期刊文献+
共找到66篇文章
< 1 2 4 >
每页显示 20 50 100
Effect of Ti-Al content on microstructure and mechanical properties of C_f/Al and TiAl joint by laser ignited self-propagating high-temperature synthesis 被引量:5
1
作者 冯广杰 李卓然 +1 位作者 冯士诚 申忠科 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1468-1477,共10页
Cf/Al composites and TiAl alloys were joined by laser ignited self-propagating high-temperature synthesis(SHS) with Ni-Al-Ti interlayer. The effect of Ti-Al content on interfacial microstructure and mechanical prope... Cf/Al composites and TiAl alloys were joined by laser ignited self-propagating high-temperature synthesis(SHS) with Ni-Al-Ti interlayer. The effect of Ti-Al content on interfacial microstructure and mechanical properties of the joints was investigated. Localized melt of the substrates occurred in the joints. γ-Ni0.35Al0.30Ti0.35, NiA l3 and Ni2Al3 reaction layers formed adjacent to the substrates. Joint flaws, such as pores and cracks, made the joint density decrease and worked as the fracture source, which led to the sharp decline of joint strength. Additive Ti-Al increased joint density and strengthened the interlayer adhesion to Cf/Al. The joint flaws could be controlled by changing the Ti-Al content. When the Ti-Al content was 0.1, the joint was free of cracks with high density and reached the maximum shear strength of 24.12 MPa. 展开更多
关键词 Cf/Al composite TiAl alloys JOINT self-propagating high-temperature synthesis INTERLAYER Ti-Al content
下载PDF
Self-propagating High-temperature Synthesis, Microstructure and Mechanical Properties of TiC-TiB_2-Cu Composites 被引量:5
2
作者 Chuncheng ZHU Xinghong ZHANG +1 位作者 Xiaodong HE Qiang XU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第1期78-82,共5页
TiC-TiB2-Cu composites were produced by self-propagating high-temperature synthesis combined with pseudo hot isostatic pressing using Ti, B4C and Cu powders. The microstructure and mechanical properties of the composi... TiC-TiB2-Cu composites were produced by self-propagating high-temperature synthesis combined with pseudo hot isostatic pressing using Ti, B4C and Cu powders. The microstructure and mechanical properties of the composites were investigated. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) results showed that the final products were only TiC, TiB2 and Cu phases. The clubbed TiB2 grains and spheroidal or irregular TiC grains were found in the microstructure of synthesized products. The reaction temperature and grain size of TiB2 and TiC particles decreased with increasing Cu content. The introduction of Cu into the composites resulted in a drastic increase in the relative density and flexual strength, and the maximum values were obtained with the addition of 20 wt pct, while the fracture toughness was the best when Cu content was 40 wt pct. 展开更多
关键词 COMPOSITE TiB2-TiC-Cu self-propagating high-temperature synthesis (SHS) Cu content
下载PDF
Dissolution-precipitation mechanism of self-propagating high-temperature synthesis of TiC-Cu cermets 被引量:3
3
作者 Guoqing Xiao Feng Duan +1 位作者 Gang Zhang Quncheng Fan 《Journal of University of Science and Technology Beijing》 CSCD 2007年第6期568-572,共5页
The mechanism of self-propagating high-temperature synthesis (SHS) of TiC-Cu cermets was studied using a combustion front quenching method. Microstructural evolution in the quenched sample was observed using scannin... The mechanism of self-propagating high-temperature synthesis (SHS) of TiC-Cu cermets was studied using a combustion front quenching method. Microstructural evolution in the quenched sample was observed using scanning electron microscope (SEM) with energy dispersive X-ray (EDX) spectrometry, and the combustion temperature was measured. The results showed that the combustion reaction started with local formation of Ti-Cu melt and could be described with the dissolution-precipitation mechanism, namely, Ti, Cu, and C particles dissolved into the Ti-Cu solution and TiC particles precipitated in the saturated Ti-Cu-C liquid solution. The local formation of Ti-Cu melt resulted from the solid diffusion between Ti and Cu particles. 展开更多
关键词 TiC-Cu cermet self-propagating high-temperature synthesis microstructural evolution synthesis mechanism combustion front quenching method
下载PDF
Effect of inner oxidant on self-propagating high-temperature synthesis of MnZn-ferrite powder 被引量:2
4
作者 AKHTAR Farid 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期553-556,共4页
Using KClO3 as an inner oxidant, MnZn-ferrite powder was synthesized by a self-propagating high-temperature synthesis (SHS) process in normal air atmosphere. The effects of the inner oxidant on combustion temperature,... Using KClO3 as an inner oxidant, MnZn-ferrite powder was synthesized by a self-propagating high-temperature synthesis (SHS) process in normal air atmosphere. The effects of the inner oxidant on combustion temperature, combustion velocity, microstructure and the phase of the product were investigated by XRD and SEM,respectively. The results show that a highly ferritized powder can be obtained as well as the highest combustion temperature and the highest combustion velocity when the inner oxidant content m equals 54(k-16). 展开更多
