Mn^(2+)doping has been adopted as an efficient approach to regulating the luminescence properties of halide perovskite nano-crystals(NCs).However,it is still difficult to understand the interplay of Mn^(2+)luminescenc...Mn^(2+)doping has been adopted as an efficient approach to regulating the luminescence properties of halide perovskite nano-crystals(NCs).However,it is still difficult to understand the interplay of Mn^(2+)luminescence and the matrix self-trapped exciton(STE)emission therein.In this study,Mn^(2+)-doped CsCdCl_(3) NCs are prepared by hot injection,in which CsCdCl_(3) is selected because of its unique crystal structure suitable for STE emission.The blue emission at 441 nm of undoped CsCdCl_(3) NCs originates from the defect states in the NCs.Mn^(2+)doping promotes lattice distortion of CsCdCl_(3) and generates bright orange-red light emission at 656 nm.The en-ergy transfer from the STEs of CsCdCl_(3) to the excited levels of the Mn^(2+)ion is confirmed to be a significant factor in achieving efficient luminescence in CsCdCl_(3):Mn^(2+)NCs.This work highlights the crucial role of energy transfer from STEs to Mn^(2+)dopants in Mn^(2+)-doped halide NCs and lays the groundwork for modifying the luminescence of other metal halide perovskite NCs.展开更多
Light-emitting diodes based on lead halide perovskite have attracted great attention due to their outstanding performance.However,their application is plagued by the toxicity of Pb and the poor stability.Herein novel ...Light-emitting diodes based on lead halide perovskite have attracted great attention due to their outstanding performance.However,their application is plagued by the toxicity of Pb and the poor stability.Herein novel copper-based all inorganic perovskite CsCu2I3 with much enhanced stability has been reported with a potential photoluminescence quantum yield(PLQY)over 20%and self-trapped excitons(STE).By taking advantage of its extraordinary thermal stability,we successfully fabricate high-quality CsCu2I3 film through direct vacuum-based deposition(VBD)of CsCu2I3 powder.The resulting film shows almost the same PLQY with the synthesized powder,as well as excellent uniformity and stability.The perovskite light-emitting diodes(Pe-LED)based on the evaporated CsCu2I3 emitting layer achieve a luminescence of 10 cd/m2 and an external quantum efficiency(EQE)of 0.02%.To the best of our knowledge,this is the first CsCu2I3 Pe-LED fabricated by VBD with STE property,which offers a new avenue for lead-free Pe-LED.展开更多
Ternary metal halides based on Cu(I)and Ag(I)have attracted intensive attention in optoelectronic applications due to their excellent luminescent properties,low toxicity,and robust stability.While the self-trapped exc...Ternary metal halides based on Cu(I)and Ag(I)have attracted intensive attention in optoelectronic applications due to their excellent luminescent properties,low toxicity,and robust stability.While the self-trapped excitons(STEs)emission mechanisms of Cu(I)halides are well understood,the STEs in Ag(I)halides remain less thoroughly explored.This study explores the STE emission efficiency within the A_(2)AgX_(3)(A=Rb,Cs;X=Cl,Br,I)system by identifying three distinct STE states in each material and calculating their configuration coordinate diagrams.We find that the STE emission efficiency in this system is mainly determined by STE stability and influenced by self-trapping and quenching barriers.Moreover,we investigate the impact of structural compactness on emission efficiency and find that the excessive electron–phonon coupling in this system can be reduced by increasing the structural compactness.The atomic packing factor is identified as a low-cost and effective descriptor for predicting STE emission efficiency in both Cs_(2)AgX_(3) and Rb_(2)AgX_(3) systems.These findings can deepen our understanding of STE behavior in metal halide materials and offer valuable insights for the design of efficient STE luminescent materials.The datasets presented in this paper are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.12094.展开更多
The vacancy-ordered quadruple perovskite Cs_(4)CdBi_(2)Cl_(12),as a newly-emerging lead-free perovskite system,has attracted great research interest due to its excellent stability and direct band gap.However,the poor ...The vacancy-ordered quadruple perovskite Cs_(4)CdBi_(2)Cl_(12),as a newly-emerging lead-free perovskite system,has attracted great research interest due to its excellent stability and direct band gap.However,the poor luminescence performance limits its application in light-emitting diodes(LEDs)and other fields.Herein,for the first time,an Ag^(+)ion doping strategy was proposed to greatly improve the emission performance of Cs_(4)CdBi_(2)Cl_(12) synthesized by hydrothermal method.Density functional theory calculations combined with experimental results evidence that the weak orange emission from Cs_(4)CdBi_(2)Cl_(12) is attributed to the phonon scattering and energy level crossing due to the large lattice distortion under excited states.Fortunately,Ag^(+)ion doping breaks the intrinsic crystal field environment of Cs_(4)CdBi_(2)Cl_(12),suppresses the crossover between ground and excited states,and reduces the energy loss in the form of nonradiative recombination.At a critical doping amount of 0.8%,the emission intensity of Cs_(4)CdBi_(2)Cl_(12):Ag^(+)reaches the maximum,about eight times that of the pristine sample.Moreover,the doped Cs_(4)CdBi_(2)Cl_(12) still maintains excellent stability against heat,ultraviolet irradiation,and environmental oxygen/moisture.The above advantages make it possible for this material to be used as solid-state phosphors for white LEDs applications,and the Commission International de I’Eclairage color coordinates of(0.31,0.34)and high color rendering index of 90.6 were achieved.More importantly,the white LED demonstrates remarkable operation stability in air ambient,showing almost no emission decay after a long working time for 48 h.We believe that this study puts forward an effective ion-doping strategy for emission enhancement of vacancy-ordered quadruple perovskite Cs_(4)CdBi_(2)Cl_(12),highlighting its great potential as efficient emitter compatible for practical applications.展开更多
