In this study, the relationship between the visual information gathered from the flame images and the excess air factor 2 in coal burners is investigated. In conventional coal burners the excess air factor 2. can be o...In this study, the relationship between the visual information gathered from the flame images and the excess air factor 2 in coal burners is investigated. In conventional coal burners the excess air factor 2. can be obtained using very expensive air measurement instruments. The proposed method to predict ) for a specific time in the coal burners consists of three distinct and consecutive stages; a) online flame images acquisition using a CCD camera, b) extrac- tion meaningful information (flame intensity and bright- ness)from flame images, and c) learning these information (image features) with ANNs and estimate 2. Six different feature extraction methods have been used: CDF of Blue Channel, Co-Occurrence Matrix, L-Frobenius Norms, Radiant Energy Signal (RES), PCA and Wavelet. When compared prediction results, it has seen that the use of co- occurrence matrix with ANNs has the best performance (RMSE = 0.07) in terms of accuracy. The results show that the proposed predicting system using flame images can be preferred instead of using expensive devices to measure excess air factor in during combustion.展开更多
Numerical simulation is applied to gas-particle flows of the primary and the secondary air ducts and burner region, and of two kinds of swirl burners. The modeling results of Radial Bias Combustion (RBC) burner well a...Numerical simulation is applied to gas-particle flows of the primary and the secondary air ducts and burner region, and of two kinds of swirl burners. The modeling results of Radial Bias Combustion (RBC) burner well agreed with the data from the three-dimensional Phase-Doppler anemometry (PDA) experiment by Li, et al. The modeling test conducted in a 1025 t/h boiler was to study the quality of aerodynamics for a Central Fuel Rich (CFR) burner, and the Internal Recirculation Zone (IRZ) was measured. In addition, gas-particle flows with a CFR burner were investigated by numerical simulation, whose results accorded with the test data fundamentally. By analyzing the distribution of gas velocity and trajectories of particles respectively, it is found that the primary air’s rigidity of CFR burner is stronger than that of RBC burner, and the primary air mixes with the secondary air later. Furthermore, high concentration region of pulverized coal exists in the burner’s central zone whose atmosphere is reduced, and trajectories of particles in IRZ of CFR burner are longer than that of RBC burner. They are favorable to coal’s ignition and the reduction of NOx emission.展开更多
Computational Fluid Dynamics (CFD) simulations of airflow through a retention head residential oil burner were carried out to study the velocity field near and around the fuel spray. The simulations revealed (as expec...Computational Fluid Dynamics (CFD) simulations of airflow through a retention head residential oil burner were carried out to study the velocity field near and around the fuel spray. The simulations revealed (as expected, based on some previous experimental measurements) the velocity flow field to be far from axisymmetric. Moreover, the center of the swirling airflow was found to be at some radial distance away from the physical centerline of the flame tube. Since it was suspected that the two electrodes just upstream of the retention ring of the burner might be responsible for this flow distortion, additional CFD simulations were then carried out for the cases of no electrodes and 4-electrodes. The results clearly show that all flow distortions (velocity deviations from axisymmetric value) vanish when no electrodes are present and that the flow distortions are reduced by a factor of 2 when two additional dummy electrodes (for a total of 4 electrodes) are included in the burner design. Furthermore, for the 4-electrode case, the eccentricity of the swirling airflow is reduced by almost a factor of 3 as compared to the base design case of 2-electrodes.展开更多
The present study was conducted to present the comparative modeling, predictive and generalization abilities of response surface methodology (RSM) and artificial neural network (ANN) for the thermal structure of stabi...The present study was conducted to present the comparative modeling, predictive and generalization abilities of response surface methodology (RSM) and artificial neural network (ANN) for the thermal structure of stabilized confined jet diffusion flames in the presence of different geometries of bluff-body burners. Two stabilizer disc burners tapered at 30° and 60° and another frustum cone of 60°/30° inclination angle were employed all having the same diameter of 80 (mm) acting as flame holders. The measured radial mean temperature profiles of the developed stabilized flames at different normalized axial distances (x/dj) were considered as the model example of the physical process. The RSM and ANN methods analyze the effect of the two operating parameters namely (r), the radial distance from the center line of the flame, and (x/dj) on the measured temperature of the flames, to find the predicted maximum temperature and the corresponding process variables. A three-layered Feed Forward Neural Network in conjugation with the hyperbolic tangent sigmoid (tansig) as transfer function and the optimized topology of 2:10:1 (input neurons: hidden neurons: output neurons) was developed. Also the ANN method has been employed to illustrate such effects in the three and two dimensions and shows the location of the predicted maximum temperature. The results indicated the superiority of ANN in the prediction capability as the ranges of R2 and F Ratio are 0.868 - 0.947 and 231.7 - 864.1 for RSM method compared to 0.964 - 0.987 and 2878.8 7580.7 for ANN method beside lower values for error analysis terms.展开更多
