In this study, we tried to improve the performance by giving a pre-swirling flow to the radial inflow that occurred in the semi-opened axial fan. In addition, the flow fields of rotor outlet were clarified experimenta...In this study, we tried to improve the performance by giving a pre-swirling flow to the radial inflow that occurred in the semi-opened axial fan. In addition, the flow fields of rotor outlet were clarified experimentally, and the effect of pre-swirling flow was considered. The experiment was carried out using a performance test wind tunnel with a square cross section of 880 mm. Three types of casings were prepared, in which the blade tip protruded 0%, 20%, and 40% of the meridional chord length. They were called R25, R15, and R05, respectively, in the casing bellmouth model code. Guide blades for generating a pre-swirling flow were installed on the vertical wall surface of the casing. In addition, a vertical wall was installed 60% upstream of the meridional chord length as an obstacle to prevent axial inflow. The velocity fields of the rotor outlet were measured using a hot-wire anemometer. From the results, the pre-swirling flow did not significantly affect the fan performance. When there was no obstacles wall upstream, there was a partial increase in efficiency, but the difference was not so large. When there was an obstacle wall upstream, the efficiency increased overall in the case of R15, but in the case of R05, the efficiency increased only in the low flow rate region, and conversely decreased in the high flow rate region. By observing the blade outlet flow fields when the performance was improved, it was confirmed that the influence of the tip leakage vortex was weakened.展开更多
The gas-liquid two-phase swirl flow can increase the gas-liquid two-phase contact area and enhance the heat and mass transfer efficiency between gas and liquid.The swirl flow has important practical application value ...The gas-liquid two-phase swirl flow can increase the gas-liquid two-phase contact area and enhance the heat and mass transfer efficiency between gas and liquid.The swirl flow has important practical application value for promoting gas hydrate formation and ensuring the flow safe of natural gas hydrate slurry.The experimental section was made of plexiglass pipe and the experimental medium was air and water.The flow pattern of the gas-liquid two-phase swirl flow in the horizontal pipe was divided,according to a high-definition camera and the overall characteristics of the gas-liquid interface.The flow pattern map of the gas-liquid two-phase swirl flow in a horizontal pipe was studied.The influence of the flow velocity and vane parameters on pressure drop was investigated.Two types of gas-liquid two-phase swirl flow pressure drop models was established.The homogeneous-phase and split-phase pressure drop models have good prediction on swirl bubble flow,swirl dispersed flow,swirl annular flow and swirl stratified flow,and the predictive error band is not more than 20%.展开更多
Wall-mounted swirling ventilation is a new type of system in mechanized excavation faces with a dust sup-pression performance that is closely related to the blowing-to-suction flow ratio.Physical and simulation models...Wall-mounted swirling ventilation is a new type of system in mechanized excavation faces with a dust sup-pression performance that is closely related to the blowing-to-suction flow ratio.Physical and simulation models were developed according to the No.C103 mechanized excavation face in the Nahe Coal Mine of the Baise Mining Bureau,Guangxi Province to optimize the blowing-to-suction flow ratio for wall-mounted swirling ventilation.Both the k-εturbulence model and the discrete phase model were utilized to simulate airflow field structures and dust concentration distribution patterns at various blowing-to-suction flow ratios.The results suggest that higher blowing-to-suction flow ratios increase the airflow field disturbance around the working face and weaken the intensity of the axial air curtain.On the other hand,both the intensity of the radial air curtain and the dust suppression effect are enhanced.At a blowing-to-suction flow ratio of 0.8,the wall-mounted swirling ventilation system achieved the most favorable dust suppression performance.Both the total dust and respirable dust had their lowest concentrations with maximum efficiencies of reducing both types at 90.33%and 87.16%,respectively.展开更多
The basic equations of turbulent gas-solid flows are derived by using the pseudo-fluid model of particle phase with a refined two-phase turbulence model.These equations are then applied to swirling gas-particle flows ...The basic equations of turbulent gas-solid flows are derived by using the pseudo-fluid model of particle phase with a refined two-phase turbulence model.These equations are then applied to swirling gas-particle flows for analyzing the collection efficiency in cyclone separators.展开更多
Turbulent swirling flows and methane-air swirling diffusion combustion are simulated by both large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid-scale (SGS) turbulence model, a second-order moment (SOM) subg...Turbulent swirling flows and methane-air swirling diffusion combustion are simulated by both large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid-scale (SGS) turbulence model, a second-order moment (SOM) subgrid-scale combustion model and an eddy break up (EBU) combustion model and Reynolds-averaged NavierStokes (RANS) modeling using the Reynolds stress equation model and a second-order moment (SOM) combustion model. For swirling flows, the LES statistical results give better agreement with the experimental results than the RANS modeling, indicating that the adopted subgrid-scale turbulence model is suitable for swirling flows. For swirling combustion, both the proposed SOM SGS combustion model and the RANS-SOM model give the results in good agreement with the experimental results, but the LES-EBU modeling results are not in agreement with the experimental results.展开更多