Two-dimensional(2D)perovskites exhibit broadband emission due to strong exciton–phonon coupling-induced self-trapped excitons and thus would find important applications in the field of white-light emitting devices.Ho...Two-dimensional(2D)perovskites exhibit broadband emission due to strong exciton–phonon coupling-induced self-trapped excitons and thus would find important applications in the field of white-light emitting devices.However,the available identifying methods for self-trapped excitons are currently rather limited and complex.Here,we identify the existence of self-trapped excitons by Raman spectroscopy in both excited and non-excited states.Under excited states,the shifting of the Raman peak indicates the presence of the lattice distortion,which together with the extra Raman scattering peak reveals the presence of self-trapped excitons.Our work provides an alternative simple method to study self-trapped excitons in 2 D perovskites.展开更多
With strong electron-phonon coupling,the self-trapped excitons are usually formed in materials,which leads to the local lattice distortion and localized excitons.The self-trapping strongly depends on the dimensionalit...With strong electron-phonon coupling,the self-trapped excitons are usually formed in materials,which leads to the local lattice distortion and localized excitons.The self-trapping strongly depends on the dimensionality of the materials.In the three dimensional case,there is a potential barrier for self-trapping,whereas no such barrier is present for quasi-one-dimensional systems.Two-dimensional(2D)systems are marginal cases with a much lower potential barrier or nonex istent potential barrier for the self-trapping,leading to the easier formation of self-trapped states.Self-trapped excitons emission exhibits a broadband emission with a large Stokes shift below the bandgap.2D perovskites are a class of layered structure material with unique optical properties and would find potential promising optoelectronic.In particular,self-trapped excitons are present in 2D per-ovskites and can significantly influence the optical and electrical properties of 2D perovskites due to the soft characteristic and strong electron-phonon interaction.Here,we summarized the luminescence characteristics,origins,and characterizations of self-trapped excitons in 2D perovskites and finally gave an introduction to their applications in optoelectronics.展开更多
We investigate the interactions of lattice pbonons with Wannier-Mott exciton, the exciton that has a large radius in two-dimensional molecular lattice, by the method of continuum limit approximation, and obtain that t...We investigate the interactions of lattice pbonons with Wannier-Mott exciton, the exciton that has a large radius in two-dimensional molecular lattice, by the method of continuum limit approximation, and obtain that the self-trapping can also appear in two-dimensional molecular lattice with a harmonic and nonlinear potential. The exciton effect on molecular lattice does not distort the molecular lattice but only makes it localized and the localization can also react, again through phonon coupling, to trap the energy and prevents its dispersion.展开更多
We investigate the interactions of lattice phonons with Frenkel exciton, which has a small radius in a twodimensional discrete molecular lattice, by the virtue of the quasi-discreteness approximation and the method of...We investigate the interactions of lattice phonons with Frenkel exciton, which has a small radius in a twodimensional discrete molecular lattice, by the virtue of the quasi-discreteness approximation and the method of multiplescale, and obtain that the self-trapping can also appear in the two-dimensional discrete molecular lattice with harmonic and nonlinear potential. The excitons' effect on the molecular lattice does not distort it but only causes it to localize which enables it to react again through phonon coupling to trap the energy and prevent its dispersion.展开更多
We investigate the binding energies of excitons in a strained (111)-oriented zinc-blende GaN/Al0.3 Ga0.7 N quantum well screened by the electron-hole (e-h) gas under hydrostatic pressure by combining a variational...We investigate the binding energies of excitons in a strained (111)-oriented zinc-blende GaN/Al0.3 Ga0.7 N quantum well screened by the electron-hole (e-h) gas under hydrostatic pressure by combining a variational method and a selfconsistent procedure. A built-in electric field produced by the strain-induced piezoelectric polarization is considered in our calculations. The result indicates that the binding energies of excitons increase nearly linearly with pressure,even though the modification of strain with hydrostatic pressure is considered, and the influence of pressure is more apparent under higher e-h densities. It is also found that as the density of an e-h gas increases,the binding energies first increase slowly to a maximum and then decrease rapidly when the e-h density is larger than about 1 ×10^11 cm^-2. The excitonic binding energies increase obviously as the barrier thickness decreases due to the decrease of the built-in electric field.展开更多
