accurately by the upsetting force and upset head height,and then,the quality of aircraft automatic riveting can be improved.The proposed approach is verified by the good match between the predicted result and the experimental result.展开更多
A new friction-based riveting technique, Rotating Hammer Riveting(RHR), is demonstrated to fully form AZ31 Mg rivet heads in a mere 0.23 s. Heat and pressure generated through severe plastic deformation during the pro...A new friction-based riveting technique, Rotating Hammer Riveting(RHR), is demonstrated to fully form AZ31 Mg rivet heads in a mere 0.23 s. Heat and pressure generated through severe plastic deformation during the process was sufficient to form the Mg rivet head without the need for a pre-heating operation. Due to preliminary twinning and followed by dynamic recrystallization, AZ31 Mg grains in the rivet head were refined during RHR, which enhance the formability of Mg rivets by triggering grain boundary sliding and reducing plastic anisotropy of Mg. In addition, RHR joints showed a metallurgical bond between the rivet head and top AZ31 Mg sheet, which eliminates a significant pathway for corrosion.展开更多
The low-stiffness of aircraft skins may results in the differences between aircraft actual parts and their theoretical models,which will consequently affect the accuracy of automatic drilling and riveting in aircraft ...The low-stiffness of aircraft skins may results in the differences between aircraft actual parts and their theoretical models,which will consequently affect the accuracy of automatic drilling and riveting in aircraft assembly.In this paper,a novel approach of hole position correction using laser line scanner(LLS)is proposed to assign a single row of holes on the parts’surfaces.First,we adopt a space circle fitting method and the random sample consensus(RANSAC)to obtain the precise coordinates of center of the datum holes’coordinates.Second,LLS is calibrated by the laser tracker,and the relations between the LLS coordinate system and the tool coordinate system(TCS)can be calculated.Third,the kinematics model of the automatic riveting machine is established based on a two-point referencing strategy proposed in this paper.Thus,the positions of the holes to be drilled can be adjusted.Finally,the experimental results show that in TCS the measurement error of LLS is less than 0.1 mm,and the correction error of the hole position is less than 0.5 mm,which demonstrates the reliability of our method.展开更多
The rivet joints have been widely applied in aerospace and vehicle fields.During the joining process of the carbon fiber reinforced plastic(CFRP)laminates,the pre-tightening force of pulling-rivet was the key factor t...The rivet joints have been widely applied in aerospace and vehicle fields.During the joining process of the carbon fiber reinforced plastic(CFRP)laminates,the pre-tightening force of pulling-rivet was the key factor to ensure the connection performance.To predict the impact of clamping loads on stress and failure of laminates,the value of stress and damage evolution of the wall of a hole under the pre-tightening force were simulated by the finite element method.The results of the simulation showed that excessive clamping force led to the damage and failure of CFRP in the hole edge.Connection performance together with progressive failure process and failure modes of CFRP laminates with various pre-tightening forces were investigated.A kind of metal embedded parts embedded in the laminates was designed to reduce the damage by the simulation study.Simulation results showed that embedment reduced the failure and damage efficiently.The embedment reduced about 64%of the maximum stress.展开更多
Out-of-plane mechanical properties of the riveted joints restrict the performance of the wing box assembly of airplane.It is necessary to investigate the pull-through performance of the composite/metal riveted joints ...Out-of-plane mechanical properties of the riveted joints restrict the performance of the wing box assembly of airplane.It is necessary to investigate the pull-through performance of the composite/metal riveted joints in order to guide the riveting design and ensure the safety of the wing box assembly.The progressive failure mechanism of composite/aluminum riveted joint subjected to pull-through loading was investigated by experiments and finite element method.A progressive damage model based on the Hashin-type criteria and zero-thickness cohesive zone method was developed by VUMAT subroutine,which was validated by both open-hole tensile test and three-point bending test.Predicted load-displacement response,failure modes and damage propagation were analysed and compared with the results of the pull-through tests.There are 4 obvious characteristic stages on the load-displacement curve of the pull-through test and that of the finite element model:first load take-up stage,damage stage,second load take-up stage and failure stage.Relative error of stiffness,first load peak and second load peak between finite element method and experiments were 8.1%,-3.3%and 10.6%,respectively.It was found that the specimen was mainly broken by rivet-penetration fracture and delamination of plies of the composite laminate.And the material within the scope of the rivet head is more dangerous with more serious tensile damages than other regions,especially for 90°plies.This study proposes a numerical method for damage prediction and reveals the progressive failure mechanism of the hybrid material riveted joints subjected to the pull-through loading.展开更多
基金The authors would like to acknowledge the financial support of the National Natural Science Foundation of China(52025058 and U1764251)the National Key Research and Development Program of China(2016YFB0101606-8).