Turbulent swirling flows and methane-air swirling diffusion combustion are studied by large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid scale turbulence model and a second-order moment (SOM) SGS combus...Turbulent swirling flows and methane-air swirling diffusion combustion are studied by large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid scale turbulence model and a second-order moment (SOM) SGS combustion model, and also by RANS modeling using the Reynolds Stress equation model with the IPCM+wall and IPCM pressure-strain models and SOM combustion model. The LES statistical results for swirling flows give good agreement with the experimental results, indicating that the adopted subgrid-scale turbulence model is suitable for swirling flows. The LES instantaneous results show the complex vortex shedding pattern in swirling flows. The initially formed large vortex structures soon break up in swirling flows. The LES statistical results of combustion modeling are near the experimental results and are as good as the RANS-SOM modeling results. The LES results show that the size and range of large vortex structures in swirling combustion are different from those of isothermal swirling flows, and the chemical reaction is intensified by the large-eddy vortex structures.展开更多
The axial and tangential velocities of gas and particle phases and particle concentration for turbulent swirling and recirculating gas-particle (simulating gas-droplet) flows in a cold model of a dual-inlet sudden-exp...The axial and tangential velocities of gas and particle phases and particle concentration for turbulent swirling and recirculating gas-particle (simulating gas-droplet) flows in a cold model of a dual-inlet sudden-expansion combustor with partially tangential central tubes, proposed by the present authors, were measured by using a 2-D LDV system and a laser optic fiber system combined with a sampling probe. The results show that there are both gas and particle strongly reverse flows and swirling flows in the head part of the combustor. The velocity slip between gas and particle phases is remarkable. The particle concentration is higher near the wall and lower near the axis. There are two peaks in the concentration profiles near the inlet tubes. The above-obtained flow characteristics are favorable to ignition, flame stabilization and combustion. The results can also be used to validate the numerical modeling.展开更多
Numerically-aided experimental studies are conducted on a swirl-stabilized combustor to investigate the dilution effects on flame stability, flame structure, and pollutant emissions of premixed CH4/air flames. Our goa...Numerically-aided experimental studies are conducted on a swirl-stabilized combustor to investigate the dilution effects on flame stability, flame structure, and pollutant emissions of premixed CH4/air flames. Our goal is to provide a systematic assessment on combustion characteristics in diluted regimes for its application to environmentally-friendly approaches such as biogas combustion and exhanst-gas recirculation technology. Two main diluting species, N2 and CO2, are tested at various dilution rates. The results obtained by means of optical diagnostics show that five main flame regimes can be observed for Nz-diluted flames by changing excess air and dilution rate. CO2-diluted flames follow the same pattern evolution except that all the domains are shifted to lower excess air. Both N2 and CO2 dilution affect the lean blow- out (LBO) limits negatively. This behavior can be counter-balanced by reactant preheating which is able to broaden the flammability domain of the diluted flames. Flame reactivity is degraded by increasing dilution rate. Meanwhile, flames are thickened in the presence of both diluting species. NOx emissions are significantly reduced with dilution and proved to be relevant to flame stability diagrams: slight augmentation in NOx emission profiles is related to transitional flame states where instability occurs. Although dilution results in increase in CO emissions at certain levels, optimal dilution rates can still be proposed to achieve an ideal compromise.展开更多
A Reynolds stress closure based on the generalized Langevin model (GLM), developed by Haworth and Pope, is applied to the flow calculation with swirl-induced recirculation. The purpose of the work is to assess the per...A Reynolds stress closure based on the generalized Langevin model (GLM), developed by Haworth and Pope, is applied to the flow calculation with swirl-induced recirculation. The purpose of the work is to assess the performance of this model under the complex flow conditions caused by the presence of strong swirl which gives rise to both unconventional recirculation in the vicinity of the symmetry axis and strong anisotropy in the turbulence field. Comparison of the computational results are made both with the experimental data of Roback and Johnson and the computational results obtained with the typical isotropization of production model (IPM) and the k-∈ type Boussinesq viscosity model.展开更多
