Color filters are produced using semiconductor production techniques although problems with low yield remain to be addressed. This study presents a new means of selective removal using excimer irradiation, chemical et...Color filters are produced using semiconductor production techniques although problems with low yield remain to be addressed. This study presents a new means of selective removal using excimer irradiation, chemical etching, or electrochemical machining on the fifth generation TFT LCDs. The selective removal of microstructure layers from the color filter surface of an optoelectronic flat panel display, as well as complete removal of the ITO thin-films, RGB layer, or resin black matrix (BM) layer from the substrate is possible. Individual defective film layers can be removed, or all films down to the Cr layer or bare glass can be completely eliminated. Experimental results demonstrate that defective ITO thin-films, RGB layers, or the resin BM layer can now be recycled with a great precision. When the ITO or RGB layer proves difficult to remove, excimer light can be used to help with removal. During this recycling process, the use of 225 nm excimer irradiation before chemical etching, or electrochemical machining, makes removal of stubborn film residues easy, effectively improving the quality of recycled color filters and reducing fabrication cost.展开更多
This paper mainly describes a research of fabrication-technology of silicon magnetic-sensitive transistor (SMST) with rectangle-plank-cubic structure fabricated on silicon wafer by MEMS technique.An experiment researc...This paper mainly describes a research of fabrication-technology of silicon magnetic-sensitive transistor (SMST) with rectangle-plank-cubic structure fabricated on silicon wafer by MEMS technique.An experiment research on basic characteristic of the silicon magnetic-sensitive transistor was done.Anisotropic etching and reliable technique project were provided and applied in order to fabricate SMST with rectangle-plank-cubic construction.This means that a new kind of fabrication technology for silicon magnetic-sensitive transistor was provided.The result shows that the technique can be not only compatible with IC technology but also integrated easily,and has a wide application field.展开更多
A novel capacitive pressure sensor is presented, whose sensing structure is a solid-state capacitor consisting of three square membranes with Al/SiO2/n-type silicon. It was fabricated using pn junction self-stop etchi...A novel capacitive pressure sensor is presented, whose sensing structure is a solid-state capacitor consisting of three square membranes with Al/SiO2/n-type silicon. It was fabricated using pn junction self-stop etching combined with adhesive bonding,and only three masks were used during the process. Sensors with side lengths of 1000,1200,and 1400μm were fabricated,showing sensitivity of 1.8,2.3, and 3.6fF/hPa over the range of 410~ 1010hPa, respectively. The sensi- tivity of the sensor with a side length of 1500μm is 4. 6fF/hPa,the nonlinearity is 6. 4% ,and the max hysteresis is 3.6%. The results show that permittivity change plays an important part in the capacitance change.展开更多
基金supported by the BEN TEN CO., and National Science Council contracts 98-2221-E-152-001 and 99-2221-E-152-001
文摘Color filters are produced using semiconductor production techniques although problems with low yield remain to be addressed. This study presents a new means of selective removal using excimer irradiation, chemical etching, or electrochemical machining on the fifth generation TFT LCDs. The selective removal of microstructure layers from the color filter surface of an optoelectronic flat panel display, as well as complete removal of the ITO thin-films, RGB layer, or resin black matrix (BM) layer from the substrate is possible. Individual defective film layers can be removed, or all films down to the Cr layer or bare glass can be completely eliminated. Experimental results demonstrate that defective ITO thin-films, RGB layers, or the resin BM layer can now be recycled with a great precision. When the ITO or RGB layer proves difficult to remove, excimer light can be used to help with removal. During this recycling process, the use of 225 nm excimer irradiation before chemical etching, or electrochemical machining, makes removal of stubborn film residues easy, effectively improving the quality of recycled color filters and reducing fabrication cost.
文摘This paper mainly describes a research of fabrication-technology of silicon magnetic-sensitive transistor (SMST) with rectangle-plank-cubic structure fabricated on silicon wafer by MEMS technique.An experiment research on basic characteristic of the silicon magnetic-sensitive transistor was done.Anisotropic etching and reliable technique project were provided and applied in order to fabricate SMST with rectangle-plank-cubic construction.This means that a new kind of fabrication technology for silicon magnetic-sensitive transistor was provided.The result shows that the technique can be not only compatible with IC technology but also integrated easily,and has a wide application field.
文摘为解决半导体激光器的偏振问题,提出了一种利用泰尔博特位移光刻曝光技术在Ga As衬底上制作周期光栅的方法,并系统研究了工艺参数和抗反射层对制备的周期光栅质量的影响。利用二次光刻工艺和反应离子蚀刻工艺在Ga As衬底上制备圆孔阵列周期光栅;通过电感耦合等离子体蚀刻设备制造均匀光栅。实验结果表明,该工艺流程可制备深度为20~150 nm的动态可调圆孔阵列周期光栅;当曝光剂量为30 m J·cm^(-2),曝光光强度为2 m W·cm^(-2),显影时间为1 min时,所曝光出的周期光栅符合实验要求;重复实验证明了利用泰尔伯特位移光刻技术制备光栅工艺的可行性及稳定性。
文摘A novel capacitive pressure sensor is presented, whose sensing structure is a solid-state capacitor consisting of three square membranes with Al/SiO2/n-type silicon. It was fabricated using pn junction self-stop etching combined with adhesive bonding,and only three masks were used during the process. Sensors with side lengths of 1000,1200,and 1400μm were fabricated,showing sensitivity of 1.8,2.3, and 3.6fF/hPa over the range of 410~ 1010hPa, respectively. The sensi- tivity of the sensor with a side length of 1500μm is 4. 6fF/hPa,the nonlinearity is 6. 4% ,and the max hysteresis is 3.6%. The results show that permittivity change plays an important part in the capacitance change.