期刊文献+
共找到8,914篇文章
< 1 2 250 >
每页显示 20 50 100
Six-Dimensional Guidance: The Strategies of Thinking Quality Cultivation in Senior High School English Discourse Learning
1
作者 Junjie Sun 《Journal of Contemporary Educational Research》 2024年第3期237-245,共9页
Taking the discourse learning of the new senior high school English textbook published by the People’s Education Press as an example,combined with the“six-dimensional guidance”deep reading strategy,and through the ... Taking the discourse learning of the new senior high school English textbook published by the People’s Education Press as an example,combined with the“six-dimensional guidance”deep reading strategy,and through the six-skill training strategies of“memory skill training,understanding skill training,application skill training,analytical skill training,evaluation skill training,creative skill training,”this paper aims to cultivate students’thinking profundity,logic,flexibility,sensitivity,criticality,and originality.It also promotes the real implementation of senior high school English deep reading that points to the cultivation of thinking quality in classroom teaching,and realizes the transformation from“conventional reading”to“deep reading”that reflects the core literacy of the discipline. 展开更多
关键词 Six-dimensional guidance High school English Discourse learning Thinking quality Strategy
下载PDF
Application Strategies of Virtual Reality Technology in the Teaching Design of Vocational Courses from the Perspective of Learning Transfer Theory
2
作者 Shuyu Gong 《Journal of Contemporary Educational Research》 2024年第7期1-6,共6页
With the rapid development of virtual reality technology,it has been widely used in the field of education.It can promote the development of learning transfer,which is an effective method for learners to learn effecti... With the rapid development of virtual reality technology,it has been widely used in the field of education.It can promote the development of learning transfer,which is an effective method for learners to learn effectively.Therefore,this paper describes how to use virtual reality technology to achieve learning transfer in order to achieve teaching goals and improve learning efficiency. 展开更多
关键词 learning transfer Virtual reality technology Application strategy
下载PDF
The Effectiveness of Self-regulated Learning Strategies on Chinese College Students' English Learning
3
作者 张晓雁 李安玲 《海外英语》 2011年第10X期127-128,共2页
The purpose of this paper is to argue the effectiveness of self-regulated learning in English education in Chinese college classroom instruction. A study is given to show whether the introduction of self-regulated lea... The purpose of this paper is to argue the effectiveness of self-regulated learning in English education in Chinese college classroom instruction. A study is given to show whether the introduction of self-regulated learning can help improve Chinese college students' English learning, and help them perform better in the National English test-CET-4 (College English Test Level-4,). 展开更多
关键词 self-regulated learning GOAL-SETTING self-instructional strategies motivation SELF-EFFICACY EXPERIENTIAL GROUP and control GROUP
下载PDF
Relationships Between Chinese EFL Learners’IELTS Band Score and Motivated Strategies for Learning
4
作者 ZHANG Yue 《Sino-US English Teaching》 2023年第10期400-408,共9页
EFL learners,who study English as a foreign language,often use different learning strategies in the learning process,with positive and negative results in their academic performance.Whether these learning strategies a... EFL learners,who study English as a foreign language,often use different learning strategies in the learning process,with positive and negative results in their academic performance.Whether these learning strategies are effective or not are questions to be explored.So,the author examined the relationship between Chinese EFL learners’test results and the use of motivated strategies for learning in English learning.Participants are students who have taken a high-stake standardized English proficiency test:IELTS(International English Language Testing System)with band score obtained.The results show that students’performance on high-stakes assessment is significantly associated with the use of motivated learning strategies like internal value in sharp contrast to test anxiety,which bears no relevance.Interviews are then implemented to candidates with different levels of English proficiency to figure out other related factors contributing to the test results. 展开更多
关键词 IELTS learning strategies test assessment EFL learners
下载PDF
A Brief Study of Second Language Learning Strategies From the Perspective of Error Analysis