According to the features of melting process of regenerative aluminum melting furnaces, a three-dimensional mathematical model with user-developed melting model, burner reversing and burning capacity model was establi...According to the features of melting process of regenerative aluminum melting furnaces, a three-dimensional mathematical model with user-developed melting model, burner reversing and burning capacity model was established. The numerical simulation of melting process of a regenerative aluminum melting furnace was presented using hybrid programming method of FLUENT UDF and FLUENT scheme based on the heat balance test. Burner effects on melting process of aluminum melting furnaces were investigated by taking optimization regulations into account. The change rules of melting time on influence factors are achieved. Melting time decreases with swirl number, vertical angle of burner, air preheated temperature or natural gas flow; melting time firstly decreases with horizontal angle between burners or air-fuel ratio, then increases; melting time increases with the height of burner.展开更多
The study focused on the effects of the interaction between axial and radial secondary air and the reductive intensity in reduction region on combustion characteristics and NO_(x) emission in a 30 kW preheating combus...The study focused on the effects of the interaction between axial and radial secondary air and the reductive intensity in reduction region on combustion characteristics and NO_(x) emission in a 30 kW preheating combustion system.The results revealed that the interaction and reductive intensity influenced the combustion in the down-fired combustor(DFC) and NO_(x) emission greatly.For the temperature distribution,the interaction caused the position of the main combustion region to shift down as R_(2-12)(ratio of axial secondary air flow to radial secondary air flow) decreased or λ_(2)(total secondary air ratio) increased,and there was the interplay between both of their effects.As R_(3-12)(ratio of first-staged tertiary air flow to second-staged tertiary air flow)increased,the decrease in the reductive intensity also caused the above phenomenon,and the peak temperature increased in this region.For the NO_(x) emission,the interaction affected the NO_(x) reduction adversely when λ_(2) or R_(2-12) was higher,and the range of this effect was larger,so that the NO_x emission increased obviously as they increased.The decrease in the reductive intensity caused the NO_(x) emission increased under the homogeneous reduction mechanism,while was unchanged at a high level under the heterogeneous reduction mechanism.For the combustion efficiency,the interaction improved the combustion efficiency as λ_(2) increased when R_(2-12) was lower,while reduced it as λ_(2) increased excessively when R_(2-12) was higher.The proper decrease in the reductive intensity caused the combustion efficiency increased obviously,while was hardly improved further when the intensity decreased excessively.In this study,the lowest NO_(x) emission was only 41.75 mg/m^(3) without sacrificing the combustion efficiency by optimizing the interaction and reductive intensity.展开更多
A multi-burner-port annular flameless ceramic burner (MAFCB) of the shaftless stove for blast furnaces was designed. The characteristics of pressure drop, homogeneousness of the flows at burner ports, and distributi...A multi-burner-port annular flameless ceramic burner (MAFCB) of the shaftless stove for blast furnaces was designed. The characteristics of pressure drop, homogeneousness of the flows at burner ports, and distribution of the flows in the chambers and joint were studied by cold model experiments. This type of ceramic burner was successfully applied in 6# blast furnace at Liuzhou Iron & Steel Co. Ltd. (LISC) and this practice proved that it could be used in the hot blast stove and other stoves with a higher efficiency and a higher steadiness of hot blast temperature at 1200℃. With the combustion of blast furnace gas alone, the thermal efficiency was up to 78.95%, saving energy remarkably.展开更多
Zhang Ailin created so many various kinds of female charaters in her novels;females who own distinct characters and identities just have similar fates and struggles.This paper tries to probe into the similar fates and...Zhang Ailin created so many various kinds of female charaters in her novels;females who own distinct characters and identities just have similar fates and struggles.This paper tries to probe into the similar fates and struggles of two heroines with different identities in the same social background by analysing the novel Gimmal and Crumbs of Agalloch Eaglewood-the First Incense Burner from perspective of feminism.展开更多
The characteristics of oxy-coal combustion for a swirl burner with a specially designed preheating chamber are studied numerically. In order to increase the accuracy in the prediction of flame temperature and igni- ti...The characteristics of oxy-coal combustion for a swirl burner with a specially designed preheating chamber are studied numerically. In order to increase the accuracy in the prediction of flame temperature and igni- tion position, eddy dissipation concept (EDC) model with a skeletal chemical reaction mechanism was adopted to describe the combustion of volatile matter. Simulation was conducted under six oxidant stream conditions with dif- ferent OjN2/CO2 molar ratios: 21/79/0, 30/70/0, 50/50/0, 21/0/79, 30/0/70 and 50/0/50. Results showed that 02 en- richment in the primary oxidant stream is in favor of combustion stabilization, acceleration of ignition and increase of maximum flame temperature, while the full substitution of N2 by CO2 in the oxidant stream delays ignition and decreases the maximum flame temperature. However, the overall flow field and flame shapes in these cases are very similar at the same flow rate of the primary oxidant stream. Combustion characteristics of the air-coal is similar to that of the oxy-coal with 30% 02 and 70% CO2 in the oxidant stream, indicating that the rear condition is suitable for retrofitting an air-coal fired boiler to an oxy-coal one. The swirl burner with a specially designed preheating chamber can increase flame temperature, accelerate ignition and enhance burning intensity of pulverized coal under oxy-coal combustion. Also, qualitative experimental validation indicated the burner can reduce the overall NOx emission under certain 02 enrichment and oxy-coal combustion conditions against the air-coal combustion.展开更多