This study investigated the heat transfer and flow characteristics of one kind of swirlgenerator in a circular heat exchanger tube through a numericalsimulation. The swirlflow induced by this type of swirlgenerator ca...This study investigated the heat transfer and flow characteristics of one kind of swirlgenerator in a circular heat exchanger tube through a numericalsimulation. The swirlflow induced by this type of swirlgenerator can obtain a high heat transfer rate with minimalpressure drop penalty. The simulations were carried out to understand the physicalbehavior of this kind of mesoscale heat enhancement component. By visualizing the heat transfer and flow characteristics, it is found that the swirlflow is induced by swirlgenerator in the circular tube couples with the impinging jet effect. After passing through the swirlgenerator, the localfriction factor of liquid can quickly return to lower levelmore quickly, while the localNusselt number maintains higher values for a distance; thus, the evaluation criterion of localperformance is improved. Single-factor optimization is used for three geometric parameters, i.e., the angle of swirlgenerator(25o, 45o, and 60o), the length of swirlgenerator(0.005, 0.01, and 0.02 m), and the center rod radius(1, 2, and 3 mm). The optimum parameters of the swirlgenerator for laminar flow of air in a circular tube are obtained, which should be 60o, 0.005 m, and 3 mm, respectively.展开更多
Turbulent swirling flow inside a short pipe interacting with a conical bluff body was simulated using the commercial CFD code Fluent.The geometry used is a simplified version of a novel liquid/gas separator used in mu...Turbulent swirling flow inside a short pipe interacting with a conical bluff body was simulated using the commercial CFD code Fluent.The geometry used is a simplified version of a novel liquid/gas separator used in multiphase flow metering.Three turbulence models,belonging to the Reynolds averaged Navier-Stokes(RANS)equations framework,are used.These are,RNG k-ε,SST k-ωand the full Reynolds stress model(RSM)in their steady and unsteady versions.Steady and unsteady RSM simulations show similar behavior.Compared to other turbulence models,they yield the best predictions of the mean velocity profiles though they exhibit some discrepancies in the core region.The influence of the Reynolds number on velocity profiles,swirl decay,and wall pressure on the bluff body are also presented.For Reynolds numbers generating a Rankine-like velocity profile,the width and magnitude of flow reversal zone decreases along the pipe axis disappearing downstream for lower Reynolds numbers.The tangential velocity peaks increase with increasing Reynolds number.The swirl decay rate follows an exponential form in accordance with the existing literature.These flow features would affect the performance of the real separator and,thus,the multiphase flow meter,noticeably.展开更多
The secondary flow downstream of a triple elbow layout was studied experimentally and numerically to visualize the flow behavior under swirling inlet flow conditions. The inlet swirling condition was generated by a sw...The secondary flow downstream of a triple elbow layout was studied experimentally and numerically to visualize the flow behavior under swirling inlet flow conditions. The inlet swirling condition was generated by a swirl generator, consisting of a rotary pipe and honeycomb assembly. The experiments were carried out in turbulent water flow condition at Reynolds number Re = 1 × 104 and inlet swirl intensity S = 1. Ultrasonic measurements were taken at four locations downstream of the third elbow. The two-dimensional velocity field of the flow field was measured using the phased array ultrasonic velocity profiler technique to evaluate the flow field with separation. Furthermore, a numerical simulation was performed and its results were compared with the experimental data. The numerical result was obtained by solving three-dimensional, Reynolds-averaged Navier-Stokes equations with the renormalization group k-ε turbulence model. The experimental results confirmed that the swirling flow condition modified the size of the separation region downstream of the third elbow. A qualitative comparison between the experimental and CFD simulation results of the averaged velocity field downstream of the third elbow showed similar tendency on reverse flow.展开更多
A renovation project of miniaturization and high efficiency is provided for the hot blast stove .The experimental data tested feasibility of the new-type swirl flow hot blast stove. The normal and hot state experiment...A renovation project of miniaturization and high efficiency is provided for the hot blast stove .The experimental data tested feasibility of the new-type swirl flow hot blast stove. The normal and hot state experiments have been done through changing the angle of gas entering into the regenerator. Factors influencing pressure drop have been studied and analyzed. The experimental results can be formulated in the form of the Ergun equation. The regression equation is obtained. And two modified coefficients are offered to the regenerator pressure drop of the new-type swirl flow hot blast stove.展开更多