5
作者 PAN Yuhua 《Sino-US English Teaching》 2023年第10期385-391,共7页
Language teaching is not a one-way process.It interacts with language learning in an extremely intricate way.To improve language teaching,we need to take the process of language learning into account.This paper tries ... Language teaching is not a one-way process.It interacts with language learning in an extremely intricate way.To improve language teaching,we need to take the process of language learning into account.This paper tries to explore and understand what strategies the second language learners consciously or subconsciously adopt during their language learning process through the analyses of the linguistic errors they commit,so as to provide some insights into language teaching practice. 展开更多
关键词 second language acquisition error analysis learning strategies language teaching
下载PDF
基于改进Q-Learning的移动机器人路径规划算法
6
作者 王立勇 王弘轩 +2 位作者 苏清华 王绅同 张鹏博 《电子测量技术》 北大核心 2024年第9期85-92,共8页
随着移动机器人在生产生活中的深入应用,其路径规划能力也需要向快速性和环境适应性兼备发展。为解决现有移动机器人使用强化学习方法进行路径规划时存在的探索前期容易陷入局部最优、反复搜索同一区域,探索后期收敛率低、收敛速度慢的... 随着移动机器人在生产生活中的深入应用,其路径规划能力也需要向快速性和环境适应性兼备发展。为解决现有移动机器人使用强化学习方法进行路径规划时存在的探索前期容易陷入局部最优、反复搜索同一区域,探索后期收敛率低、收敛速度慢的问题,本研究提出一种改进的Q-Learning算法。该算法改进Q矩阵赋值方法,使迭代前期探索过程具有指向性,并降低碰撞的情况;改进Q矩阵迭代方法,使Q矩阵更新具有前瞻性,避免在一个小区域中反复探索;改进随机探索策略,在迭代前期全面利用环境信息,后期向目标点靠近。在不同栅格地图仿真验证结果表明,本文算法在Q-Learning算法的基础上,通过上述改进降低探索过程中的路径长度、减少抖动并提高收敛的速度,具有更高的计算效率。 展开更多
关键词 路径规划 强化学习 移动机器人 Q-learning算法 ε-decreasing策略
下载PDF
Significant risk factors for intensive care unit-acquired weakness:A processing strategy based on repeated machine learning 被引量:10
7
作者 Ling Wang Deng-Yan Long 《World Journal of Clinical Cases》 SCIE 2024年第7期1235-1242,共8页
BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective pr... BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective preventive measures.AIM To identify significant risk factors for ICU-AW through iterative machine learning techniques and offer recommendations for its prevention and treatment.METHODS Patients were categorized into ICU-AW and non-ICU-AW groups on the 14th day post-ICU admission.Relevant data from the initial 14 d of ICU stay,such as age,comorbidities,sedative dosage,vasopressor dosage,duration of mechanical ventilation,length of ICU stay,and rehabilitation therapy,were gathered.The relationships between these variables and ICU-AW were examined.Utilizing iterative machine learning techniques,a multilayer perceptron neural network model was developed,and its predictive performance for ICU-AW was assessed using the receiver operating characteristic curve.RESULTS Within the ICU-AW group,age,duration of mechanical ventilation,lorazepam dosage,adrenaline dosage,and length of ICU stay were significantly higher than in the non-ICU-AW group.Additionally,sepsis,multiple organ dysfunction syndrome,hypoalbuminemia,acute heart failure,respiratory failure,acute kidney injury,anemia,stress-related gastrointestinal bleeding,shock,hypertension,coronary artery disease,malignant tumors,and rehabilitation therapy ratios were significantly higher in the ICU-AW group,demonstrating statistical significance.The most influential factors contributing to ICU-AW were identified as the length of ICU stay(100.0%)and the duration of mechanical ventilation(54.9%).The neural network model predicted ICU-AW with an area under the curve of 0.941,sensitivity of 92.2%,and specificity of 82.7%.CONCLUSION The main factors influencing ICU-AW are the length of ICU stay and the duration of mechanical ventilation.A primary preventive strategy,when feasible,involves minimizing both ICU stay and mechanical ventilation duration. 展开更多
关键词 Intensive care unit-acquired weakness Risk factors Machine learning PREVENTION strategies
下载PDF
How do the landslide and non-landslide sampling strategies impact landslide susceptibility assessment? d A catchment-scale case study from China 被引量:2
8
作者 Zizheng Guo Bixia Tian +2 位作者 Yuhang Zhu Jun He Taili Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期877-894,共18页
The aim of this study is to investigate the impacts of the sampling strategy of landslide and non-landslide on the performance of landslide susceptibility assessment(LSA).The study area is the Feiyun catchment in Wenz... The aim of this study is to investigate the impacts of the sampling strategy of landslide and non-landslide on the performance of landslide susceptibility assessment(LSA).The study area is the Feiyun catchment in Wenzhou City,Southeast China.Two types of landslides samples,combined with seven non-landslide sampling strategies,resulted in a total of 14 scenarios.The corresponding landslide susceptibility map(LSM)for each scenario was generated using the random forest model.The receiver operating characteristic(ROC)curve and statistical indicators were calculated and used to assess the impact of the dataset sampling strategy.The results showed that higher accuracies were achieved when using the landslide core as positive samples,combined with non-landslide sampling from the very low zone or buffer zone.The results reveal the influence of landslide and non-landslide sampling strategies on the accuracy of LSA,which provides a reference for subsequent researchers aiming to obtain a more reasonable LSM. 展开更多