关键词 inner oxidant self-propagating high-temperature synthesis (SHS) MnZn-ferrite POWDER
下载PDF
Preparation of ZrB_2 Ceramics by Self-propagating High-temperature Synthesis and Hot Pressing Sintering 被引量:1
5
作者 方舟 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第4期87-89,共3页
ZrB2 ceramics were prepared by self-propagating high-temperature synthesis(SHS) and were sintered by hot pressing(HP).The effects of the granularities and doses of raw materials in Zr-B2O3-Mgon SHS process and pro... ZrB2 ceramics were prepared by self-propagating high-temperature synthesis(SHS) and were sintered by hot pressing(HP).The effects of the granularities and doses of raw materials in Zr-B2O3-Mgon SHS process and product were investigated.XRD and combustion temperature curves prove that the ideal SHS reactants of Zr-B2O3-Mg are 50μm Zr powder,75μm B2O3 powder and 400μm Mg powder with 45% excessive.The particle sizes of SHS product,acid-leached product,sintered product are 2-5μm,0.5-2μm,2-10μm respectively.Chemical analysis indicates that the acid-leached product consists of ZrB2(94.59%),ZrO2(3.87%),and H3BO3(1.54%),The sintered product has a relative density of 95.4%. 展开更多
关键词 zirconium diboride self-propagating high-temperature synthesis hot pressing sintering
下载PDF
Microstructural Evolution During Self-propagating High-temperature Synthesis of Ti-Al System
6
作者 马妍 范群成 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第3期381-385,共5页
In order to investigate the microstructural evolution during self-propagating high-temperature synthesis (SHS) of Ti-Al powder mixture with an atomic ratio of Ti: Al=1:1, a combustion front quenching method (CFQM... In order to investigate the microstructural evolution during self-propagating high-temperature synthesis (SHS) of Ti-Al powder mixture with an atomic ratio of Ti: Al=1:1, a combustion front quenching method (CFQM) was used for extinguishing the propagating combustion wave, and the microstructures on the quenched sample were observed with scanning electron microscope (SEM) and analyzed with energy dispersive spectrometry (EDS). In addition, the combustion temperature of the reaction was measured, and the phase constituent of the synthesized product was inspected by X-ray diffraction (XRD). The results showed that the combustion reaction started from melting of the Al particles, and the melting resulted in dissolving of the Ti particles and forming of Al3Ti grains. As the Al liquid was depleted, the combustion reaction proceeded through solid-state diffusion between the solid Al3Ti and the solid Ti. This led to the forming of TiAl and Ti3Al diffusing layers. In addition, the combustion reaction is incomplete besides TiAl, there are a large amount of Ti3Al and TiAl3 and a small amount of Ti in the final product. This incompleteness chiefly results from the using of coarser Ti powder. 展开更多
关键词 Ti-Al powder mixture self-propagating high-temperature synthesis microstructural evolution
下载PDF
Short-Wave Emission and Microdischarges during Self-Propagating High-Temperature Synthesis
7
《Journal of Chemistry and Chemical Engineering》 2012年第3期292-298,共7页
Emission in the X-ray and ultraviolet (200-300 nanometers) region of spectrum is found out during combustion of heterogeneous systems with the formation of condensed products, and pulses from microwave emission with... Emission in the X-ray and ultraviolet (200-300 nanometers) region of spectrum is found out during combustion of heterogeneous systems with the formation of condensed products, and pulses from microwave emission with short duration are recorded as well. Combustion of a Ti-B powder system showed that self-propagating high-temperature synthesis (SHS) is accompanied by two types of X-ray radiation. Radiation of the first type has the maximum quantum energy - 5 keV. It is supposed that this type is caused by micro-breakdowns due to the charge separation in combustion products. Runaway electrons and soft X-ray radiation are generated due to the concentration of electric field on microparticles during breakdown. Radiation of the second type has the quantum energy up to - 15 keV. It is supposed that it is caused by exoemission of photons. UV radiation in the region of 200-300 nm is recorded during SHS in different gases (He, Ar, N2). This radiation is shown to have the highest intensity in helium at the pressure - 25 x 103 Pa. 展开更多
关键词 self-propagating high-temperature synthesis SPECTROPHOTOMETRY X-ray.
