The effects of blade bowing on the performance of a high pressure-ratio turbocharger centrifugal compressor were studied by experiments and numerical simulation.The results showed that the negative bowing was capable ...The effects of blade bowing on the performance of a high pressure-ratio turbocharger centrifugal compressor were studied by experiments and numerical simulation.The results showed that the negative bowing was capable of increasing the choke mass rate and the efficiency but decreased the surge mass flow rate,while the positive bowing had the opposite effects.When coupling with the self-recirculation casing treatment,the surge mass flow rate of the compressor with negative bowing blade was almost identical with that of the prototype,while the choke mass flow rate was still larger,and the total effect contributed to an increase of the stable flow range by 5.85%at design speed.Besides,the flow mechanism of the coupling effects of blade bowing and self-recirculation casing treatment was discussed.展开更多
Casing treatment is a widely employed technique to increase the stall margins of turbomachineries. In the last several decades, many researches on casing treatment have been carded out. However, the mechanism of its e...Casing treatment is a widely employed technique to increase the stall margins of turbomachineries. In the last several decades, many researches on casing treatment have been carded out. However, the mechanism of its expanding stall margins is still not very clear. Till now, most casing teatment schemes are designed for axial compressors, while the investigations on casing treatments in centrifugal compressors are rarely reported. Moreover, current investigation methods mainly focus on experiments, and perfect theoretic al analysis is not yet feasible. In order to study the effectiveness and further the mechanism of casing treatments in centrifugal compressors, in this paper, a computationally based investigation of the impact of the self-recireulating casing treatment on the performance of a radial compressor is carried out. The results indicate that, by casing bleed and injection, the casing treatment with inclined blades in the cavity expands the stall margin most. At low mass flows, the reversed flow through the cavity with inclined blades develops the counter swirl flow in front of the impeller inlet, which is considered to benefit increasing the pressure rise from the injection port to the bleed port and thereby augment the recirculating flow. At 120% design speed, the stall margin is larger than that at the design speed. However, the cost of extending the stall margin is the reduction of isentropic efficiency. A mended casing treatment by shifting the bleed port upstream is also studied. It is demonstrated that, relative to the original casing treatment, this mend can improve the efficiency evidently notwithstanding a little narrowing of the flow range.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51176087)
文摘The effects of blade bowing on the performance of a high pressure-ratio turbocharger centrifugal compressor were studied by experiments and numerical simulation.The results showed that the negative bowing was capable of increasing the choke mass rate and the efficiency but decreased the surge mass flow rate,while the positive bowing had the opposite effects.When coupling with the self-recirculation casing treatment,the surge mass flow rate of the compressor with negative bowing blade was almost identical with that of the prototype,while the choke mass flow rate was still larger,and the total effect contributed to an increase of the stable flow range by 5.85%at design speed.Besides,the flow mechanism of the coupling effects of blade bowing and self-recirculation casing treatment was discussed.
基金supported by National Natural Science Foundation of China (Grant No. 50776056)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2006AA05Z250)
文摘Casing treatment is a widely employed technique to increase the stall margins of turbomachineries. In the last several decades, many researches on casing treatment have been carded out. However, the mechanism of its expanding stall margins is still not very clear. Till now, most casing teatment schemes are designed for axial compressors, while the investigations on casing treatments in centrifugal compressors are rarely reported. Moreover, current investigation methods mainly focus on experiments, and perfect theoretic al analysis is not yet feasible. In order to study the effectiveness and further the mechanism of casing treatments in centrifugal compressors, in this paper, a computationally based investigation of the impact of the self-recireulating casing treatment on the performance of a radial compressor is carried out. The results indicate that, by casing bleed and injection, the casing treatment with inclined blades in the cavity expands the stall margin most. At low mass flows, the reversed flow through the cavity with inclined blades develops the counter swirl flow in front of the impeller inlet, which is considered to benefit increasing the pressure rise from the injection port to the bleed port and thereby augment the recirculating flow. At 120% design speed, the stall margin is larger than that at the design speed. However, the cost of extending the stall margin is the reduction of isentropic efficiency. A mended casing treatment by shifting the bleed port upstream is also studied. It is demonstrated that, relative to the original casing treatment, this mend can improve the efficiency evidently notwithstanding a little narrowing of the flow range.