关键词 Landslide susceptibility Sampling strategy Machine learning Random forest China
下载PDF
Cognitive interference decision method for air defense missile fuze based on reinforcement learning 被引量:1
9
作者 Dingkun Huang Xiaopeng Yan +2 位作者 Jian Dai Xinwei Wang Yangtian Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期393-404,共12页
To solve the problem of the low interference success rate of air defense missile radio fuzes due to the unified interference form of the traditional fuze interference system,an interference decision method based Q-lea... To solve the problem of the low interference success rate of air defense missile radio fuzes due to the unified interference form of the traditional fuze interference system,an interference decision method based Q-learning algorithm is proposed.First,dividing the distance between the missile and the target into multiple states to increase the quantity of state spaces.Second,a multidimensional motion space is utilized,and the search range of which changes with the distance of the projectile,to select parameters and minimize the amount of ineffective interference parameters.The interference effect is determined by detecting whether the fuze signal disappears.Finally,a weighted reward function is used to determine the reward value based on the range state,output power,and parameter quantity information of the interference form.The effectiveness of the proposed method in selecting the range of motion space parameters and designing the discrimination degree of the reward function has been verified through offline experiments involving full-range missile rendezvous.The optimal interference form for each distance state has been obtained.Compared with the single-interference decision method,the proposed decision method can effectively improve the success rate of interference. 展开更多
关键词 Cognitive radio Interference decision Radio fuze Reinforcement learning Interference strategy optimization
下载PDF
Learning Strategies in Chinese EFL Learners' Reading Comprehension 被引量:1
10
作者 汪建丽 《陕西师范大学学报(哲学社会科学版)》 CSSCI 北大核心 2002年第S1期356-358,共3页
According to schema theory resulting from the psycholinguistic model of reading,comprehending a text is an interactive process between the reader background knowledge and the text. This article first views the psychol... According to schema theory resulting from the psycholinguistic model of reading,comprehending a text is an interactive process between the reader background knowledge and the text. This article first views the psycholinguistic model of reading and research in learning strategies, then discusses the application of socioaffective,cognitive, metacognitive learning strategies in Chinese EFL learners’ reading comprehension. 展开更多
关键词 schema theory learning strategy socioaffective COGNITIVE metacognitive
下载PDF
A Study on Different Learning Strategies Used by EFL Learners in China 被引量:3
11
作者 陈明辉 杨蕾达 《海外英语》 2011年第7X期124-125,共2页
This study explores how the Chinese learners apply the learning strategies in the language learning.The research examines how to understand EFL learners uses of learning strategies in language learning.The SILL(the St... This study explores how the Chinese learners apply the learning strategies in the language learning.The research examines how to understand EFL learners uses of learning strategies in language learning.The SILL(the Strategy Inventory for Language Learning) was the instrument of this study.The results show that the frequency of strategy use does not vary among the different levels of learners based on the SILL's mean scores.The results suggest that as the learners' levels become higher,the EFL learners tend to choose more strategies which are reflective of their active learning. 展开更多
关键词 learning strategies ENGLISH teaching SECOND language learning COLLEGE ENGLISH
下载PDF
基于多步信息辅助的Q-learning路径规划算法
12
作者 王越龙 王松艳 晁涛 《系统仿真学报》 CAS CSCD 北大核心 2024年第9期2137-2148,共12页