文摘In this paper,self-piercing riveting(SPR)and friction self-piercing riveting(F-SPR)processes were employed to join aluminum alloy AA5182-O sheets.Parallel studies were carried out to compare the two processes in terms of joint macrogeometry,tooling force,microhardness,quasi-static mechanical performance,and fatigue behavior.The results indicate that the F-SPR process formed both rivet–sheet interlocking and sheet–sheet solid-state bonding,whereas the SPR process only contained rivet–sheet interlocking.For the same rivet flaring,the F-SPR process required 63%less tooling force than the SPR process because of the softening effect of frictional heat and the lower rivet hardness of F-SPR.The decrease in the switch depth of the F-SPR resulted in more hardening of the aluminum alloy surrounding the rivet.The higher hardness of aluminum and formation of solid-state bonding enhanced the F-SPR joint stiffness under lap-shear loading,which contributed to the higher quasi-static lap-shear strength and longer fatigue life compared to those of the SPR joints.
文摘Self-piercing riveting(SPR)is a cold forming technique used to fasten together two or more sheets of materials with a rivet without the need to predrill a hole.The application of SPR in the automotive sector has become increasingly popular mainly due to the growing use of lightweight materials in transportation applications.However,SPR joining of these advanced light materials remains a challenge as these materials often lack a good combination of high strength and ductility to resist the large plastic deformation induced by the SPR process.In this paper,SPR joints of advanced materials and their corresponding failure mechanisms are discussed,aiming to provide the foundation for future improvement of SPR joint quality.This paper is divided into three major sections:1)joint failures focusing on joint defects originated from the SPR process and joint failure modes under different mechanical loading conditions,2)joint corrosion issues,and 3)joint optimisation via process parameters and advanced techniques.
基金financially sponsored by the US Department Energy Vehicle Technologies Office, as part of the Joining Core Programmanaged by UT-Battelle LLC for the US Department of Energy under Contract DE-AC05-00OR22725。
文摘A new testing methodology was developed to quantitively study galvanic corrosion of AZ31B and thermoset carbon-fiber–reinforced polymer spot-joined by a friction self-piercing riveting process.Pre-defined areas of AZ31B in the joint were exposed in 0.1 M NaCl solution over time.Massive galvanic corrosion of AZ31B was observed as exposure time increased.The measured volume loss was converted into corrosion current that was at least 48 times greater than the corrosion current of AZ31B without galvanic coupling.Ninety percent of the mechanical joint integrity was retained for corroded F-SPR joints to 200 h and then decreased because of the massive volume loss of AZ31B。
基金financial support of the National Natural Science Foundation of China(Grant Nos.52025058 and U1764251)。
文摘Friction self-piercing riveting(F-SPR)process based on a pip die has been invented to solve the cracking problems in riveting high-strength and low-ductility light metals,such as magnesium alloys,cast aluminum,and 7 series aluminum alloys.In this paper,in order to solve quality issues caused by the misalignment between rivet and pip-die in F-SPR,a flat-die based F-SPR process was proposed and employed to join 1.27 mm-thick AA6061-T6 to 3 mm-thick AZ31B.The results indicate that a 1.0 mm die distance is effective to avoid rivet upset and insufficient flaring.As the feed rate increases,the heat input in the whole process decreases,resulting in a larger riveting force,which in turn increases both the bottom thickness and interlock amount.Besides,solid-state bonding,including Al-Mg intermetallic compounds(IMCs),Al-Mg mechanical mixture,and Al-Fe atom interdiffusion was observed at the joint interfaces.The upper Al layer was softened,but the lower Mg layer was hardened,and both sheets exhibited a narrowed affected region with the increase of feed rate,while the rivet hardness shows no obvious change.Three fracture modes appeared accompanying the variations in lap-shear strength and energy absorption as the feed rate increased from 2 mm/s to 8 mm/s.Finally,the F-SPR process using a flat die was compared to those using a pip die and a flat bottom die to show the advantage of flat die on coping with the misalignment problem.
基金the National Natural Science Foundation of China (Grant Nos. 51774097, 51705081)Key Project of the Youth Natural Science Fund of Fujian Provincial University (Grant No. JZ160417) for their kindly financial supports of this workJiang-Hua Deng is grateful for the financial support from Program for New Century Excellent Talents in Fujian Province University (NCETFJ).