Atoms under optical and magnetic trapping in a limited space at a very low temperature can lead to Bose-Einstein condensation (BEC), even in a one-dimensional (1D) optical lattice. However, can the confinment of d...Atoms under optical and magnetic trapping in a limited space at a very low temperature can lead to Bose-Einstein condensation (BEC), even in a one-dimensional (1D) optical lattice. However, can the confinment of dense excitons in a 1D semiconductor microstructure easily reach the excitonic BEC? A lightly Mn(II)-doped ZnO nanowire under a femtosecond laser pulse pump at room temperature produces single-mode lasing from coherent bipolaronic excitons, which is much like a macroscopic quantum state due to the condensation of the bipoaronic excitons if not real BEC. In this process, longitudinal biphonon binding with the exciton plays an important role. We revisit this system and propose possibility of bipolaronic exciton condensation. More studies are needed for this condensation phenomenon in 1D microcavity systems.展开更多
The binding energies of excitons in quantum well structures subjected to an applied uniform electric field by taking into account the exciton longitudinal optical phonon interaction is calculated. The binding energies...The binding energies of excitons in quantum well structures subjected to an applied uniform electric field by taking into account the exciton longitudinal optical phonon interaction is calculated. The binding energies and corresponding Stark shifts for Ⅲ-Ⅴ and Ⅱ-Ⅵ compound semiconductor quantum well structures have been numerically computed. The results for GaAs/A1GaAs and ZnCdSe/ZnSe quantum wells are given and discussed. Theoretical results show that the exciton-phonon coupling reduces both the exciton binding energies and the Stark shifts by screening the Coulomb interaction. This effect is observable experimentally and cannot be neglected.展开更多
In this work, the effects of quantum confinement on the ground state energy of a correlated electron-hole pair in a spherical and in a disc-like quantum dot have been investigated as a function of quantum dot size. Un...In this work, the effects of quantum confinement on the ground state energy of a correlated electron-hole pair in a spherical and in a disc-like quantum dot have been investigated as a function of quantum dot size. Under parabolic confinement potential and within effective mass approximation Ritz's variational method is applied to Hylleraas-like trial wavefunction. An efficient method for reducing the main effort of the calculation of terms like τekh exp (-λτeh) is introduced. The main contribution of the present work is the introduction of integral transforms which provide the calculation of expectation value of energy and the related matrix elements to be done analytically over single-particle coordinates instead of Hvlleraas coordinates.展开更多
The energy spectra of the ground state for an exciton (X) trapped by a neutral acceptor (A<SUP>0</SUP>) in a quantum dot with a parabolic confinement have been calculated as a function of the electron-to-h...The energy spectra of the ground state for an exciton (X) trapped by a neutral acceptor (A<SUP>0</SUP>) in a quantum dot with a parabolic confinement have been calculated as a function of the electron-to-hole mass ratio σ by using the hyperspherical coordinates. We find that the (A<SUP>0</SUP>,X) complex confined in a quantum dot has in general a larger binding energy than those in a two-dimensional quantum well and a three-dimensional bulk semiconductor, and the binding energy decreases with the increase of the electron-to-hole mass ratio.展开更多
The relation between the excitonic purity and the concurrence in a system of two coupled large semiconduction quantum dots mediated by a single-mode cavity field is investigated by using linear entropy theory. The res...The relation between the excitonic purity and the concurrence in a system of two coupled large semiconduction quantum dots mediated by a single-mode cavity field is investigated by using linear entropy theory. The results show the difference in describing two modes of excitonic entanglement between linear entropy and concurrence. The relation between nonclassical property of cavity field and the entanglement degree of excitons is also discussed. The results show that two modes of exciton can reach maximal entanglement when the cavity exhibits an antibunching effect.展开更多
Binding energies of excitons in GaAs films on AlxGal-xAs substrates are studied theoretically with the fractional- dimensional approach. In this approach, the real anisotropic "exciton + film" semiconductor system ...Binding energies of excitons in GaAs films on AlxGal-xAs substrates are studied theoretically with the fractional- dimensional approach. In this approach, the real anisotropic "exciton + film" semiconductor system is mapped into an effective fractional-dimensional isotropic space. For different aluminum concentrations and substrate thicknesses, the exci- ton binding energies are obtained as a function of the film thickness. The numerical results show that, for different aluminum concentrations and substrate thicknesses, the exciton binding energies in GaAs films on AlxGal_xAs substrates all exhibit their maxima with increasing film thickness. It is also shown that the binding energies of heavy-hole and light-hole excitons both have their maxima with increasing film thickness.展开更多