为提升静态环境下移动机器人路径规划能力,解决传统Q-learning算法在路径规划中收敛速度慢的问题,提出一种基于多步信息辅助机制的Q-learning改进算法。利用ε-greedy策略中贪婪动作的多步信息与历史最优路径长度更新资格迹,使有效的资... 为提升静态环境下移动机器人路径规划能力,解决传统Q-learning算法在路径规划中收敛速度慢的问题,提出一种基于多步信息辅助机制的Q-learning改进算法。利用ε-greedy策略中贪婪动作的多步信息与历史最优路径长度更新资格迹,使有效的资格迹在算法迭代中持续发挥作用,用保存的多步信息解决可能落入的循环陷阱;使用局部多花朵的花授粉算法初始化Q值表,提升机器人前期搜索效率;基于机器人不同探索阶段的目的,结合迭代路径长度的标准差与机器人成功到达目标点的次数设计动作选择策略,以增强算法对环境信息探索与利用的平衡能力。实验结果表明:该算法具有较快的收敛速度,验证了算法的可行性与有效性。 展开更多
关键词 路径规划 Q-learning 收敛速度 动作选择策略 栅格地图
下载PDF
Incorporation of Learning Strategies into Web-based Autonomous Listening 被引量:4
13
作者 李芳 《海外英语》 2019年第20期278-280,284,共4页
The thesis introduces a comparative study of students'autonomous listening practice in a web-based autonomous learning center and the traditional teacher-dominated listening practice in a traditional language lab.... The thesis introduces a comparative study of students'autonomous listening practice in a web-based autonomous learning center and the traditional teacher-dominated listening practice in a traditional language lab.The purpose of the study is to find how students'listening strategies differ in these two approaches and thereby to find which one better facilitates students'listening proficiency. 展开更多
关键词 learning strategies metacognitive strategies listening strategies WEB-BASED autonomous listening
下载PDF
An Incentive Mechanism for Federated Learning:A Continuous Zero-Determinant Strategy Approach
14
作者 Changbing Tang Baosen Yang +3 位作者 Xiaodong Xie Guanrong Chen Mohammed A.A.Al-qaness Yang Liu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期88-102,共15页
As a representative emerging machine learning technique, federated learning(FL) has gained considerable popularity for its special feature of “making data available but not visible”. However, potential problems rema... As a representative emerging machine learning technique, federated learning(FL) has gained considerable popularity for its special feature of “making data available but not visible”. However, potential problems remain, including privacy breaches, imbalances in payment, and inequitable distribution.These shortcomings let devices reluctantly contribute relevant data to, or even refuse to participate in FL. Therefore, in the application of FL, an important but also challenging issue is to motivate as many participants as possible to provide high-quality data to FL. In this paper, we propose an incentive mechanism for FL based on the continuous zero-determinant(CZD) strategies from the perspective of game theory. We first model the interaction between the server and the devices during the FL process as a continuous iterative game. We then apply the CZD strategies for two players and then multiple players to optimize the social welfare of FL, for which we prove that the server can keep social welfare at a high and stable level. Subsequently, we design an incentive mechanism based on the CZD strategies to attract devices to contribute all of their high-accuracy data to FL.Finally, we perform simulations to demonstrate that our proposed CZD-based incentive mechanism can indeed generate high and stable social welfare in FL. 展开更多
关键词 Federated learning(FL) game theory incentive mechanism machine learning zero-determinant strategy
下载PDF
Reinforcement Learning-Based Energy Management for Hybrid Power Systems:State-of-the-Art Survey,Review,and Perspectives
15
作者 Xiaolin Tang Jiaxin Chen +4 位作者 Yechen Qin Teng Liu Kai Yang Amir Khajepour Shen Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期1-25,共25页
The new energy vehicle plays a crucial role in green transportation,and the energy management strategy of hybrid power systems is essential for ensuring energy-efficient driving.This paper presents a state-of-the-art ... The new energy vehicle plays a crucial role in green transportation,and the energy management strategy of hybrid power systems is essential for ensuring energy-efficient driving.This paper presents a state-of-the-art survey and review of reinforcement learning-based energy management strategies for hybrid power systems.Additionally,it envisions the outlook for autonomous intelligent hybrid electric vehicles,with reinforcement learning as the foundational technology.First of all,to provide a macro view of historical development,the brief history of deep learning,reinforcement learning,and deep reinforcement learning is presented in the form of a timeline.Then,the comprehensive survey and review are conducted by collecting papers from mainstream academic databases.Enumerating most of the contributions based on three main directions—algorithm innovation,powertrain innovation,and environment innovation—provides an objective review of the research status.Finally,to advance the application of reinforcement learning in autonomous intelligent hybrid electric vehicles,future research plans positioned as“Alpha HEV”are envisioned,integrating Autopilot and energy-saving control. 展开更多