下载PDF
A Self-propagating high-temperature synthesis process for the fabrication of Fe(Cr)–Al2O3 nanocomposite 被引量:1
8
作者 Seyed Esmaiel Shakib Ramin Raiszadeh Jalil Vahdati-Khaki 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第6期775-786,共12页
Self-propagating high-temperature synthesis(SHS)was used to fabricate a Fe(Cr)–Al2O3 nanocomposite.The composite was fabricated by the reactions between the powders of Fe,Fe2O3,Cr2O3,and Al.The effect of blending rat... Self-propagating high-temperature synthesis(SHS)was used to fabricate a Fe(Cr)–Al2O3 nanocomposite.The composite was fabricated by the reactions between the powders of Fe,Fe2O3,Cr2O3,and Al.The effect of blending ratio and mechanical activation of the initial powders and the precursor compressing pressure on the microstructure of the final product was studied by optical microscopy,scanning electron microscopy,transmission electron microscopy,and X-ray diffraction.The significance of the effect of each of the aforementioned parameters on the quality of the composite(assessed by measuring the compressive strength and wear resistance)was determined using a full-factorial design of experiments method.The results showed that the best molar powder ratio that produced the most homogeneous product through a sustainable SHS reaction was Fe:Fe2O3:Cr2O3:Al=10:1:1:4.A lower Fe content caused the Fe(Cr)phase to melt and separate from the rest of the materials. 展开更多
关键词 self-propagating high temperature synthesis phase separation mechanical activation iron-chrome NANOCOMPOSITE
下载PDF
Kinetics and numerical simulation of self-propagating high-temperature synthesis in Ti–Cr–Al–C systems 被引量:5
9
作者 Guo-Bing Ying Xiao-Dong He +4 位作者 Shan-Yi Du Yong-Ting Zheng Chun-Cheng Zhu Yu-Ping Wu Cheng Wang 《Rare Metals》 SCIE EI CAS CSCD 2014年第5期527-533,共7页
In this paper, Ti–Cr–Al–C materials were investigated by self-propagating high-temperature synthesis(SHS) according to the experimental study and numerical simulation results. The highest adiabatic combustion tem... In this paper, Ti–Cr–Al–C materials were investigated by self-propagating high-temperature synthesis(SHS) according to the experimental study and numerical simulation results. The highest adiabatic combustion temperature Tadof 2,467.45 K indicates that the2Ti–0Cr–Al–C is the highest exothermic reaction system in the Ti–Cr–Al–C system. The adiabatic combustion temperature decreases with the increase of the Cr content. And a higher exothermal reaction would result in higher porosity which is induced by the high temperature and pressure of C reducing atmosphere and Al vapor. Combustion characterization of the products shows that the geometrical alternating layers result in the high exothermal reaction and flame-front propagating velocity. The higher the Tadis, the thinner the layer is. To demonstrate the process of the microscopic characterization and show the detailed combustion process closed to the experimental observations, the flame-front propagating velocity and temperature distribution were simulated numerically. 展开更多
关键词 self-propagating high-temperature synthesis Temperature distribution Flame-front propagating velocity Numerical simulation
原文传递
Self-propagating high-temperature synthesis of ZrO_2 incorporated Gd_2Ti_2O_7 pyrochlore 被引量:5
10
作者 Le PENG Kuibao ZHANG +4 位作者 Zongsheng HE Dan YIN Jiali XUE Chen XU Haibin ZHANG 《Journal of Advanced Ceramics》 SCIE CSCD 2018年第1期41-49,共9页
In this research, Zr-doped Gd_2Ti_2O_7 pyrochlores, with the composition of Gd_2(Ti_(1-x)Zr_x)_2O_7, were firstly synthesized by self-propagating high-temperature synthesis plus quick pressing(SHS/QP) using CuO as the... In this research, Zr-doped Gd_2Ti_2O_7 pyrochlores, with the composition of Gd_2(Ti_(1-x)Zr_x)_2O_7, were firstly synthesized by self-propagating high-temperature synthesis plus quick pressing(SHS/QP) using CuO as the oxidant and Ti as the reductant. To improve the radiation resistance of titanate–pyrochlore, up to 35 at% Zr was incorporated to substitute the Ti site of Gd_2Ti_2O_7 