The coherent exciton plays an important role in the photosynthetic primary process, and its functions are deeply dependent on the orientation arrangements of local transition dipole moments (TDMs). We theoretically ...The coherent exciton plays an important role in the photosynthetic primary process, and its functions are deeply dependent on the orientation arrangements of local transition dipole moments (TDMs). We theoretically and systematically study the physical property of the coherent exciton at different orientation arrangements of the local TDMs in circular light-harvesting (LH) complexes. Especially, if the orientation arrangements are different, the delocalized TDMs of the coherent excitons and the energy locations of the optically active coherent excitons (OACEs) can be obviously different, and then there are more manners to capture, store and transfer light energy in and between LH complexes. Similarly, if the orientation arrangements are altered, light absorption and radiative intensities can be converted fully between the OACEs in the upper and lower coherent exciton bands, and then the blue and red shifts of the absorption and radiative bands of the pigment molecules can occur simultaneously at some orientation arrangements. If the systems are in the vicinities of the critical orientation arrangements, the weak static disorder or small thermal excitation can destroy the coherent electronic excitations, and then the coherent exciton cannot exist any more.展开更多
The low-temperature (T = 2 K) exciton-polariton luminescence (EPL) spectra in the vicinity of the exciton-resonance frequency An=1 for CdS-type crystals have been theoretically and experimentally investigated with all...The low-temperature (T = 2 K) exciton-polariton luminescence (EPL) spectra in the vicinity of the exciton-resonance frequency An=1 for CdS-type crystals have been theoretically and experimentally investigated with allowance for the mechanical exciton decay . The results of the numerical calculations of the partial and interference contributions of the bulk and radiative surface spectral modes to the EPL in the geometry of additional s- and p-polarized waves emitted into vacuum are analyzed. It is shown that the contributions of purely longitudinal excitons and their interference with polaritons of the upper dispersion branch near the longitudinal frequency ωL to the EPL are small (∼10% - 30%);nevertheless, they must be taken into account to obtain quantitative agreement with experimental data. Specifically these contributions are responsible for the formation of an additional line (along with the fundamental AT line) in the case of oblique incidence of radiation.展开更多
We investigate the effect of photons and phonons on Frenkel exciton spectrum. The Hamilto nian for a coupled system of the Frenkel excitons. the photons and the phonons is derived. The phonon-exciton interaction makes...We investigate the effect of photons and phonons on Frenkel exciton spectrum. The Hamilto nian for a coupled system of the Frenkel excitons. the photons and the phonons is derived. The phonon-exciton interaction makes the energy band of the Frenkel excitons narrow. The photons and the Frenkel excitons make up Frenkel exciton polaritons which are quasi-particles. The Frenkel exciton polariton spectrum consists of two branches. It is found that the photon-exciton interaction makes the ground energy of the Frenkel excitons increase.展开更多
The dynamic recombination of two triplet excitons with opposite spins in the heterojunction structure has been investigated using a nonadiabatic evolution method.We demonstrate that luminous composite states including...The dynamic recombination of two triplet excitons with opposite spins in the heterojunction structure has been investigated using a nonadiabatic evolution method.We demonstrate that luminous composite states including the excited polaron and the biexciton can be formed efficiently via the triplet exciton-triplet exciton reaction in the heterojunction and therefore this reaction can enhance the electroluminescence efficiency considerably,which is consistent qualitatively with experimental observations.Meanwhile,we find that,although the heterojunctions are beneficial to the generation of luminescent particles,large band offset caused by the heterojunction structure is not helpful to improve the electroluminescence efficiency.In addition,the mechanism of the triplet exciton-triplet exciton reaction in heterojunction is different from that of two similar coupling chains.Our results may deepen the understanding of the electroluminescence mechanism in polymer light-emitting devices.展开更多
The binding energy of excitons confined to a quantum ring under the influence of perpendicular homogeneous magnetic field is calculated as a function of the ring radius. Calculations are made by using the method of ex...The binding energy of excitons confined to a quantum ring under the influence of perpendicular homogeneous magnetic field is calculated as a function of the ring radius. Calculations are made by using the method of exact diagonalization within the effective-mass approximation. The feature of binding energy of the ground state as a function of the ring radius for several values of the magnetic field has been revealed. The interesting feature of our study is that, in a quantum ring, the geometric structure of exeitons may reveal transition.展开更多
基金supported by the Guangdong Provincial Science&Technology Project(No.2023A0505050084)the National Natural Science Foundation of China(No.22361132525)+1 种基金the Fundamental Research Funds for the Central Universities(No.2023ZYGXZR002)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(No.2017BT01X137).