关键词 New energy vehicle Hybrid power system Reinforcement learning Energy management strategy
下载PDF
An Empirical Study of Depth of Vocabulary Knowledge and Vocabulary Learning Metacognitive Strategies of Non-English Majors 被引量:1
16
作者 徐敏娜 骆敏 《海外英语》 2017年第15期11-12,共2页
This paper concentrates on the depth of vocabulary knowledge and vocabulary learning metacognitive strategies used by Chinese non-English majors in an independent college.Results show the depth of vocabulary knowledge... This paper concentrates on the depth of vocabulary knowledge and vocabulary learning metacognitive strategies used by Chinese non-English majors in an independent college.Results show the depth of vocabulary knowledge of the subjects only reaches the passing level.And metacognitive strategies are correlated significantly with the depth of vocabulary knowledge. 展开更多
关键词 vocabulary acquisition depth of vocabulary knowledge vocabulary learning metacognitive strategies CORRELATION
下载PDF
Collision-free parking recommendation based on multi-agent reinforcement learning in vehicular crowdsensing
17
作者 Xin Li Xinghua Lei +1 位作者 Xiuwen Liu Hang Xiao 《Digital Communications and Networks》 SCIE CSCD 2024年第3期609-619,共11页
The recent proliferation of Fifth-Generation(5G)networks and Sixth-Generation(6G)networks has given rise to Vehicular Crowd Sensing(VCS)systems which solve parking collisions by effectively incentivizing vehicle parti... The recent proliferation of Fifth-Generation(5G)networks and Sixth-Generation(6G)networks has given rise to Vehicular Crowd Sensing(VCS)systems which solve parking collisions by effectively incentivizing vehicle participation.However,instead of being an isolated module,the incentive mechanism usually interacts with other modules.Based on this,we capture this synergy and propose a Collision-free Parking Recommendation(CPR),a novel VCS system framework that integrates an incentive mechanism,a non-cooperative VCS game,and a multi-agent reinforcement learning algorithm,to derive an optimal parking strategy in real time.Specifically,we utilize an LSTM method to predict parking areas roughly for recommendations accurately.Its incentive mechanism is designed to motivate vehicle participation by considering dynamically priced parking tasks and social network effects.In order to cope with stochastic parking collisions,its non-cooperative VCS game further analyzes the uncertain interactions between vehicles in parking decision-making.Then its multi-agent reinforcement learning algorithm models the VCS campaign as a multi-agent Markov decision process that not only derives the optimal collision-free parking strategy for each vehicle independently,but also proves that the optimal parking strategy for each vehicle is Pareto-optimal.Finally,numerical results demonstrate that CPR can accomplish parking tasks at a 99.7%accuracy compared with other baselines,efficiently recommending parking spaces. 展开更多
关键词 Incentive mechanism Non-cooperative VCS game Multi-agent reinforcement learning Collision-free parking strategy Vehicular crowdsensing
下载PDF
Efficient Penetration Testing Path Planning Based on Reinforcement Learning with Episodic Memory
18
作者 Ziqiao Zhou Tianyang Zhou +1 位作者 Jinghao Xu Junhu Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2613-2634,共22页
Intelligent penetration testing is of great significance for the improvement of the security of information systems,and the critical issue is the planning of penetration test paths.In view of the difficulty for attack... Intelligent penetration testing is of great significance for the improvement of the security of information systems,and the critical issue is the planning of penetration test paths.In view of the difficulty for attackers to obtain complete network information in realistic network scenarios,Reinforcement Learning(RL)is a promising solution to discover the optimal penetration path under incomplete information about the target network.Existing RL-based methods are challenged by the sizeable discrete action space,which leads to difficulties in the convergence.Moreover,most methods still rely on experts’knowledge.To address these issues,this paper proposes a penetration path planning method based on reinforcement learning with episodic memory.First,the penetration testing problem is formally described in terms of reinforcement learning.To speed up the training process without specific prior knowledge,the proposed algorithm introduces episodic memory to store experienced advantageous strategies for the first time.Furthermore,the method offers an exploration strategy based on episodic memory to guide the agents in learning.The design makes full use of historical experience to achieve the purpose of reducing blind exploration and improving planning efficiency.Ultimately,comparison experiments are carried out with the existing RL-based methods.The results reveal that the proposed method has better convergence performance.The running time is reduced by more than 20%. 展开更多