文摘The self-piercing riveting (SPR) process was used to join 2.0-mm-thick aluminum alloy 6061-T6 and 1.2-mm-thick mild steel SPFC340 sheets. SPR joints produced with a conventional flat-bottom die and conicalsection dies were investigated both experimentally and numerically. Lap shear tests were conducted under quasistatic conditions to evaluate the load-carrying capability of these SPR joints. The effect of variation in die geometry (such as variation in the die groove shape, cone height, and die radius) on the main mechanical response of the joints, namely the peak load and energy absorption, was discussed. The results showed that SPR joints produced with the conical-section dies exhibited a failure mode similar to those produced with a conventional die. All the joints failed by tearing of the top steel sheet. Cracks that occurred in the bottom aluminum alloy 6061-T6 sheet around the rivet leg were a result of tangential tensile stress. The cone height of a conical-section die is the most important parameter affecting the surface quality of Al/steel SPR joints. Conical-section dies with a moderate convex can ensure a good surface quality during the SPR process. In addition, SPR joints with single conical-section die allow higher tensile strength and energy absorption compared to those with double conical-section die.
基金Supported by National Natural Science Foundation of China(Grant No.51805375).
文摘Self-piercing riveting(SPR)has been widely used in automobile industry,and the strength prediction of SPR joints always attracts the attention of researchers.In this work,a prediction method of the cross-tension strength of SPR joints was proposed on the basis of finite element(FE)simulation and extreme gradient boosting decision tree(XGBoost)algorithm.An FE model of SPR process was established to simulate the plastic deformations of rivet and substrate materials and verified in terms of cross-sectional dimensions of SPR joints.The residual mechanical field from SPR process simulation was imported into a 2D FE model for the cross-tension testing simulation of SPR joints,and cross-tension strengths from FE simulation show a good consistence with the experiment result.Based on the verified FE model,the mechanical properties and thickness of substrate materials were varied and then used for FE simulation to obtain cross-tension strengths of a number of SPR joints,which were used to train the regression model based on the XGBoost algorithm in order to achieve prediction for cross-tension strength of SPR joints.Results show that the cross-tension strengths of SPR steel/aluminum joints could be successfully predicted by the XGBoost regression model with a respective error less than 7.6%compared to experimental values.
基金This study was supported by the Research Program funded by the SeoulTech(Seoul National University of Science&Technology).
文摘The application of magnesium alloys to automobiles is increasing due to their superior specific strength and specific stiffness.In this study,an upper sheet of AZ31 magnesium alloy and a lower sheet of cold-rolled steel were joined by self-piercing riveting(SPR),a method commonly used to join automotive panels.A cross-shaped specimen was fabricated with a punching force of 35 kN,which exhibited the best joint strength for the SPR joint specimen geometry.Monotonic and fatigue strengths were evaluated using cross-shaped specimens at loading angles of 0°,45°,and 90°.The load amplitude corresponding to the fatigue endurance limit was assumed to be at 106 cycles,and the fatigue ratios(=fatigue endurance limit/static strength)at the loading angles of 0°,45°,and 90°are 22%,13%,and 9%,respectively.For all three loading angle specimens,fatigue cracks initiated at the triple point where the rivet shank,the upper sheet and the lower sheet are in contact with each other,with the cracks propagating through the thickness of the upper sheet and ultimately leading to fracture.The fatigue lifetimes were evaluated through the von-Mises stress,maximum principal stress,and equivalent stress intensity factor.It was found that the fatigue lifetimes could be evaluated most appropriately through the maximum principal stress.
基金financially sponsored by the US Department Energy Vehicle Technologies Office, as part of the Joining Core Program。
文摘Carbon fiber reinforced polymer(CFRP) and AZ31B Mg alloy were joined by the friction self-piercing riveting(F-SPR) with different steel rivet shank sizes. With the increase of rivet shank size, lap shear fracture load and mechanical interlock distance increased. Ultrafine grains were formed at the joint in AZ31B as a result of dynamic recrystallization, which contributed to the higher hardness. Fatigue life of the CFRP-AZ31B joint was studied at various peak loads of 0.5, 1, 2, and 3 kN and compared with the resistance spot welded AZ31B-AZ31B from the open literature. The fatigue performance was better at higher peak load(>2 kN) and comparable to that of resistance spot welding of AZ31B to AZ31B at lower peak loads(<1 kN). From fractography, the crack initiation for lower peak load(<1 kN) case was observed at the fretting positions on the top and bottom surfaces of AZ31B sheet. When peak load was increased, fretting between the rivet and the top of AZ31B became more dominant to initiate a crack during fatigue testing.