文摘Mn^(2+)doping has been adopted as an efficient approach to regulating the luminescence properties of halide perovskite nano-crystals(NCs).However,it is still difficult to understand the interplay of Mn^(2+)luminescence and the matrix self-trapped exciton(STE)emission therein.In this study,Mn^(2+)-doped CsCdCl_(3) NCs are prepared by hot injection,in which CsCdCl_(3) is selected because of its unique crystal structure suitable for STE emission.The blue emission at 441 nm of undoped CsCdCl_(3) NCs originates from the defect states in the NCs.Mn^(2+)doping promotes lattice distortion of CsCdCl_(3) and generates bright orange-red light emission at 656 nm.The en-ergy transfer from the STEs of CsCdCl_(3) to the excited levels of the Mn^(2+)ion is confirmed to be a significant factor in achieving efficient luminescence in CsCdCl_(3):Mn^(2+)NCs.This work highlights the crucial role of energy transfer from STEs to Mn^(2+)dopants in Mn^(2+)-doped halide NCs and lays the groundwork for modifying the luminescence of other metal halide perovskite NCs.
基金supported by the National Key R&D Program of China(2016YFB070700702)the National Natural Science Foundation of China(51761145048)+1 种基金the Fundamental Research Funds for the Central Universities(HUST:2019421JYCXJJ004)the China Postdoctoral Science Foundation Grant(2019M662624).
文摘Light-emitting diodes based on lead halide perovskite have attracted great attention due to their outstanding performance.However,their application is plagued by the toxicity of Pb and the poor stability.Herein novel copper-based all inorganic perovskite CsCu2I3 with much enhanced stability has been reported with a potential photoluminescence quantum yield(PLQY)over 20%and self-trapped excitons(STE).By taking advantage of its extraordinary thermal stability,we successfully fabricate high-quality CsCu2I3 film through direct vacuum-based deposition(VBD)of CsCu2I3 powder.The resulting film shows almost the same PLQY with the synthesized powder,as well as excellent uniformity and stability.The perovskite light-emitting diodes(Pe-LED)based on the evaporated CsCu2I3 emitting layer achieve a luminescence of 10 cd/m2 and an external quantum efficiency(EQE)of 0.02%.To the best of our knowledge,this is the first CsCu2I3 Pe-LED fabricated by VBD with STE property,which offers a new avenue for lead-free Pe-LED.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62125402 and 62321166653).
文摘Ternary metal halides based on Cu(I)and Ag(I)have attracted intensive attention in optoelectronic applications due to their excellent luminescent properties,low toxicity,and robust stability.While the self-trapped excitons(STEs)emission mechanisms of Cu(I)halides are well understood,the STEs in Ag(I)halides remain less thoroughly explored.This study explores the STE emission efficiency within the A_(2)AgX_(3)(A=Rb,Cs;X=Cl,Br,I)system by identifying three distinct STE states in each material and calculating their configuration coordinate diagrams.We find that the STE emission efficiency in this system is mainly determined by STE stability and influenced by self-trapping and quenching barriers.Moreover,we investigate the impact of structural compactness on emission efficiency and find that the excessive electron–phonon coupling in this system can be reduced by increasing the structural compactness.The atomic packing factor is identified as a low-cost and effective descriptor for predicting STE emission efficiency in both Cs_(2)AgX_(3) and Rb_(2)AgX_(3) systems.These findings can deepen our understanding of STE behavior in metal halide materials and offer valuable insights for the design of efficient STE luminescent materials.The datasets presented in this paper are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.12094.
基金support from the National Key R&D Program of China(No.2022YFB2803900)the National Natural Science Foundation of China(Nos.12074347,12004346,12204426,and 61935009)+1 种基金Science Foundation for Distinguished Young Scholars of Henan Province(No.212300410019)the Support Program for Scientific and Technological Innovation Teams of Higher Education in Henan Province(No.231RTSTHN012).