Numerical simulation is applied to gas-particle flows of the primary and the secondary air ducts and burner region, and of two kinds of swirl burners. The modeling results of Radial Bias Combustion (RBC) burner well a...Numerical simulation is applied to gas-particle flows of the primary and the secondary air ducts and burner region, and of two kinds of swirl burners. The modeling results of Radial Bias Combustion (RBC) burner well agreed with the data from the three-dimensional Phase-Doppler anemometry (PDA) experiment by Li, et al. The modeling test conducted in a 1025 t/h boiler was to study the quality of aerodynamics for a Central Fuel Rich (CFR) burner, and the Internal Recirculation Zone (IRZ) was measured. In addition, gas-particle flows with a CFR burner were investigated by numerical simulation, whose results accorded with the test data fundamentally. By analyzing the distribution of gas velocity and trajectories of particles respectively, it is found that the primary air’s rigidity of CFR burner is stronger than that of RBC burner, and the primary air mixes with the secondary air later. Furthermore, high concentration region of pulverized coal exists in the burner’s central zone whose atmosphere is reduced, and trajectories of particles in IRZ of CFR burner are longer than that of RBC burner. They are favorable to coal’s ignition and the reduction of NOx emission.展开更多
The labyrinth seal in turbomachinery is a key element that restricts leakage flow among rotor-stator clearances from high-pressure regions to low-pressure regions. The fluid-induced forces on the rotor from seals duri...The labyrinth seal in turbomachinery is a key element that restricts leakage flow among rotor-stator clearances from high-pressure regions to low-pressure regions. The fluid-induced forces on the rotor from seals during machine operation must be accurately quantified to predict their dynamic behavior effectively. To understand the fluid-induced force characteristics of the labyrinth seal more fully, the effects of four types of pre-swirls on the leakage, flow field, and fluid-induced force of a rotary straight-through labyrinth gas seal (RSTLGS) were numerically investigated using the proposed steady computational fluid dynamics (CFD) method based on the three-dimensional models of the RSTLGS. The leakage, flow field, and fluid-induced force of the RSTLGS for six axial pre-swirl velocities, four radial preswirl angles, four circumferential positive pre-swirl angles, and four circumferential negative pre-swirl angles were computed under the same geometrical parameters and operational conditions. Mesh analysis ensures the accuracy of the present steady CFD method. The numerical results show that the four types of pre-swirls influence the leakage, flow field, and fluid-induced force of the RSTLGS. The axial pre-swirl velocity remarkably inhibits the fluid-induced force, and the circumferential positive pre-swirl angle and circumferential negative pre-swirl angle remarkably promote the fluid-induced force. The effects of the radial pre-swirl angle on the fluid-induced force are complicated, and the pressure forces and viscous forces show the maximum or minimum values at a specific radial pre-swirl angle. The pre-swirl has a negligible impact on the leakage. The four types of pre-swirls affect the leakage, flow field, and fluidinduced force of the RSTLGS to varying degrees. The pre-swirl is the influence factor affecting the leakage, flow field, and fluid-induced force of the RSTLGS. The conclusions will help to understand the fluid-induced force of labyrinth seals more fully, by providing helpful suggestions for engineering practices and a theoretical basis to analyze the fluid–structure interaction of the seal-rotor system in future research.展开更多
The decay of weakly swirling flows in a type of cross-section-varying pipes was discussed analytically. For laminar swirling flow, the feature of exponential decay was demonstrated. For turbulent swirling flow, in spi...The decay of weakly swirling flows in a type of cross-section-varying pipes was discussed analytically. For laminar swirling flow, the feature of exponential decay was demonstrated. For turbulent swirling flow, in spite of the decay of circulation flux, a necessary condition for local circulation to amplify along downstream was obtained under the Boussinesq's hypothesis.展开更多
The stability condition for compressible and incompressible swirling flow is discussed and compared. It is found that Eckhoff and Storesletten's necessary condition for stability of inviscid compressible swirling ...The stability condition for compressible and incompressible swirling flow is discussed and compared. It is found that Eckhoff and Storesletten's necessary condition for stability of inviscid compressible swirling flow seems incorrect.展开更多
Heat transfer and flow behaviors in three-dimensional circular tubes with loose-fit multiple channel twisted tapes were numerically studied. The investigation was examined for Reynolds numbers (Re) ranging from 5000...Heat transfer and flow behaviors in three-dimensional circular tubes with loose-fit multiple channel twisted tapes were numerically studied. The investigation was examined for Reynolds numbers (Re) ranging from 5000 to 15,000, by using air as testing fluid. Effects of the multiple channel number (N = 2, 3, and 4), clearance ratio (CR = 0.0, 0.025, 0.05, and 0.075) on heat transfer enhancement and flow friction were examined. The numerical results indicate that the tubes with loose-fit multiple channel twisted tapes perform higher heat transfer rates than the plain tube. The enhanced heat transfer rate is escorted with larger pressure drop. Both heat transfer and pressure drop increase with increasing multiple channel number (N) and decreasing clearance ratio (CR). Heat transfer augmented by the loose-fit multiple channel twisted tape with N = 4 is higher than those enhanced by the ones with N = 2 and 3 by around 9.5-17.8% and 5.8-7.8%, respectively. In addition, the loose-fit multiple channel twisted tapes with clearance ratio of 0.025, 0.05, and 0.075 give lower heat transfer rates than the one with CR = 0.0 by around 8.4%, 17.5%, and 28.8%, respectively.展开更多