关键词 Intelligent penetration testing penetration testing path planning reinforcement learning episodic memory exploration strategy
下载PDF
Reinforcement Learning Based Quantization Strategy Optimal Assignment Algorithm for Mixed Precision
19
作者 Yuejiao Wang Zhong Ma +2 位作者 Chaojie Yang Yu Yang Lu Wei 《Computers, Materials & Continua》 SCIE EI 2024年第4期819-836,共18页
The quantization algorithm compresses the original network by reducing the numerical bit width of the model,which improves the computation speed. Because different layers have different redundancy and sensitivity to d... The quantization algorithm compresses the original network by reducing the numerical bit width of the model,which improves the computation speed. Because different layers have different redundancy and sensitivity to databit width. Reducing the data bit width will result in a loss of accuracy. Therefore, it is difficult to determinethe optimal bit width for different parts of the network with guaranteed accuracy. Mixed precision quantizationcan effectively reduce the amount of computation while keeping the model accuracy basically unchanged. In thispaper, a hardware-aware mixed precision quantization strategy optimal assignment algorithm adapted to low bitwidth is proposed, and reinforcement learning is used to automatically predict the mixed precision that meets theconstraints of hardware resources. In the state-space design, the standard deviation of weights is used to measurethe distribution difference of data, the execution speed feedback of simulated neural network accelerator inferenceis used as the environment to limit the action space of the agent, and the accuracy of the quantization model afterretraining is used as the reward function to guide the agent to carry out deep reinforcement learning training. Theexperimental results show that the proposed method obtains a suitable model layer-by-layer quantization strategyunder the condition that the computational resources are satisfied, and themodel accuracy is effectively improved.The proposed method has strong intelligence and certain universality and has strong application potential in thefield of mixed precision quantization and embedded neural network model deployment. 展开更多
关键词 Mixed precision quantization quantization strategy optimal assignment reinforcement learning neural network model deployment
下载PDF
Dynamic plugging regulating strategy of pipeline robot based on reinforcement learning
20
作者 Xing-Yuan Miao Hong Zhao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期597-608,共12页
Pipeline isolation plugging robot (PIPR) is an important tool in pipeline maintenance operation. During the plugging process, the violent vibration will occur by the flow field, which can cause serious damage to the p... Pipeline isolation plugging robot (PIPR) is an important tool in pipeline maintenance operation. During the plugging process, the violent vibration will occur by the flow field, which can cause serious damage to the pipeline and PIPR. In this paper, we propose a dynamic regulating strategy to reduce the plugging-induced vibration by regulating the spoiler angle and plugging velocity. Firstly, the dynamic plugging simulation and experiment are performed to study the flow field changes during dynamic plugging. And the pressure difference is proposed to evaluate the degree of flow field vibration. Secondly, the mathematical models of pressure difference with plugging states and spoiler angles are established based on the extreme learning machine (ELM) optimized by improved sparrow search algorithm (ISSA). Finally, a modified Q-learning algorithm based on simulated annealing is applied to determine the optimal strategy for the spoiler angle and plugging velocity in real time. The results show that the proposed method can reduce the plugging-induced vibration by 19.9% and 32.7% on average, compared with single-regulating methods. This study can effectively ensure the stability of the plugging process. 展开更多
关键词 Pipeline isolation plugging robot Plugging-induced vibration Dynamic regulating strategy Extreme learning machine Improved sparrow search algorithm Modified Q-learning algorithm
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部