文摘The vacancy-ordered quadruple perovskite Cs_(4)CdBi_(2)Cl_(12),as a newly-emerging lead-free perovskite system,has attracted great research interest due to its excellent stability and direct band gap.However,the poor luminescence performance limits its application in light-emitting diodes(LEDs)and other fields.Herein,for the first time,an Ag^(+)ion doping strategy was proposed to greatly improve the emission performance of Cs_(4)CdBi_(2)Cl_(12) synthesized by hydrothermal method.Density functional theory calculations combined with experimental results evidence that the weak orange emission from Cs_(4)CdBi_(2)Cl_(12) is attributed to the phonon scattering and energy level crossing due to the large lattice distortion under excited states.Fortunately,Ag^(+)ion doping breaks the intrinsic crystal field environment of Cs_(4)CdBi_(2)Cl_(12),suppresses the crossover between ground and excited states,and reduces the energy loss in the form of nonradiative recombination.At a critical doping amount of 0.8%,the emission intensity of Cs_(4)CdBi_(2)Cl_(12):Ag^(+)reaches the maximum,about eight times that of the pristine sample.Moreover,the doped Cs_(4)CdBi_(2)Cl_(12) still maintains excellent stability against heat,ultraviolet irradiation,and environmental oxygen/moisture.The above advantages make it possible for this material to be used as solid-state phosphors for white LEDs applications,and the Commission International de I’Eclairage color coordinates of(0.31,0.34)and high color rendering index of 90.6 were achieved.More importantly,the white LED demonstrates remarkable operation stability in air ambient,showing almost no emission decay after a long working time for 48 h.We believe that this study puts forward an effective ion-doping strategy for emission enhancement of vacancy-ordered quadruple perovskite Cs_(4)CdBi_(2)Cl_(12),highlighting its great potential as efficient emitter compatible for practical applications.
基金supported by the National Key Research and Development Program of China(No.2018YFA0704403)National Natural Science Foundation of China(NSFC)(No.62074064)+2 种基金Innovation Fund of WNLO,Key Laboratory of Nanodevices and Applications,Suzhou Institute of NanoTech and Nano-Bionics,Chinese Academy of Sciences(No.19ZS03)China Postdoctoral Science Foundation(No.2020M682399)Postdoctoral Innovation Fund of Hubei Province。
文摘Two-dimensional(2D)perovskites exhibit broadband emission due to strong exciton–phonon coupling-induced self-trapped excitons and thus would find important applications in the field of white-light emitting devices.However,the available identifying methods for self-trapped excitons are currently rather limited and complex.Here,we identify the existence of self-trapped excitons by Raman spectroscopy in both excited and non-excited states.Under excited states,the shifting of the Raman peak indicates the presence of the lattice distortion,which together with the extra Raman scattering peak reveals the presence of self-trapped excitons.Our work provides an alternative simple method to study self-trapped excitons in 2 D perovskites.
基金D.L.acknowledges the support from the National Basic Research Program of China(No.2018YFA0704403)the National Natural Science Foundation of China(NSFC)(Grant No.61674060)Innovation Fund of Wuhan National Laboratory for Optoelectronics(WNLO).
文摘With strong electron-phonon coupling,the self-trapped excitons are usually formed in materials,which leads to the local lattice distortion and localized excitons.The self-trapping strongly depends on the dimensionality of the materials.In the three dimensional case,there is a potential barrier for self-trapping,whereas no such barrier is present for quasi-one-dimensional systems.Two-dimensional(2D)systems are marginal cases with a much lower potential barrier or nonex istent potential barrier for the self-trapping,leading to the easier formation of self-trapped states.Self-trapped excitons emission exhibits a broadband emission with a large Stokes shift below the bandgap.2D perovskites are a class of layered structure material with unique optical properties and would find potential promising optoelectronic.In particular,self-trapped excitons are present in 2D per-ovskites and can significantly influence the optical and electrical properties of 2D perovskites due to the soft characteristic and strong electron-phonon interaction.Here,we summarized the luminescence characteristics,origins,and characterizations of self-trapped excitons in 2D perovskites and finally gave an introduction to their applications in optoelectronics.
基金supported by the National Natural Science Foundation of China (Grant No.1057400)the Natural Science Foundation of Heilongjiang Province,China (Grant No.A200506)
文摘We investigate the interactions of lattice pbonons with Wannier-Mott exciton, the exciton that has a large radius in two-dimensional molecular lattice, by the method of continuum limit approximation, and obtain that the self-trapping can also appear in two-dimensional molecular lattice with a harmonic and nonlinear potential. The exciton effect on molecular lattice does not distort the molecular lattice but only makes it localized and the localization can also react, again through phonon coupling, to trap the energy and prevents its dispersion.