The computer simulation of the combustion process in blast furnace(BF) stove has been studied by using the k-ε-g turbulent diffusion flame model.The combustion process in blunt annular ceramic burner was calculated b...The computer simulation of the combustion process in blast furnace(BF) stove has been studied by using the k-ε-g turbulent diffusion flame model.The combustion process in blunt annular ceramic burner was calculated by using the software.The profiles of gas and air velocity,temperature of the combustion products,concentration of the components,and the shape and length of the flame during combustion have been researched.Compared with the original annular ceramic burner,the new design of the blunt one improves the mixing of the gas and the air significantly,and shortened the length of the flame.展开更多
A 3-D numerical simulation with CFX software on physical field of multi-air channel coal burner in rotary kiln was carried out. The effects of various operational and structural parameters on flame feature and tempera...A 3-D numerical simulation with CFX software on physical field of multi-air channel coal burner in rotary kiln was carried out. The effects of various operational and structural parameters on flame feature and temperature distribution were investigated. A thermal measurement was conducted on a rotary kiln (4.5m in diameter, 90m in length) with four-air channel coal burner to determine the boundary conditions and to verify the simulation results. The calculation result shows that the distribution of velocity near burner exit is saddle-like; recirculation zones near nozzle and wall are useful for mixture primary air with coal and high temperature fume. A little central airflow can avoid coal backing up and cool nozzle. Adjusting the ratio of internal airflow to outer airflow is an effective and major means to regulate flame and temperature distribution in sintering region. Large whirlcone angle can intensify disturbution range at flame root to accelerate ignition and mixture. Large coal size can reduce high temperature region and result in coal combusting insufficiently. Too much combustion air will lengthen flame and increase heat loss.展开更多
This study was conducted to investigate the characteristics of meso-scale combustion.The technique of electrical capacitance tomography(ECT) was used to locate flame position and monitor the effect corresponding to va...This study was conducted to investigate the characteristics of meso-scale combustion.The technique of electrical capacitance tomography(ECT) was used to locate flame position and monitor the effect corresponding to varied air/fuel ratio in a meso-scale combustor.Combustion phenomena including igniting,quenching and unsteady combustion have been visualized using ECT.The method of metallization protecting ECT sensor from high temperature damage and the novel calibration method adapted to ECT monitoring of unknown permittivity flame have been shown to be successful.At the same time,electrical nature of combustion and dielectric characteristics of hy-drocarbon flame were studied.The relationship between flame permittivity and state parameters of combustion gas was demonstrated preliminarily.展开更多
The present study investigated numerically the physical mechanisms underlying the transient behaviors of the flame over a porous cylindrical burner. The numerical results showed that a cold flow structure at a fixed i...The present study investigated numerically the physical mechanisms underlying the transient behaviors of the flame over a porous cylindrical burner. The numerical results showed that a cold flow structure at a fixed inflow velocity of Uin = 0.6 m/s in a wind tunnel could be observed in two co-existing recirculation flows. Flow variations occur repeatedly until t = 4.71 s, and then a vortex existed steadily behind the burner and no shading occurred. The ignition of flammable mixture led to a rapid rise in gas temperature and a sudden gas expansion. When it reached the stable envelope flame condition, Uin is adjusted to an assigned value. Two blow-off mechanisms were identified. It was also found in the study flame shapes with buoyancy effects agreed with the ones observed experimentally by Tsai. Furthermore, the lift-off flame would appear briefly between the envelopes and wake ones, and was stabilized as a wake flame.展开更多
The investigation shows that using internal combustion coal-oxygen burner for the intensification of melting in EAF is feasible.Internal combustion coal-oxygen burner is better than external combustion coal-oxygen bur...The investigation shows that using internal combustion coal-oxygen burner for the intensification of melting in EAF is feasible.Internal combustion coal-oxygen burner is better than external combustion coal-oxygen burner in the performance and energy saving of the process.Electrical consumption is decreased by 40 kW ? h/t,melting time is shortened by 18 min.The application of internal combustion coal-oxygen burner has a significant effect on decreasing EAF energy consumption.展开更多