基金supported by the National Natural Science Foundation of China(Grant No.52205377)the National Key Research and Development Program(Grant No.2022YFB4601804)the Key Basic Research Project of Suzhou(Grant Nos.SJC2022031,SJC2022029).
文摘This paper presents a new machine learning-based calibration framework for strength simulation models of self-piercing riveted(SPR)joints.Strength simulations were conducted through the integrated modeling of SPR joints from process to performance,while physical quasi-static tensile tests were performed on combinations of DP600 high-strength steel and 5754 aluminum alloy sheets under lap-shear loading conditions.A sensitivity study of the critical simulation parameters(e.g.,friction coefficient and scaling factor)was conducted using the controlled variables method and Sobol sensitivity analysis for feature selection.Subsequently,machine-learning-based surrogate models were used to train and accurately represent the mapping between the detailed joint profile and its load-displacement curve.Calibration of the simulation model is defined as a dual-objective optimization task to minimize errors in key load displacement features between simulations and experiments.A multi-objective genetic algorithm(MOGA)was chosen for optimization.The three combinations of SPR joints illustrated the effectiveness of the proposed framework,and good agreement was achieved between the calibrated models and experiments.
基金supported by the National Natural Science Foundation of China(Grant No.52205377)the Key Basic Research Project of Suzhou(Grant Nos.SJC2022029,SJC2022031)the National Key Research and Development Program(Grant No.2022YFB4601804).
文摘In lightweight automotive vehicles,the application of self-piercing rivet(SPR)joints is becoming increasingly widespread.Considering the importance of automotive service performance,the fatigue performance of SPR joints has received considerable attention.Therefore,this study proposes a data-driven approach to predict the fatigue life and failure modes of SPR joints.The dataset comprises three specimen types:cross-tensile,cross-peel,and tensile-shear.To ensure data consistency,a finite element analysis was employed to convert the external loads of the different specimens.Feature selection was implemented using various machine-learning algorithms to determine the model input.The Gaussian process regression algorithm was used to predict fatigue life,and its performance was compared with different kernel functions commonly used in the field.The results revealed that the Matern kernel exhibited an exceptional predictive capability for fatigue life.Among the data points,95.9%fell within the 3-fold error band,and the remaining 4.1%exceeded the 3-fold error band owing to inherent dispersion in the fatigue data.To predict the failure location,various tree and artificial neural network(ANN)models were compared.The findings indicated that the ANN models slightly outperformed the tree models.The ANN model accurately predicts the failure of joints with varying dimensions and materials.However,minor deviations were observed for the joints with the same sheet.Overall,this data-driven approach provided a reliable predictive model for estimating the fatigue life and failure location of SPR joints.
基金supported by the National Natural Science Foundations of China(Nos.5157051626,51475225)
文摘To fulfill the demands for higher quality,efficiency and flexibility in aviation industry,a multi-functional end effector is designed to automate the drilling and riveting processes in assembling carbon fiber reinforced polymer(CFRP)and aluminum components for a robotic aircraft assembly system.To meet the specific functional requirements for blind rivet installation on CFRP and aluminum materials,additional modules are incorporated on the end effector aside of the basic processing modules for drilling.And all of these processing modules allow for a onestep-drilling-countersinking process,hole inspection,automatic rivet feed,rivet geometry check,sealant application,rivet insertion and installation.Besides,to guarantee the better quality of the hole drilled and joints riveted,several online detection and adjustment measures are applied to this end effector,including the reference detection and perpendicular calibration,which could effectively ensure the positioning precision and perpendicular accuracy as demanded.Finally,the test result shows that this end effector is capable of producing each hole to a positioning precision within ±0.5 mm,aperpendicular accuracy within 0.3°,a diameter tolerance of H8,and a countersink depth tolerance of±0.01 mm.Moreover,it could drill and rivet up to three joints per minute,with acceptable shearing and tensile strength.
基金Supported by the National Natural Science Foundation of China(51105200)
文摘Interference fit riveting is an effective way to improve the fatigue life of aircraft.The accurate control of riveting interference of aircraft automatic drilling and riveting equipment is achieved by process parameters including upsetting force and upset head height.It is valuable for aircraft manufacturing engineering.An approach to interference riveting process control based on the analysis of interference riveting stress field is proposed.According to assembly structure,the upsetting force is calculated by the material property and interference fit level,and the upset head height is deduced by the upsetting force.The experimental result shows that the interference fit level can be controlled accurately by the upsetting force and upset head height,and then,the quality of aircraft automatic riveting can be improved.The proposed approach is verified by the good match between the predicted result and the experimental result.