Vapor-water two phase flow separation in pressure vessel of nuclear power plants is accomplished with swirl motion using vanes. In order to reduce separation pressure loss and to make it economic, a new type of low co...Vapor-water two phase flow separation in pressure vessel of nuclear power plants is accomplished with swirl motion using vanes. In order to reduce separation pressure loss and to make it economic, a new type of low cost simplified innovative separator using lattice core configuration is proposed where swirling is caused by the orthogonal driving flow. The performance of the separator has been assessed numerically with the commercial CFD code FLUENT 14.0. The numerical analysis is compared with the experiment. The geometry and flow conditions are chosen according to the experiment. In the analysis, standard k – e and realizable k – e turbulence models are implemented. The prediction of maximum air void fraction with realizable k – e model was almost the same as input air void fraction but the void fraction computed by standard k – e model was compared better with the experimental results than the realizable k – e model. Some discrepancies in flow pattern between the experimental and simulation results are observed which might be due to the difference of nozzle shape. However, a more detailed model is necessary to arrive at the final conclusion.展开更多
文摘In this study, we tried to improve the performance by giving a pre-swirling flow to the radial inflow that occurred in the semi-opened axial fan. In addition, the flow fields of rotor outlet were clarified experimentally, and the effect of pre-swirling flow was considered. The experiment was carried out using a performance test wind tunnel with a square cross section of 880 mm. Three types of casings were prepared, in which the blade tip protruded 0%, 20%, and 40% of the meridional chord length. They were called R25, R15, and R05, respectively, in the casing bellmouth model code. Guide blades for generating a pre-swirling flow were installed on the vertical wall surface of the casing. In addition, a vertical wall was installed 60% upstream of the meridional chord length as an obstacle to prevent axial inflow. The velocity fields of the rotor outlet were measured using a hot-wire anemometer. From the results, the pre-swirling flow did not significantly affect the fan performance. When there was no obstacles wall upstream, there was a partial increase in efficiency, but the difference was not so large. When there was an obstacle wall upstream, the efficiency increased overall in the case of R15, but in the case of R05, the efficiency increased only in the low flow rate region, and conversely decreased in the high flow rate region. By observing the blade outlet flow fields when the performance was improved, it was confirmed that the influence of the tip leakage vortex was weakened.
基金Project(51574045)supported by the National Nature Science Foundation of China
文摘The gas-liquid two-phase swirl flow can increase the gas-liquid two-phase contact area and enhance the heat and mass transfer efficiency between gas and liquid.The swirl flow has important practical application value for promoting gas hydrate formation and ensuring the flow safe of natural gas hydrate slurry.The experimental section was made of plexiglass pipe and the experimental medium was air and water.The flow pattern of the gas-liquid two-phase swirl flow in the horizontal pipe was divided,according to a high-definition camera and the overall characteristics of the gas-liquid interface.The flow pattern map of the gas-liquid two-phase swirl flow in a horizontal pipe was studied.The influence of the flow velocity and vane parameters on pressure drop was investigated.Two types of gas-liquid two-phase swirl flow pressure drop models was established.The homogeneous-phase and split-phase pressure drop models have good prediction on swirl bubble flow,swirl dispersed flow,swirl annular flow and swirl stratified flow,and the predictive error band is not more than 20%.
基金support for this work was provided by the National Natural Science Foundation of China(No.51574123)the Scientific Research Project of Hunan Province Office of Education(No.18A185),which are gratefully acknowledged.
文摘Wall-mounted swirling ventilation is a new type of system in mechanized excavation faces with a dust sup-pression performance that is closely related to the blowing-to-suction flow ratio.Physical and simulation models were developed according to the No.C103 mechanized excavation face in the Nahe Coal Mine of the Baise Mining Bureau,Guangxi Province to optimize the blowing-to-suction flow ratio for wall-mounted swirling ventilation.Both the k-εturbulence model and the discrete phase model were utilized to simulate airflow field structures and dust concentration distribution patterns at various blowing-to-suction flow ratios.The results suggest that higher blowing-to-suction flow ratios increase the airflow field disturbance around the working face and weaken the intensity of the axial air curtain.On the other hand,both the intensity of the radial air curtain and the dust suppression effect are enhanced.At a blowing-to-suction flow ratio of 0.8,the wall-mounted swirling ventilation system achieved the most favorable dust suppression performance.Both the total dust and respirable dust had their lowest concentrations with maximum efficiencies of reducing both types at 90.33%and 87.16%,respectively.