In this paper, the numerical simulation on the flow field of a four-channel coal burner was investigated with Fluent software. The three-dimension model was created with UG software. The structure was meshed by using ...In this paper, the numerical simulation on the flow field of a four-channel coal burner was investigated with Fluent software. The three-dimension model was created with UG software. The structure was meshed by using Gambit software. The realizable K-ε turbulence model and simple method were adopted. The variation of the inner flow field of the burner was studied and analyzed. The results simulated to the burner by the realizable K-ε turbulence model show that the contours of theflowfield accord with the actual condition and the realizable K-ε model is proved to be feasible and the results of simulation are creditable. That will have important significance to the improvement of the structure and parameter optimization of the four-channel coal burner in the future.展开更多
The air flow ratio and the pulverized coal mass flux ratio between the rich and lean sides are the key parameters of horizontal bias burner. In order to realize high combustion efficiency, excellent stability of igni...The air flow ratio and the pulverized coal mass flux ratio between the rich and lean sides are the key parameters of horizontal bias burner. In order to realize high combustion efficiency, excellent stability of ignition, low NO x emission and safe operation, six principal demands are presented on the selection of key parameters. An analytical model is established on the basis of the demands, the fundamentals of combustion and the operation results. An improved horizontal bias burner is also presented and applied. The experiment and numerical simulation results show the improved horizontal bias burner can realize proper key parameters, lower NO x emission, high combustion efficiency and excellent performance of part load operation without oil support. It also can reduce the circumfluence and low velocity zone existing at the downstream sections of vanes, and avoid the burnout of the lean primary air nozzle and the jam in the lean primary air channel. The operation and test results verify the reasonableness and feasibility of the analytical model.展开更多
A kind of ZrO2 ceramic material for porous media burner was prepared by polymeric sponge process with starting materials of zircon, zirconia powder, microsili- ca, and ball clay, and binder of silica sol through react...A kind of ZrO2 ceramic material for porous media burner was prepared by polymeric sponge process with starting materials of zircon, zirconia powder, microsili- ca, and ball clay, and binder of silica sol through reaction-sintering. The effects of microsilica addition on cold crushing strength and zirconia/zircon adding ratio on thermal shock resistance were studied. The results show that the porous media material has proper porosity, high strength, and excellent thermal shock resistance when zirconia addition is 85% and zircon addition is 5%. The performance indexes are: porosity 82%, cold crashing strength 3.1MPa, thermal shock resistance more than 10 cycles, and good thermal shock resistance to 1 500℃ flame.展开更多
A high performance flexible porous medium burner that can burn gaseous and liquid fuel with different type of flames (premixed and non-premixed) is proposed. The merit of the combustion within porous medium is that ...A high performance flexible porous medium burner that can burn gaseous and liquid fuel with different type of flames (premixed and non-premixed) is proposed. The merit of the combustion within porous medium is that heat is recirculated from the combustion gas to porous medium at upstream wherein vaporization is taken place (in case of liquid fuel) or preheated ~in case of gaseous fuel) before mixing with the combustion air followed by combustion within another porous medium at downstream. In a former version of the high performance flexible porous medium burner, the upstream porous medium is incorporated with a cooling system using the combustion air as a coolants to prevent thermal decomposition of fuels and thus the burner clogging caused by carbon deposit within the porous medium can be avoided. However, the cooling effect cannot be properly controlled such that the boiling point of the liquid fuel is maintained at suitable value irrespective of the volume flow rate of the combustion air, which is linearly varied with the firing rate of the burner. In particular at the lean burn condition, where high air flow rate is required with high cooling effect with porous medium. This can result in the porous medium temperature lower than the corresponding boiling point of the liquid fuel and thus evaporation of the fuel is failed and the combustion is ceased. Therefore, method of controlling the cooling air flow rate in the porous medium is proposed and studied in order to appropriately control the porous medium temperature and maintain it at above the boiling point irrespective of the combustion conditions. In this research, experimental and computation analysis are used to design the flexible porous burner (FPMB), with adjustable cooling effect. The result shows that, the new design of FPMB which has temperature in the upstream porous medium is higher than boiling point and lower than thermal decomposition temperature of fuel (kerosene) at all conditions and can be operated at a wide range of equivalence ratio without fuel decomposition and fuel non-vaporization problem.展开更多