pyrochlore(Gd_2(Ti_(0.75)Zr_(0.35))_2O_7). XRD and SEM microstructural characterizations showed the formation of a composite ceramic with the major pyrochlore phase and the minor Cu phase. The generated temperature of samples decreased from 1702to 1011 ℃ with increasing Zr content. The effects of sintering temperature and pressure time on phase composition and microstructure were systematically studied. Besides, the influence of thermal transmission on the whole combustion process was also explored. The pyrochlore-based waste form possessed high bulk density of 6.25 g/cm^3 and Vickers hardness of 10.81 GPa. The MCC-1 leaching test showed the normalized elemental leaching rates(42d) of Cu, Gd, and Zr are 1.27×10^(-2), 1.33×10^(-3), and 8.44×10^(-7)g·m^(-2)·d^(-1), respectively. 展开更多
关键词 self-propagating high-temperature synthesis plus quick pressing (SHS/QP) PYROCHLORE thermal transmission waste form aqueous leachability
原文传递
Microstructure and properties of porous Si_(3)N_(4)ceramics by gelcasting-self-propagating high-temperature synthesis(SHS) 被引量:5
11
作者 Shile CHEN Liang WANG +2 位作者 Gang HE Jiangtao LI Chang-An WANG 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第1期172-183,共12页
Porous silicon nitride ceramics have attracted a considerable attention due to their excellent overall performance,but poor porosity homogeneity and structural shrinkage induced by prolonged high temperature sintering... Porous silicon nitride ceramics have attracted a considerable attention due to their excellent overall performance,but poor porosity homogeneity and structural shrinkage induced by prolonged high temperature sintering limit its further application.Herein,as a three-in-one solution for the above issues,for the first time we develop a novel approach that integrates the merits of gelcasting-SHS(self-propagating high-temperature synthesis)to prepare porous Si_(3)N_(4)ceramics to simultaneously achieve high porosity,high strength,high toughness,and low thermal conductivity across a wide temperature range.By regulating the solid content,porous Si_(3)N_(4)ceramics with homogeneous pore structure are obtained,where the pore size falls inbetween 1.61 and 4.41 pm,and the elongated grains are interlaced and interlocked to form micron-sized coherent interconnected pores.At the same time,porous Si_(3)N_(4)ceramics with porosity of 67.83%to 78.03%are obtained,where the compressive strength reaches 11.79 to 47.75 MPa and fracture toughness reaches 1.20 to 6.71 MPa-m1/2. 展开更多
关键词 porous Si_(3)N_(4)ceramics GELCASTING self-propagating high-temperature synthesis(SHS) POROSITY
原文传递
Sintering behavior of aluminum nitride powder prepared by self-propagating high-temperature synthesis method 被引量:5
12
作者 Liang Qiao Shu-Wen Chen +2 位作者 Li-Qiang Jiang Kazuo Shinozaki Sheng-Lei Che 《Rare Metals》 SCIE EI CAS CSCD 2018年第12期1091-1095,共5页
Fully dense aluminum nitride(AIN) ceramics were synthesized by self-propagating high-temperature synthesis(SHS) method using AIN powder as raw material with Y2O3additive. The sintering behavior was studied at differen... Fully dense aluminum nitride(AIN) ceramics were synthesized by self-propagating high-temperature synthesis(SHS) method using AIN powder as raw material with Y2O3additive. The sintering behavior was studied at different sintering temperatures and additive contents. The change of phase compositions, secondary phase distributions and grain morphologies during sintering process were investigated. It is shown that fully dense ceramics using AIN powder prepared by SHS method can be obtained when the sintering temperature is above 1830 ℃. Both Y2O3content and sintering temperature have an important influence on the formation of Y-Al-O phase and grain shape. When Y2O3content is identified, the grain morphology converts from polyhedron into sphere-like shape with the rise of sintering temperature. At a certain sintering temperature,the grain size decreases with the increase in Y2O3content. The influencing mechanisms of different YAl-O secondary phases and sintering temperatures on the grain size and morphology were also discussed based on the experimental results. 展开更多