文摘The basic equations of turbulent gas-solid flows are derived by using the pseudo-fluid model of particle phase with a refined two-phase turbulence model.These equations are then applied to swirling gas-particle flows for analyzing the collection efficiency in cyclone separators.
基金Supported by the Special Funds for Major State Basic Research (No. G-1999-0222-07).
文摘Turbulent swirling flows and methane-air swirling diffusion combustion are simulated by both large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid-scale (SGS) turbulence model, a second-order moment (SOM) subgrid-scale combustion model and an eddy break up (EBU) combustion model and Reynolds-averaged NavierStokes (RANS) modeling using the Reynolds stress equation model and a second-order moment (SOM) combustion model. For swirling flows, the LES statistical results give better agreement with the experimental results than the RANS modeling, indicating that the adopted subgrid-scale turbulence model is suitable for swirling flows. For swirling combustion, both the proposed SOM SGS combustion model and the RANS-SOM model give the results in good agreement with the experimental results, but the LES-EBU modeling results are not in agreement with the experimental results.
基金The project supported by the Special Funds for Major State Basic Research(G-1999-0222-07).
文摘Turbulent swirling flows and methane-air swirling diffusion combustion are studied by large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid scale turbulence model and a second-order moment (SOM) SGS combustion model, and also by RANS modeling using the Reynolds Stress equation model with the IPCM+wall and IPCM pressure-strain models and SOM combustion model. The LES statistical results for swirling flows give good agreement with the experimental results, indicating that the adopted subgrid-scale turbulence model is suitable for swirling flows. The LES instantaneous results show the complex vortex shedding pattern in swirling flows. The initially formed large vortex structures soon break up in swirling flows. The LES statistical results of combustion modeling are near the experimental results and are as good as the RANS-SOM modeling results. The LES results show that the size and range of large vortex structures in swirling combustion are different from those of isothermal swirling flows, and the chemical reaction is intensified by the large-eddy vortex structures.
基金F oundation of Astronautical Sci. & Tech.China(Project 90 -16 )
文摘The axial and tangential velocities of gas and particle phases and particle concentration for turbulent swirling and recirculating gas-particle (simulating gas-droplet) flows in a cold model of a dual-inlet sudden-expansion combustor with partially tangential central tubes, proposed by the present authors, were measured by using a 2-D LDV system and a laser optic fiber system combined with a sampling probe. The results show that there are both gas and particle strongly reverse flows and swirling flows in the head part of the combustor. The velocity slip between gas and particle phases is remarkable. The particle concentration is higher near the wall and lower near the axis. There are two peaks in the concentration profiles near the inlet tubes. The above-obtained flow characteristics are favorable to ignition, flame stabilization and combustion. The results can also be used to validate the numerical modeling.
基金Project supported by the China Scholarship Council
文摘Numerically-aided experimental studies are conducted on a swirl-stabilized combustor to investigate the dilution effects on flame stability, flame structure, and pollutant emissions of premixed CH4/air flames. Our goal is to provide a systematic assessment on combustion characteristics in diluted regimes for its application to environmentally-friendly approaches such as biogas combustion and exhanst-gas recirculation technology. Two main diluting species, N2 and CO2, are tested at various dilution rates. The results obtained by means of optical diagnostics show that five main flame regimes can be observed for Nz-diluted flames by changing excess air and dilution rate. CO2-diluted flames follow the same pattern evolution except that all the domains are shifted to lower excess air. Both N2 and CO2 dilution affect the lean blow- out (LBO) limits negatively. This behavior can be counter-balanced by reactant preheating which is able to broaden the flammability domain of the diluted flames. Flame reactivity is degraded by increasing dilution rate. Meanwhile, flames are thickened in the presence of both diluting species. NOx emissions are significantly reduced with dilution and proved to be relevant to flame stability diagrams: slight augmentation in NOx emission profiles is related to transitional flame states where instability occurs. Although dilution results in increase in CO emissions at certain levels, optimal dilution rates can still be proposed to achieve an ideal compromise.
文摘A Reynolds stress closure based on the generalized Langevin model (GLM), developed by Haworth and Pope, is applied to the flow calculation with swirl-induced recirculation. The purpose of the work is to assess the performance of this model under the complex flow conditions caused by the presence of strong swirl which gives rise to both unconventional recirculation in the vicinity of the symmetry axis and strong anisotropy in the turbulence field. Comparison of the computational results are made both with the experimental data of Roback and Johnson and the computational results obtained with the typical isotropization of production model (IPM) and the k-∈ type Boussinesq viscosity model.