Based on the prototypes of a 130 t/h boiler, constant proportional cold-state test bench is established, flow characteristics of multi-nozzle in natural gas reburning burner and its influence on the covering effect fo...Based on the prototypes of a 130 t/h boiler, constant proportional cold-state test bench is established, flow characteristics of multi-nozzle in natural gas reburning burner and its influence on the covering effect for the upflow in the furnace are researched. Numerical simulations of this process are also made with standard ?turbulence model. The results show that air flow fullness in furnace is better in the case of the reburning zone with 8 nozzles compared to 4 nozzles and also coverage effect of the reburning flow for the updraft gas in the furnace is better. In the condition each nozzle airflow velocity is constant, the effect of reburning flow on coverage of up-secondary air is best when the incident angle for four corners is 14.17?, while Center of the furnace wall is 84.57. And while the best incident angle is invariable, the effect of reburning flow on coverage of up-secondary air is best when the speed of reburning gas in the corners of furnace is 51 m/s, the same to the center of the furnace wall’s.展开更多
The paper presents 1) the numerical results of RANS (Reynolds Averaging Navier-Stokes) simulations for two versions of the premixed combustion GE10 burners: the old one with non-premixed and modified one with swirled ...The paper presents 1) the numerical results of RANS (Reynolds Averaging Navier-Stokes) simulations for two versions of the premixed combustion GE10 burners: the old one with non-premixed and modified one with swirled premixed pilot flames;and 2) the numerical results of joint RANS/LES (Large Eddy Simulation) modelling of the ONERA model burner and a simplified GE10 combustor. The original joint RANS/LES approach is based on using the Kolmogorov theory for modelling sub-grid turbulence and combustion intensity and using RANS numerical results for closure the LES model equations. The main conclusion is that developed joint RANS/LES approch is the efficient timesaving tool for simulations both the average and instantaneous fields of parameters in gas turbine and boiler burners with premixed combustion.展开更多
基金supported by The Scientific and Technological Research Council of Turkey(TUBITAK,Project number:114M116)and MIMSAN AS
文摘In this study, the relationship between the visual information gathered from the flame images and the excess air factor 2 in coal burners is investigated. In conventional coal burners the excess air factor 2. can be obtained using very expensive air measurement instruments. The proposed method to predict ) for a specific time in the coal burners consists of three distinct and consecutive stages; a) online flame images acquisition using a CCD camera, b) extrac- tion meaningful information (flame intensity and bright- ness)from flame images, and c) learning these information (image features) with ANNs and estimate 2. Six different feature extraction methods have been used: CDF of Blue Channel, Co-Occurrence Matrix, L-Frobenius Norms, Radiant Energy Signal (RES), PCA and Wavelet. When compared prediction results, it has seen that the use of co- occurrence matrix with ANNs has the best performance (RMSE = 0.07) in terms of accuracy. The results show that the proposed predicting system using flame images can be preferred instead of using expensive devices to measure excess air factor in during combustion.
基金Sponsored by the Ministry of Education of China via the 2004 Year New Century Excellent Talents in University (Grant No NCET-04-0328)Hei-longjiang Province via 2005 Year Key Projects (Grant No GC05A314)
文摘Numerical simulation is applied to gas-particle flows of the primary and the secondary air ducts and burner region, and of two kinds of swirl burners. The modeling results of Radial Bias Combustion (RBC) burner well agreed with the data from the three-dimensional Phase-Doppler anemometry (PDA) experiment by Li, et al. The modeling test conducted in a 1025 t/h boiler was to study the quality of aerodynamics for a Central Fuel Rich (CFR) burner, and the Internal Recirculation Zone (IRZ) was measured. In addition, gas-particle flows with a CFR burner were investigated by numerical simulation, whose results accorded with the test data fundamentally. By analyzing the distribution of gas velocity and trajectories of particles respectively, it is found that the primary air’s rigidity of CFR burner is stronger than that of RBC burner, and the primary air mixes with the secondary air later. Furthermore, high concentration region of pulverized coal exists in the burner’s central zone whose atmosphere is reduced, and trajectories of particles in IRZ of CFR burner are longer than that of RBC burner. They are favorable to coal’s ignition and the reduction of NOx emission.
文摘Computational Fluid Dynamics (CFD) simulations of airflow through a retention head residential oil burner were carried out to study the velocity field near and around the fuel spray. The simulations revealed (as expected, based on some previous experimental measurements) the velocity flow field to be far from axisymmetric. Moreover, the center of the swirling airflow was found to be at some radial distance away from the physical centerline of the flame tube. Since it was suspected that the two electrodes just upstream of the retention ring of the burner might be responsible for this flow distortion, additional CFD simulations were then carried out for the cases of no electrodes and 4-electrodes. The results clearly show that all flow distortions (velocity deviations from axisymmetric value) vanish when no electrodes are present and that the flow distortions are reduced by a factor of 2 when two additional dummy electrodes (for a total of 4 electrodes) are included in the burner design. Furthermore, for the 4-electrode case, the eccentricity of the swirling airflow is reduced by almost a factor of 3 as compared to the base design case of 2-electrodes.