基金the support of the U.S.Department of Energy Vehicle Technologies Office(DOE/VTO)Joining Core Program。
文摘A new friction-based riveting technique, Rotating Hammer Riveting(RHR), is demonstrated to fully form AZ31 Mg rivet heads in a mere 0.23 s. Heat and pressure generated through severe plastic deformation during the process was sufficient to form the Mg rivet head without the need for a pre-heating operation. Due to preliminary twinning and followed by dynamic recrystallization, AZ31 Mg grains in the rivet head were refined during RHR, which enhance the formability of Mg rivets by triggering grain boundary sliding and reducing plastic anisotropy of Mg. In addition, RHR joints showed a metallurgical bond between the rivet head and top AZ31 Mg sheet, which eliminates a significant pathway for corrosion.
基金supported by the National Natural Science Foundation of China (No.51875287)the National Defense Basic Scientific Research Program of China (No.JCKY2018605C010)the National Key Research and Development Program of China (No.2018YFB1306800)
文摘The low-stiffness of aircraft skins may results in the differences between aircraft actual parts and their theoretical models,which will consequently affect the accuracy of automatic drilling and riveting in aircraft assembly.In this paper,a novel approach of hole position correction using laser line scanner(LLS)is proposed to assign a single row of holes on the parts’surfaces.First,we adopt a space circle fitting method and the random sample consensus(RANSAC)to obtain the precise coordinates of center of the datum holes’coordinates.Second,LLS is calibrated by the laser tracker,and the relations between the LLS coordinate system and the tool coordinate system(TCS)can be calculated.Third,the kinematics model of the automatic riveting machine is established based on a two-point referencing strategy proposed in this paper.Thus,the positions of the holes to be drilled can be adjusted.Finally,the experimental results show that in TCS the measurement error of LLS is less than 0.1 mm,and the correction error of the hole position is less than 0.5 mm,which demonstrates the reliability of our method.
文摘The rivet joints have been widely applied in aerospace and vehicle fields.During the joining process of the carbon fiber reinforced plastic(CFRP)laminates,the pre-tightening force of pulling-rivet was the key factor to ensure the connection performance.To predict the impact of clamping loads on stress and failure of laminates,the value of stress and damage evolution of the wall of a hole under the pre-tightening force were simulated by the finite element method.The results of the simulation showed that excessive clamping force led to the damage and failure of CFRP in the hole edge.Connection performance together with progressive failure process and failure modes of CFRP laminates with various pre-tightening forces were investigated.A kind of metal embedded parts embedded in the laminates was designed to reduce the damage by the simulation study.Simulation results showed that embedment reduced the failure and damage efficiently.The embedment reduced about 64%of the maximum stress.
基金National Natural Science Foundation of China(Grant Nos.U21A20165,52205515,52105431)Applied Basic Research Program of Liaoning Province of China(Grant No.2022JH2/101300221)+2 种基金Dalian Science and Technology Innovation Fund of China(Grant No.2022JJ12GX033)National Key Research and Development Project of China(Grant No.2020YFB2009805)China Postdoctoral Science Foundation(Grant Nos.2020M680937,2020M670734)。
文摘Out-of-plane mechanical properties of the riveted joints restrict the performance of the wing box assembly of airplane.It is necessary to investigate the pull-through performance of the composite/metal riveted joints in order to guide the riveting design and ensure the safety of the wing box assembly.The progressive failure mechanism of composite/aluminum riveted joint subjected to pull-through loading was investigated by experiments and finite element method.A progressive damage model based on the Hashin-type criteria and zero-thickness cohesive zone method was developed by VUMAT subroutine,which was validated by both open-hole tensile test and three-point bending test.Predicted load-displacement response,failure modes and damage propagation were analysed and compared with the results of the pull-through tests.There are 4 obvious characteristic stages on the load-displacement curve of the pull-through test and that of the finite element model:first load take-up stage,damage stage,second load take-up stage and failure stage.Relative error of stiffness,first load peak and second load peak between finite element method and experiments were 8.1%,-3.3%and 10.6%,respectively.It was found that the specimen was mainly broken by rivet-penetration fracture and delamination of plies of the composite laminate.And the material within the scope of the rivet head is more dangerous with more serious tensile damages than other regions,especially for 90°plies.This study proposes a numerical method for damage prediction and reveals the progressive failure mechanism of the hybrid material riveted joints subjected to the pull-through loading.