基金supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (No. 2016YFC0400406)
文摘This study investigated the heat transfer and flow characteristics of one kind of swirlgenerator in a circular heat exchanger tube through a numericalsimulation. The swirlflow induced by this type of swirlgenerator can obtain a high heat transfer rate with minimalpressure drop penalty. The simulations were carried out to understand the physicalbehavior of this kind of mesoscale heat enhancement component. By visualizing the heat transfer and flow characteristics, it is found that the swirlflow is induced by swirlgenerator in the circular tube couples with the impinging jet effect. After passing through the swirlgenerator, the localfriction factor of liquid can quickly return to lower levelmore quickly, while the localNusselt number maintains higher values for a distance; thus, the evaluation criterion of localperformance is improved. Single-factor optimization is used for three geometric parameters, i.e., the angle of swirlgenerator(25o, 45o, and 60o), the length of swirlgenerator(0.005, 0.01, and 0.02 m), and the center rod radius(1, 2, and 3 mm). The optimum parameters of the swirlgenerator for laminar flow of air in a circular tube are obtained, which should be 60o, 0.005 m, and 3 mm, respectively.
基金ADNOC Onshore Company(ADCO)for the financial support of this research project.
文摘Turbulent swirling flow inside a short pipe interacting with a conical bluff body was simulated using the commercial CFD code Fluent.The geometry used is a simplified version of a novel liquid/gas separator used in multiphase flow metering.Three turbulence models,belonging to the Reynolds averaged Navier-Stokes(RANS)equations framework,are used.These are,RNG k-ε,SST k-ωand the full Reynolds stress model(RSM)in their steady and unsteady versions.Steady and unsteady RSM simulations show similar behavior.Compared to other turbulence models,they yield the best predictions of the mean velocity profiles though they exhibit some discrepancies in the core region.The influence of the Reynolds number on velocity profiles,swirl decay,and wall pressure on the bluff body are also presented.For Reynolds numbers generating a Rankine-like velocity profile,the width and magnitude of flow reversal zone decreases along the pipe axis disappearing downstream for lower Reynolds numbers.The tangential velocity peaks increase with increasing Reynolds number.The swirl decay rate follows an exponential form in accordance with the existing literature.These flow features would affect the performance of the real separator and,thus,the multiphase flow meter,noticeably.
文摘The secondary flow downstream of a triple elbow layout was studied experimentally and numerically to visualize the flow behavior under swirling inlet flow conditions. The inlet swirling condition was generated by a swirl generator, consisting of a rotary pipe and honeycomb assembly. The experiments were carried out in turbulent water flow condition at Reynolds number Re = 1 × 104 and inlet swirl intensity S = 1. Ultrasonic measurements were taken at four locations downstream of the third elbow. The two-dimensional velocity field of the flow field was measured using the phased array ultrasonic velocity profiler technique to evaluate the flow field with separation. Furthermore, a numerical simulation was performed and its results were compared with the experimental data. The numerical result was obtained by solving three-dimensional, Reynolds-averaged Navier-Stokes equations with the renormalization group k-ε turbulence model. The experimental results confirmed that the swirling flow condition modified the size of the separation region downstream of the third elbow. A qualitative comparison between the experimental and CFD simulation results of the averaged velocity field downstream of the third elbow showed similar tendency on reverse flow.
文摘A renovation project of miniaturization and high efficiency is provided for the hot blast stove .The experimental data tested feasibility of the new-type swirl flow hot blast stove. The normal and hot state experiments have been done through changing the angle of gas entering into the regenerator. Factors influencing pressure drop have been studied and analyzed. The experimental results can be formulated in the form of the Ergun equation. The regression equation is obtained. And two modified coefficients are offered to the regenerator pressure drop of the new-type swirl flow hot blast stove.