文摘The present study was conducted to present the comparative modeling, predictive and generalization abilities of response surface methodology (RSM) and artificial neural network (ANN) for the thermal structure of stabilized confined jet diffusion flames in the presence of different geometries of bluff-body burners. Two stabilizer disc burners tapered at 30° and 60° and another frustum cone of 60°/30° inclination angle were employed all having the same diameter of 80 (mm) acting as flame holders. The measured radial mean temperature profiles of the developed stabilized flames at different normalized axial distances (x/dj) were considered as the model example of the physical process. The RSM and ANN methods analyze the effect of the two operating parameters namely (r), the radial distance from the center line of the flame, and (x/dj) on the measured temperature of the flames, to find the predicted maximum temperature and the corresponding process variables. A three-layered Feed Forward Neural Network in conjugation with the hyperbolic tangent sigmoid (tansig) as transfer function and the optimized topology of 2:10:1 (input neurons: hidden neurons: output neurons) was developed. Also the ANN method has been employed to illustrate such effects in the three and two dimensions and shows the location of the predicted maximum temperature. The results indicated the superiority of ANN in the prediction capability as the ranges of R2 and F Ratio are 0.868 - 0.947 and 231.7 - 864.1 for RSM method compared to 0.964 - 0.987 and 2878.8 7580.7 for ANN method beside lower values for error analysis terms.
基金Project(2009bsxt022)supported by the Dissertation Innovation Foundation of Central South University,ChinaProject(07JJ4016)supported by Natural Science Foundation of Hunan Province,ChinaProject(U0937604)supported by the National Natural Science Foundation of China
文摘According to the features of melting process of regenerative aluminum melting furnaces, a three-dimensional mathematical model with user-developed melting model, burner reversing and burning capacity model was established. The numerical simulation of melting process of a regenerative aluminum melting furnace was presented using hybrid programming method of FLUENT UDF and FLUENT scheme based on the heat balance test. Burner effects on melting process of aluminum melting furnaces were investigated by taking optimization regulations into account. The change rules of melting time on influence factors are achieved. Melting time decreases with swirl number, vertical angle of burner, air preheated temperature or natural gas flow; melting time firstly decreases with horizontal angle between burners or air-fuel ratio, then increases; melting time increases with the height of burner.
基金Youth Innovation Promotion Association,CAS (2019148)CAS Project for Young Scientists in Basic Research (YSBR-028)the National Natural Science Foundation of China (No.52006233) are gratefully acknowledged。
文摘The study focused on the effects of the interaction between axial and radial secondary air and the reductive intensity in reduction region on combustion characteristics and NO_(x) emission in a 30 kW preheating combustion system.The results revealed that the interaction and reductive intensity influenced the combustion in the down-fired combustor(DFC) and NO_(x) emission greatly.For the temperature distribution,the interaction caused the position of the main combustion region to shift down as R_(2-12)(ratio of axial secondary air flow to radial secondary air flow) decreased or λ_(2)(total secondary air ratio) increased,and there was the interplay between both of their effects.As R_(3-12)(ratio of first-staged tertiary air flow to second-staged tertiary air flow)increased,the decrease in the reductive intensity also caused the above phenomenon,and the peak temperature increased in this region.For the NO_(x) emission,the interaction affected the NO_(x) reduction adversely when λ_(2) or R_(2-12) was higher,and the range of this effect was larger,so that the NO_x emission increased obviously as they increased.The decrease in the reductive intensity caused the NO_(x) emission increased under the homogeneous reduction mechanism,while was unchanged at a high level under the heterogeneous reduction mechanism.For the combustion efficiency,the interaction improved the combustion efficiency as λ_(2) increased when R_(2-12) was lower,while reduced it as λ_(2) increased excessively when R_(2-12) was higher.The proper decrease in the reductive intensity caused the combustion efficiency increased obviously,while was hardly improved further when the intensity decreased excessively.In this study,the lowest NO_(x) emission was only 41.75 mg/m^(3) without sacrificing the combustion efficiency by optimizing the interaction and reductive intensity.
文摘A multi-burner-port annular flameless ceramic burner (MAFCB) of the shaftless stove for blast furnaces was designed. The characteristics of pressure drop, homogeneousness of the flows at burner ports, and distribution of the flows in the chambers and joint were studied by cold model experiments. This type of ceramic burner was successfully applied in 6# blast furnace at Liuzhou Iron & Steel Co. Ltd. (LISC) and this practice proved that it could be used in the hot blast stove and other stoves with a higher efficiency and a higher steadiness of hot blast temperature at 1200℃. With the combustion of blast furnace gas alone, the thermal efficiency was up to 78.95%, saving energy remarkably.
文摘Zhang Ailin created so many various kinds of female charaters in her novels;females who own distinct characters and identities just have similar fates and struggles.This paper tries to probe into the similar fates and struggles of two heroines with different identities in the same social background by analysing the novel Gimmal and Crumbs of Agalloch Eaglewood-the First Incense Burner from perspective of feminism.