关键词 self-propagating high-temperature synthesis ALN Secondary phase Liquid-phase sintering
原文传递
IR-transparent MgO-Gd_(2)O_(3) composite ceramics produced by self-propagating high-temperature synthesis and spark plasma sintering 被引量:3
13
作者 Dmitry A.Permin Maksim S.Boldin +7 位作者 Alexander V.Belyaev Stanislav S.Balabanov Vitaly A.Koshkin Atrem A.Murashov Igor V.Ladenkov Evgeny A.Lantsev Ksenia E.Smetanina Nadia M.Khamaletdinova 《Journal of Advanced Ceramics》 SCIE CAS CSCD 2021年第2期237-246,共10页
A glycine–nitrate self-propagating high-temperature synthesis(SHS)was developed to produce composite MgO-Gd_(2)O_(3) nanopowders.The X-ray powder diffraction(XRD)analysis confirmed the SHS-product consists of cubic M... A glycine–nitrate self-propagating high-temperature synthesis(SHS)was developed to produce composite MgO-Gd_(2)O_(3) nanopowders.The X-ray powder diffraction(XRD)analysis confirmed the SHS-product consists of cubic MgO and Gd_(2)O_(3) phases with nanometer crystallite size and retains this structure after annealing at temperatures up to 1200℃.Near full dense high IR-transparent composite ceramics were fabricated by spark plasma sintering(SPS)at 1140℃and 60 MPa.The in-line transmittance of 1 mm thick MgO-Gd_(2)O_(3) ceramics exceeded 70%in the range of 4–5 mm and reached a maximum of 77%at a wavelength of 5.3 mm.The measured microhardness HV0.5 of the MgO-Gd2O3 ceramics is 9.5±0.4 GPa,while the fracture toughness(KIC)amounted to 2.0±0.5МPa·m1/2.These characteristics demonstrate that obtained composite MgO-Gd_(2)O_(3) ceramic is a promising material for protective infra-red(IR)windows. 展开更多
关键词 MgO-Gd_(2)O_(3) self-propagating high-temperature synthesis(SHS) spark plasma sintering(SPS) optical properties infra-red(IR)ceramics
原文传递
Structural,magnetic and dielectric properties of nano-crystalline Ni-doped BiFeO_(3) ceramics formulated by self-propagating high-temperature synthesis 被引量:3
14
作者 Yogesh A.CHAUDHARI Chandrashekhar M.MAHAJAN +1 位作者 Prashant P.JAGTAP Subhash T.BENDRE 《Journal of Advanced Ceramics》 SCIE CAS 2013年第2期135-140,共6页
Ni-doped BiFeO_(3) powders with the composition BiFe_(1-x)Ni_(x)O_(3)(x=0.05,0.1 and 0.15)were prepared by a self-propagating high-temperature synthesis(SHS),using metal nitrates as oxidizers and glycine as fuel.The X... Ni-doped BiFeO_(3) powders with the composition BiFe_(1-x)Ni_(x)O_(3)(x=0.05,0.1 and 0.15)were prepared by a self-propagating high-temperature synthesis(SHS),using metal nitrates as oxidizers and glycine as fuel.The X-ray diffraction(XRD)patterns depict that Ni-doped BiFeO_(3) ceramics crystallize in a rhombhohedral phase.The scanning electron micrographs of Ni-doped BiFeO_(3) ceramics show a dense morphology with interconnected structure.It is found that,the room-temperature magnetization measurements in Ni-incorporated BiFeO_(3) ceramics give rise to nonzero magnetization.The magnetization of Ni-doped BiFeO_(3) ceramics is significantly enhanced when Ni doping concentration reaches to x=0.1 at 5 K.The variations of dielectric constant with temperature in BiFe_(0.95)Ni_(0.05)O_(3),BiFe_(0.9)Ni_(0.1)O_(3) and BiFe_(0.85)Ni_(0.15)O_(3) samples exhibit clear dielectric anomalies approximately around 450℃,425℃and 410℃respectively,which correspond to antiferromagnetic to paramagnetic phase transition of the parent compound BiFeO_(3). 展开更多
关键词 Ni-doped BiFeO_(3) self-propagating high-temperature synthesis(SHS) X-ray diffraction(XRD) magnetic properties dielectric properties
原文传递
High-efficiency Joining of C_f/Al Composites and TiAl Alloys under the Heat Effect of Laser-ignited Self-propagating High-temperature Synthesis 被引量:4
15
作者 Zhuoran Li Guangjie Feng +1 位作者 Shiyu Wang Shicheng Feng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第11期1111-1116,共6页