基金Sponsored by the Ministry of Education of China via the 2004 Year New Century Excellent Talents in University (Grant No NCET-04-0328)Hei-longjiang Province via 2005 Year Key Projects (Grant No GC05A314)
文摘Numerical simulation is applied to gas-particle flows of the primary and the secondary air ducts and burner region, and of two kinds of swirl burners. The modeling results of Radial Bias Combustion (RBC) burner well agreed with the data from the three-dimensional Phase-Doppler anemometry (PDA) experiment by Li, et al. The modeling test conducted in a 1025 t/h boiler was to study the quality of aerodynamics for a Central Fuel Rich (CFR) burner, and the Internal Recirculation Zone (IRZ) was measured. In addition, gas-particle flows with a CFR burner were investigated by numerical simulation, whose results accorded with the test data fundamentally. By analyzing the distribution of gas velocity and trajectories of particles respectively, it is found that the primary air’s rigidity of CFR burner is stronger than that of RBC burner, and the primary air mixes with the secondary air later. Furthermore, high concentration region of pulverized coal exists in the burner’s central zone whose atmosphere is reduced, and trajectories of particles in IRZ of CFR burner are longer than that of RBC burner. They are favorable to coal’s ignition and the reduction of NOx emission.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2012CB026006)
文摘The labyrinth seal in turbomachinery is a key element that restricts leakage flow among rotor-stator clearances from high-pressure regions to low-pressure regions. The fluid-induced forces on the rotor from seals during machine operation must be accurately quantified to predict their dynamic behavior effectively. To understand the fluid-induced force characteristics of the labyrinth seal more fully, the effects of four types of pre-swirls on the leakage, flow field, and fluid-induced force of a rotary straight-through labyrinth gas seal (RSTLGS) were numerically investigated using the proposed steady computational fluid dynamics (CFD) method based on the three-dimensional models of the RSTLGS. The leakage, flow field, and fluid-induced force of the RSTLGS for six axial pre-swirl velocities, four radial preswirl angles, four circumferential positive pre-swirl angles, and four circumferential negative pre-swirl angles were computed under the same geometrical parameters and operational conditions. Mesh analysis ensures the accuracy of the present steady CFD method. The numerical results show that the four types of pre-swirls influence the leakage, flow field, and fluid-induced force of the RSTLGS. The axial pre-swirl velocity remarkably inhibits the fluid-induced force, and the circumferential positive pre-swirl angle and circumferential negative pre-swirl angle remarkably promote the fluid-induced force. The effects of the radial pre-swirl angle on the fluid-induced force are complicated, and the pressure forces and viscous forces show the maximum or minimum values at a specific radial pre-swirl angle. The pre-swirl has a negligible impact on the leakage. The four types of pre-swirls affect the leakage, flow field, and fluidinduced force of the RSTLGS to varying degrees. The pre-swirl is the influence factor affecting the leakage, flow field, and fluid-induced force of the RSTLGS. The conclusions will help to understand the fluid-induced force of labyrinth seals more fully, by providing helpful suggestions for engineering practices and a theoretical basis to analyze the fluid–structure interaction of the seal-rotor system in future research.
文摘The decay of weakly swirling flows in a type of cross-section-varying pipes was discussed analytically. For laminar swirling flow, the feature of exponential decay was demonstrated. For turbulent swirling flow, in spite of the decay of circulation flux, a necessary condition for local circulation to amplify along downstream was obtained under the Boussinesq's hypothesis.
文摘The stability condition for compressible and incompressible swirling flow is discussed and compared. It is found that Eckhoff and Storesletten's necessary condition for stability of inviscid compressible swirling flow seems incorrect.
文摘Heat transfer and flow behaviors in three-dimensional circular tubes with loose-fit multiple channel twisted tapes were numerically studied. The investigation was examined for Reynolds numbers (Re) ranging from 5000 to 15,000, by using air as testing fluid. Effects of the multiple channel number (N = 2, 3, and 4), clearance ratio (CR = 0.0, 0.025, 0.05, and 0.075) on heat transfer enhancement and flow friction were examined. The numerical results indicate that the tubes with loose-fit multiple channel twisted tapes perform higher heat transfer rates than the plain tube. The enhanced heat transfer rate is escorted with larger pressure drop. Both heat transfer and pressure drop increase with increasing multiple channel number (N) and decreasing clearance ratio (CR). Heat transfer augmented by the loose-fit multiple channel twisted tape with N = 4 is higher than those enhanced by the ones with N = 2 and 3 by around 9.5-17.8% and 5.8-7.8%, respectively. In addition, the loose-fit multiple channel twisted tapes with clearance ratio of 0.025, 0.05, and 0.075 give lower heat transfer rates than the one with CR = 0.0 by around 8.4%, 17.5%, and 28.8%, respectively.
文摘Vapor-water two phase flow separation in pressure vessel of nuclear power plants is accomplished with swirl motion using vanes. In order to reduce separation pressure loss and to make it economic, a new type of low cost simplified innovative separator using lattice core configuration is proposed where swirling is caused by the orthogonal driving flow. The performance of the separator has been assessed numerically with the commercial CFD code FLUENT 14.0. The numerical analysis is compared with the experiment. The geometry and flow conditions are chosen according to the experiment. In the analysis, standard k – e and realizable k – e turbulence models are implemented. The prediction of maximum air void fraction with realizable k – e model was almost the same as input air void fraction but the void fraction computed by standard k – e model was compared better with the experimental results than the realizable k – e model. Some discrepancies in flow pattern between the experimental and simulation results are observed which might be due to the difference of nozzle shape. However, a more detailed model is necessary to arrive at the final conclusion.