基金supported by the National Natural Science Foundation of China (Grant No 1057400)the Natural Science Foundation of Heilongjiang Province of China (Grant No A200506)
文摘We investigate the interactions of lattice phonons with Frenkel exciton, which has a small radius in a twodimensional discrete molecular lattice, by the virtue of the quasi-discreteness approximation and the method of multiplescale, and obtain that the self-trapping can also appear in the two-dimensional discrete molecular lattice with harmonic and nonlinear potential. The excitons' effect on the molecular lattice does not distort it but only causes it to localize which enables it to react again through phonon coupling to trap the energy and prevent its dispersion.
文摘We investigate the binding energies of excitons in a strained (111)-oriented zinc-blende GaN/Al0.3 Ga0.7 N quantum well screened by the electron-hole (e-h) gas under hydrostatic pressure by combining a variational method and a selfconsistent procedure. A built-in electric field produced by the strain-induced piezoelectric polarization is considered in our calculations. The result indicates that the binding energies of excitons increase nearly linearly with pressure,even though the modification of strain with hydrostatic pressure is considered, and the influence of pressure is more apparent under higher e-h densities. It is also found that as the density of an e-h gas increases,the binding energies first increase slowly to a maximum and then decrease rapidly when the e-h density is larger than about 1 ×10^11 cm^-2. The excitonic binding energies increase obviously as the barrier thickness decreases due to the decrease of the built-in electric field.
基金supported by the National Natural Science Foundation of China (Grant Nos. 90606001,20873039,and 51002011)the Excellent Young Scholars Research Fund of Beijing Institute of Technology
文摘Atoms under optical and magnetic trapping in a limited space at a very low temperature can lead to Bose-Einstein condensation (BEC), even in a one-dimensional (1D) optical lattice. However, can the confinment of dense excitons in a 1D semiconductor microstructure easily reach the excitonic BEC? A lightly Mn(II)-doped ZnO nanowire under a femtosecond laser pulse pump at room temperature produces single-mode lasing from coherent bipolaronic excitons, which is much like a macroscopic quantum state due to the condensation of the bipoaronic excitons if not real BEC. In this process, longitudinal biphonon binding with the exciton plays an important role. We revisit this system and propose possibility of bipolaronic exciton condensation. More studies are needed for this condensation phenomenon in 1D microcavity systems.
基金Project supported in part by the National Natural Science Foundation of China (Grant No 10164003) and the Natural Science Foundation of Inner Mongol of China (Grant No 200408020101).
文摘The binding energies of excitons in quantum well structures subjected to an applied uniform electric field by taking into account the exciton longitudinal optical phonon interaction is calculated. The binding energies and corresponding Stark shifts for Ⅲ-Ⅴ and Ⅱ-Ⅵ compound semiconductor quantum well structures have been numerically computed. The results for GaAs/A1GaAs and ZnCdSe/ZnSe quantum wells are given and discussed. Theoretical results show that the exciton-phonon coupling reduces both the exciton binding energies and the Stark shifts by screening the Coulomb interaction. This effect is observable experimentally and cannot be neglected.
文摘In this work, the effects of quantum confinement on the ground state energy of a correlated electron-hole pair in a spherical and in a disc-like quantum dot have been investigated as a function of quantum dot size. Under parabolic confinement potential and within effective mass approximation Ritz's variational method is applied to Hylleraas-like trial wavefunction. An efficient method for reducing the main effort of the calculation of terms like τekh exp (-λτeh) is introduced. The main contribution of the present work is the introduction of integral transforms which provide the calculation of expectation value of energy and the related matrix elements to be done analytically over single-particle coordinates instead of Hvlleraas coordinates.
基金The project supported by National Natural Science Foundation of China under Grant No.10275014
文摘The energy spectra of the ground state for an exciton (X) trapped by a neutral acceptor (A<SUP>0</SUP>) in a quantum dot with a parabolic confinement have been calculated as a function of the electron-to-hole mass ratio σ by using the hyperspherical coordinates. We find that the (A<SUP>0</SUP>,X) complex confined in a quantum dot has in general a larger binding energy than those in a two-dimensional quantum well and a three-dimensional bulk semiconductor, and the binding energy decreases with the increase of the electron-to-hole mass ratio.
基金Project supported by the Scientific Research Fund of Education Bureau of Hunan Province (Grant No 05C696)
文摘The relation between the excitonic purity and the concurrence in a system of two coupled large semiconduction quantum dots mediated by a single-mode cavity field is investigated by using linear entropy theory. The results show the difference in describing two modes of excitonic entanglement between linear entropy and concurrence. The relation between nonclassical property of cavity field and the entanglement degree of excitons is also discussed. The results show that two modes of exciton can reach maximal entanglement when the cavity exhibits an antibunching effect.