The aim of this study was to develop a high-efficiency joining method of Cf/Al composites and TiA l alloys under the heat effect of laser-ignited self-propagating high-temperature synthesis(SHS). The SHS reaction of... The aim of this study was to develop a high-efficiency joining method of Cf/Al composites and TiA l alloys under the heat effect of laser-ignited self-propagating high-temperature synthesis(SHS). The SHS reaction of Ni–Al–Zr interlayer was induced by laser beam and acted as local high-temperature heat source during the joining. Sound joint was obtained and verified the feasibility of this joining method. Effect of filler metals on the joint microstructure and shear strength was evaluated. When the joining pressure was 2 MPa with additive filler metals, joint shear strength reached the maximum of 41.01 MPa. 展开更多
关键词 C_f/Al composites TIAL self-propagating high-temperature synthesis Joining MICROSTRUCTURE
原文传递
Effect of extrusion process on microstructure and mechanical properties of Ni_3Al-B-Cr alloy during self-propagation high-temperature synthesis 被引量:3
16
作者 盛立远 奚廷斐 +2 位作者 赖琛 郭建亭 郑玉峰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第3期489-495,共7页
The well-densified Ni3Al-0.5B-5Cr alloy was fabricated by self-propagation high-temperature synthesis and extrusion technique. Microstructure examination shows that the synthesized alloy has fine microstructure and co... The well-densified Ni3Al-0.5B-5Cr alloy was fabricated by self-propagation high-temperature synthesis and extrusion technique. Microstructure examination shows that the synthesized alloy has fine microstructure and contains Ni3Al, Al2O3, Ni3B and Cr3Ni2 phases. Moreover, the self-propagation high-temperature synthesis and extrusion lead to great deformation and recrystallization in the alloy, which helps to refine the microstructure and weaken the misorientation. In addition, the subsequent extrusion procedure redistributes the Al2O3 particles and eliminates the γ-Ni phase. Compared with the alloy synthesized without extrusion, the Ni3Al-0.5B-5Cr alloy fabricated by self-propagation high-temperature synthesis and extrusion has better room temperature mechanical properties, which should be ascribed to the microstructure evolution. 展开更多
关键词 Ni3Al intermetallic compound self-propagation high-temperature synthesis EXTRUSION MICROSTRUCTURE mechanical properties
下载PDF
Microstructure and evolution of(TiB_2+Al_2O_3)/NiAl composites prepared by self-propagation high-temperature synthesis 被引量:3
17
作者 宋晓杰 崔洪芝 +1 位作者 曹丽丽 P.Y.GULYAEV 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1878-1884,共7页
(TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with... (TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with the TiB2+Al2O3 content in the NiAl matrix. TiB2 particles take a great variety of elementary shapes such as white bars, plates, herringbones, regular cubes and cuboids. These results outline a strategy of self-assembly processes in real time to build diversified microstructures. Some TiB2 grains in sizes of 2-5μm are embeded in Al2O3 clusters, while a small number of TiB2 particles disperse in the NiAl matrix. It is believed that the higher the TiB2+Al2O3 content is, the more the regular shapes and homogeneous distributions of TiB2 and Al2O3 will be present in the NiAl matrix. 展开更多
关键词 (TiB2+Al2O3)/NiAl composites self-propagation high-temperature synthesis MICROSTRUCTURE evolution mechanism
下载PDF
Preparation of ZrB_(2)-MoSi_(2) high oxygen resistant coating using nonequilibrium state powders by self-propagating high-temperature synthesis 被引量:3
18
作者 Menglin ZHANG Xuanru REN +5 位作者 Mingcheng ZHANG Songsong WANG Li WANG Qingqing YANG Hongao CHU Peizhong FENG 《Journal of Advanced Ceramics》 SCIE CAS CSCD 2021年第5期1011-1024,共14页