基金Supported by the Chinese Ministry of Science and Technology Project(2011DFA60390)The National High Technology Research and Development Program of China(2007AA05Z303)
文摘The characteristics of oxy-coal combustion for a swirl burner with a specially designed preheating chamber are studied numerically. In order to increase the accuracy in the prediction of flame temperature and igni- tion position, eddy dissipation concept (EDC) model with a skeletal chemical reaction mechanism was adopted to describe the combustion of volatile matter. Simulation was conducted under six oxidant stream conditions with dif- ferent OjN2/CO2 molar ratios: 21/79/0, 30/70/0, 50/50/0, 21/0/79, 30/0/70 and 50/0/50. Results showed that 02 en- richment in the primary oxidant stream is in favor of combustion stabilization, acceleration of ignition and increase of maximum flame temperature, while the full substitution of N2 by CO2 in the oxidant stream delays ignition and decreases the maximum flame temperature. However, the overall flow field and flame shapes in these cases are very similar at the same flow rate of the primary oxidant stream. Combustion characteristics of the air-coal is similar to that of the oxy-coal with 30% 02 and 70% CO2 in the oxidant stream, indicating that the rear condition is suitable for retrofitting an air-coal fired boiler to an oxy-coal one. The swirl burner with a specially designed preheating chamber can increase flame temperature, accelerate ignition and enhance burning intensity of pulverized coal under oxy-coal combustion. Also, qualitative experimental validation indicated the burner can reduce the overall NOx emission under certain 02 enrichment and oxy-coal combustion conditions against the air-coal combustion.
基金Item Sponsored by National Natural Science Foundation(50104001)Science and Technology Tackle Key Foundation of Inner Mongolia(980307-4)
文摘The computer simulation of the combustion process in blast furnace(BF) stove has been studied by using the k-ε-g turbulent diffusion flame model.The combustion process in blunt annular ceramic burner was calculated by using the software.The profiles of gas and air velocity,temperature of the combustion products,concentration of the components,and the shape and length of the flame during combustion have been researched.Compared with the original annular ceramic burner,the new design of the blunt one improves the mixing of the gas and the air significantly,and shortened the length of the flame.
文摘A 3-D numerical simulation with CFX software on physical field of multi-air channel coal burner in rotary kiln was carried out. The effects of various operational and structural parameters on flame feature and temperature distribution were investigated. A thermal measurement was conducted on a rotary kiln (4.5m in diameter, 90m in length) with four-air channel coal burner to determine the boundary conditions and to verify the simulation results. The calculation result shows that the distribution of velocity near burner exit is saddle-like; recirculation zones near nozzle and wall are useful for mixture primary air with coal and high temperature fume. A little central airflow can avoid coal backing up and cool nozzle. Adjusting the ratio of internal airflow to outer airflow is an effective and major means to regulate flame and temperature distribution in sintering region. Large whirlcone angle can intensify disturbution range at flame root to accelerate ignition and mixture. Large coal size can reduce high temperature region and result in coal combusting insufficiently. Too much combustion air will lengthen flame and increase heat loss.
基金Supported by the National Natural Science Foundation of China (50806005,50736002,61072005)
文摘This study was conducted to investigate the characteristics of meso-scale combustion.The technique of electrical capacitance tomography(ECT) was used to locate flame position and monitor the effect corresponding to varied air/fuel ratio in a meso-scale combustor.Combustion phenomena including igniting,quenching and unsteady combustion have been visualized using ECT.The method of metallization protecting ECT sensor from high temperature damage and the novel calibration method adapted to ECT monitoring of unknown permittivity flame have been shown to be successful.At the same time,electrical nature of combustion and dielectric characteristics of hy-drocarbon flame were studied.The relationship between flame permittivity and state parameters of combustion gas was demonstrated preliminarily.
文摘The present study investigated numerically the physical mechanisms underlying the transient behaviors of the flame over a porous cylindrical burner. The numerical results showed that a cold flow structure at a fixed inflow velocity of Uin = 0.6 m/s in a wind tunnel could be observed in two co-existing recirculation flows. Flow variations occur repeatedly until t = 4.71 s, and then a vortex existed steadily behind the burner and no shading occurred. The ignition of flammable mixture led to a rapid rise in gas temperature and a sudden gas expansion. When it reached the stable envelope flame condition, Uin is adjusted to an assigned value. Two blow-off mechanisms were identified. It was also found in the study flame shapes with buoyancy effects agreed with the ones observed experimentally by Tsai. Furthermore, the lift-off flame would appear briefly between the envelopes and wake ones, and was stabilized as a wake flame.
文摘The investigation shows that using internal combustion coal-oxygen burner for the intensification of melting in EAF is feasible.Internal combustion coal-oxygen burner is better than external combustion coal-oxygen burner in the performance and energy saving of the process.Electrical consumption is decreased by 40 kW ? h/t,melting time is shortened by 18 min.The application of internal combustion coal-oxygen burner has a significant effect on decreasing EAF energy consumption.