基金Project supported by the National Natural Science Foundation of China(Grant No.11304011)the Fundamental Research Funds for the Central Universitie China
文摘Binding energies of excitons in GaAs films on AlxGal-xAs substrates are studied theoretically with the fractional- dimensional approach. In this approach, the real anisotropic "exciton + film" semiconductor system is mapped into an effective fractional-dimensional isotropic space. For different aluminum concentrations and substrate thicknesses, the exci- ton binding energies are obtained as a function of the film thickness. The numerical results show that, for different aluminum concentrations and substrate thicknesses, the exciton binding energies in GaAs films on AlxGal_xAs substrates all exhibit their maxima with increasing film thickness. It is also shown that the binding energies of heavy-hole and light-hole excitons both have their maxima with increasing film thickness.
基金project supported by the National Natural Science Foundation of China (Grant Nos 60438020 and 60321003), and the Knowledge innovation program of the Chinese Academy of Sciences (Grant No KJCX2-SW-W14).
文摘The coherent exciton plays an important role in the photosynthetic primary process, and its functions are deeply dependent on the orientation arrangements of local transition dipole moments (TDMs). We theoretically and systematically study the physical property of the coherent exciton at different orientation arrangements of the local TDMs in circular light-harvesting (LH) complexes. Especially, if the orientation arrangements are different, the delocalized TDMs of the coherent excitons and the energy locations of the optically active coherent excitons (OACEs) can be obviously different, and then there are more manners to capture, store and transfer light energy in and between LH complexes. Similarly, if the orientation arrangements are altered, light absorption and radiative intensities can be converted fully between the OACEs in the upper and lower coherent exciton bands, and then the blue and red shifts of the absorption and radiative bands of the pigment molecules can occur simultaneously at some orientation arrangements. If the systems are in the vicinities of the critical orientation arrangements, the weak static disorder or small thermal excitation can destroy the coherent electronic excitations, and then the coherent exciton cannot exist any more.
文摘The low-temperature (T = 2 K) exciton-polariton luminescence (EPL) spectra in the vicinity of the exciton-resonance frequency An=1 for CdS-type crystals have been theoretically and experimentally investigated with allowance for the mechanical exciton decay . The results of the numerical calculations of the partial and interference contributions of the bulk and radiative surface spectral modes to the EPL in the geometry of additional s- and p-polarized waves emitted into vacuum are analyzed. It is shown that the contributions of purely longitudinal excitons and their interference with polaritons of the upper dispersion branch near the longitudinal frequency ωL to the EPL are small (∼10% - 30%);nevertheless, they must be taken into account to obtain quantitative agreement with experimental data. Specifically these contributions are responsible for the formation of an additional line (along with the fundamental AT line) in the case of oblique incidence of radiation.
文摘We investigate the effect of photons and phonons on Frenkel exciton spectrum. The Hamilto nian for a coupled system of the Frenkel excitons. the photons and the phonons is derived. The phonon-exciton interaction makes the energy band of the Frenkel excitons narrow. The photons and the Frenkel excitons make up Frenkel exciton polaritons which are quasi-particles. The Frenkel exciton polariton spectrum consists of two branches. It is found that the photon-exciton interaction makes the ground energy of the Frenkel excitons increase.
基金Project supported by the National Natural Science Foundation of China(Grant No.11347171)the Doctoral Foundation(Grant No.12995563)the Research Fund(Grant No.YB2018026)from Hebei North University.
文摘The dynamic recombination of two triplet excitons with opposite spins in the heterojunction structure has been investigated using a nonadiabatic evolution method.We demonstrate that luminous composite states including the excited polaron and the biexciton can be formed efficiently via the triplet exciton-triplet exciton reaction in the heterojunction and therefore this reaction can enhance the electroluminescence efficiency considerably,which is consistent qualitatively with experimental observations.Meanwhile,we find that,although the heterojunctions are beneficial to the generation of luminescent particles,large band offset caused by the heterojunction structure is not helpful to improve the electroluminescence efficiency.In addition,the mechanism of the triplet exciton-triplet exciton reaction in heterojunction is different from that of two similar coupling chains.Our results may deepen the understanding of the electroluminescence mechanism in polymer light-emitting devices.
基金supported by National Natural Science Foundation of China under Grant No.10775035
文摘The binding energy of excitons confined to a quantum ring under the influence of perpendicular homogeneous magnetic field is calculated as a function of the ring radius. Calculations are made by using the method of exact diagonalization within the effective-mass approximation. The feature of binding energy of the ground state as a function of the ring radius for several values of the magnetic field has been revealed. The interesting feature of our study is that, in a quantum ring, the geometric structure of exeitons may reveal transition.