To achieve high oxygen blocking structure of the ZrB_(2)-MoSi_(2) coating applied on carbon structural material,ZrB_(2)-MoSi_(2) coating was prepared by spark plasma sintering(SPS)method utilizing ZrB_(2)-MoSi_(2) com... To achieve high oxygen blocking structure of the ZrB_(2)-MoSi_(2) coating applied on carbon structural material,ZrB_(2)-MoSi_(2) coating was prepared by spark plasma sintering(SPS)method utilizing ZrB_(2)-MoSi_(2) composite powders synthesized by self-propagating high-temperature synthesis(SHS)technique as raw materials.The oxygen blocking mechanism of the ZrB_(2)-MoSi_(2) coatings at 1973 K was investigated.Compared with commercial powders,the coatings prepared by SHS powders exhibited superior density and inferior oxidation activity,which significantly heightened the structural oxygen blocking ability of the coatings in the active oxidation stage,thus characterizing higher oxidation protection efficiency.The rise of MoSi_(2) content facilitated the dispersion of transition metal oxide nanocrystals(5-20 nm)in the SiO_(2) glass layer and conduced to the increasing viscosity,thus strengthening the inerting impact of the compound glass layer in the inert oxidation stage.Nevertheless,the ZrB_(2)-40 vol% MoSi_(2) coating sample prepared by SHS powders presented the lowest oxygen permeability of 0.3% and carbon loss rate of 0.29×10^(6)g·cm^(-2)·s^(-1).Owing to the gradient oxygen partial pressure inside the coatings,the Si-depleted layer was developed under the compound glass layer,which brought about acute oxygen erosion. 展开更多
关键词 ZrB_(2)-MoSi_(2)coatings spark plasma sintering(SPS) high-temperature synthesis(SHS) active/inert oxidation compound glass layer
原文传递
Magnetic properties of La-Zn substituted Sr-hexaferrites by self-propagation high-temperature synthesis 被引量:6
19
作者 游李顺 乔梁 +3 位作者 郑精武 蒋梅燕 姜力强 盛嘉伟 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第1期81-84,共4页
The La-Zn substituted SrM-type ferrites with the composition of Sr1-xLaxFe12-xZnxO19 (x=0-0.4) were prepared by self-propagating high-temperature synthesis (SHS). The single SrM phase was detected by XRD in the as... The La-Zn substituted SrM-type ferrites with the composition of Sr1-xLaxFe12-xZnxO19 (x=0-0.4) were prepared by self-propagating high-temperature synthesis (SHS). The single SrM phase was detected by XRD in the as-received samples by controlling the Fe contents in the reagents. The substitution of La^3+and Zn^2+ obviously increased the magnetic properties of the as-prepared samples. The maximum improvements of Br, Hcb and (BH)m were 14.4%, 15.3% and 30.7%, respectively compared with that of the samples without La-Zn substitution. Microstructure observation by SEM showed that the SHS method benefited forming the better particle features and achieving the higher Hcj in comparison with the traditional firing method. 展开更多
关键词 high-temperature synthesis ferrites SUBSTITUTION magnetic properties rare earths
下载PDF
Preparation of Nano-sized Zirconium Carbide Powders through a Novel Active Dilution Self-propagating High Temperature Synthesis Method 被引量:6
20
作者 达奥运 龙飞 +5 位作者 WANG Jilin XING Weihong WANG Yang ZHANG Fan 王为民 FU Zhengyi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第4期729-734,共6页
High quality nano-sized zirconium carbide (ZrC) powders were successfully fabricated via a developed chemical active dilution self-propagating high-temperature synthesis (SHS) method assisted by ball milling pretr... High quality nano-sized zirconium carbide (ZrC) powders were successfully fabricated via a developed chemical active dilution self-propagating high-temperature synthesis (SHS) method assisted by ball milling pretreatment process using traditional cheap zirconium dioxide powder (ZrO2), magnesium powder (Mg) and sucrose (C12H22Oll) as raw materials. FSEM, TEM, HRTEM, SAED, XRD, FTIR and Raman, ICP- AES, laser particle size analyzer, oxygen and nitrogen analyzer, carbon/sulfur determinator and TG-DSC were employed for the characterization of the morphology, structure, chemical composition and thermal stability of the as-synthesized ZrC samples. The as-synthesized samples demonstrated high purity, low oxygen content and evenly distributed ZrC nano-powders with an average particle size of 50nm. In addition, the effects of endothermic rate and the possible chemical reaction mechanism were also discussed. 展开更多
关键词 zirconium carbide ZRC self-propagating high-temperature synthesis active dilution NANO-POWDERS ball milling
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部