文摘In this paper, the numerical simulation on the flow field of a four-channel coal burner was investigated with Fluent software. The three-dimension model was created with UG software. The structure was meshed by using Gambit software. The realizable K-ε turbulence model and simple method were adopted. The variation of the inner flow field of the burner was studied and analyzed. The results simulated to the burner by the realizable K-ε turbulence model show that the contours of theflowfield accord with the actual condition and the realizable K-ε model is proved to be feasible and the results of simulation are creditable. That will have important significance to the improvement of the structure and parameter optimization of the four-channel coal burner in the future.
文摘The air flow ratio and the pulverized coal mass flux ratio between the rich and lean sides are the key parameters of horizontal bias burner. In order to realize high combustion efficiency, excellent stability of ignition, low NO x emission and safe operation, six principal demands are presented on the selection of key parameters. An analytical model is established on the basis of the demands, the fundamentals of combustion and the operation results. An improved horizontal bias burner is also presented and applied. The experiment and numerical simulation results show the improved horizontal bias burner can realize proper key parameters, lower NO x emission, high combustion efficiency and excellent performance of part load operation without oil support. It also can reduce the circumfluence and low velocity zone existing at the downstream sections of vanes, and avoid the burnout of the lean primary air nozzle and the jam in the lean primary air channel. The operation and test results verify the reasonableness and feasibility of the analytical model.
文摘A kind of ZrO2 ceramic material for porous media burner was prepared by polymeric sponge process with starting materials of zircon, zirconia powder, microsili- ca, and ball clay, and binder of silica sol through reaction-sintering. The effects of microsilica addition on cold crushing strength and zirconia/zircon adding ratio on thermal shock resistance were studied. The results show that the porous media material has proper porosity, high strength, and excellent thermal shock resistance when zirconia addition is 85% and zircon addition is 5%. The performance indexes are: porosity 82%, cold crashing strength 3.1MPa, thermal shock resistance more than 10 cycles, and good thermal shock resistance to 1 500℃ flame.
文摘A high performance flexible porous medium burner that can burn gaseous and liquid fuel with different type of flames (premixed and non-premixed) is proposed. The merit of the combustion within porous medium is that heat is recirculated from the combustion gas to porous medium at upstream wherein vaporization is taken place (in case of liquid fuel) or preheated ~in case of gaseous fuel) before mixing with the combustion air followed by combustion within another porous medium at downstream. In a former version of the high performance flexible porous medium burner, the upstream porous medium is incorporated with a cooling system using the combustion air as a coolants to prevent thermal decomposition of fuels and thus the burner clogging caused by carbon deposit within the porous medium can be avoided. However, the cooling effect cannot be properly controlled such that the boiling point of the liquid fuel is maintained at suitable value irrespective of the volume flow rate of the combustion air, which is linearly varied with the firing rate of the burner. In particular at the lean burn condition, where high air flow rate is required with high cooling effect with porous medium. This can result in the porous medium temperature lower than the corresponding boiling point of the liquid fuel and thus evaporation of the fuel is failed and the combustion is ceased. Therefore, method of controlling the cooling air flow rate in the porous medium is proposed and studied in order to appropriately control the porous medium temperature and maintain it at above the boiling point irrespective of the combustion conditions. In this research, experimental and computation analysis are used to design the flexible porous burner (FPMB), with adjustable cooling effect. The result shows that, the new design of FPMB which has temperature in the upstream porous medium is higher than boiling point and lower than thermal decomposition temperature of fuel (kerosene) at all conditions and can be operated at a wide range of equivalence ratio without fuel decomposition and fuel non-vaporization problem.
文摘Based on the prototypes of a 130 t/h boiler, constant proportional cold-state test bench is established, flow characteristics of multi-nozzle in natural gas reburning burner and its influence on the covering effect for the upflow in the furnace are researched. Numerical simulations of this process are also made with standard ?turbulence model. The results show that air flow fullness in furnace is better in the case of the reburning zone with 8 nozzles compared to 4 nozzles and also coverage effect of the reburning flow for the updraft gas in the furnace is better. In the condition each nozzle airflow velocity is constant, the effect of reburning flow on coverage of up-secondary air is best when the incident angle for four corners is 14.17?, while Center of the furnace wall is 84.57. And while the best incident angle is invariable, the effect of reburning flow on coverage of up-secondary air is best when the speed of reburning gas in the corners of furnace is 51 m/s, the same to the center of the furnace wall’s.
文摘The paper presents 1) the numerical results of RANS (Reynolds Averaging Navier-Stokes) simulations for two versions of the premixed combustion GE10 burners: the old one with non-premixed and modified one with swirled premixed pilot flames;and 2) the numerical results of joint RANS/LES (Large Eddy Simulation) modelling of the ONERA model burner and a simplified GE10 combustor. The original joint RANS/LES approach is based on using the Kolmogorov theory for modelling sub-grid turbulence and combustion intensity and using RANS numerical results for closure the LES model equations. The main conclusion is that developed joint RANS/LES approch is the efficient timesaving tool for simulations both the average and instantaneous fields of parameters in gas turbine and boiler burners with premixed combustion.