期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
Charge self-trapping in two strand biomolecules:Adiabatic polaron approach
1
作者 D Chevizovich S Zdravković +1 位作者 A V Chizhov Z Ivić 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第1期253-263,共11页
We investigate the properties of the excess charge(electron, hole) introduced into a two-strand biomolecule. We consider the possibility that the stable soliton excitation can be formed due to interaction of excess ch... We investigate the properties of the excess charge(electron, hole) introduced into a two-strand biomolecule. We consider the possibility that the stable soliton excitation can be formed due to interaction of excess charge with the phonon subsystem. The influence of overlap of the molecular orbitals between adjacent structure elements of the macromolecular chain on the soliton properties is discussed. Special attention is paid to the influence of the overlapping of the molecular orbitals between structure elements placed on the different chains. Using the literature values of the basic energy parameters of the two-chain biomolecular structures, possible types of soliton solutions are discussed. 展开更多
关键词 charge self-trapping adiabatic polaron soliton two-stranded biomolecules
下载PDF
Temperature Effects on the Self-trapping Energy of a Polaron in a GaAs Parabolic Quantum Dot 被引量:1
2
作者 Kadi ZHU and Shiwei GU (Institute of Condensed Matter Physics, Shanghai Jiaotong University, Shanghai, 200030, China)(To whom correspondence should be addressed) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1994年第2期131-134,共4页
The temperature and the size dependences of the self-trapping energy of a polaron in a GaAs parabolic quantum dot are investigated by the second order Rayleigh-Schrodinger perturbation method using the framework of th... The temperature and the size dependences of the self-trapping energy of a polaron in a GaAs parabolic quantum dot are investigated by the second order Rayleigh-Schrodinger perturbation method using the framework of the effective mass approximation. The numerical results show that the self-trapping energies of polaron in GaAs parabolic quantum dots shrink with the enhancement of temperature and the size of the quantum dot. The results also indicate that the temperature effect becomes obvious in small quantum dots 展开更多
关键词 GAAS REV Temperature Effects on the self-trapping Energy of a Polaron in a GaAs Parabolic Quantum Dot
下载PDF
Localized self-trapping in two-dimensional molecular lattice with interaction between Wannier-Mott excitons and phonon lattice
3
作者 徐权 田强 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第9期475-479,共5页
We investigate the interactions of lattice pbonons with Wannier-Mott exciton, the exciton that has a large radius in two-dimensional molecular lattice, by the method of continuum limit approximation, and obtain that t... We investigate the interactions of lattice pbonons with Wannier-Mott exciton, the exciton that has a large radius in two-dimensional molecular lattice, by the method of continuum limit approximation, and obtain that the self-trapping can also appear in two-dimensional molecular lattice with a harmonic and nonlinear potential. The exciton effect on molecular lattice does not distort the molecular lattice but only makes it localized and the localization can also react, again through phonon coupling, to trap the energy and prevents its dispersion. 展开更多
关键词 self-trapping Wannier-Mott exciton two-dimensional molecular lattice PHONON
下载PDF
Localized self-trapping in the two-dimensional discrete molecular lattice with the interaction between Frenkel excitons and phonons
4
作者 徐权 田强 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第9期3940-3951,共12页
We investigate the interactions of lattice phonons with Frenkel exciton, which has a small radius in a twodimensional discrete molecular lattice, by the virtue of the quasi-discreteness approximation and the method of... We investigate the interactions of lattice phonons with Frenkel exciton, which has a small radius in a twodimensional discrete molecular lattice, by the virtue of the quasi-discreteness approximation and the method of multiplescale, and obtain that the self-trapping can also appear in the two-dimensional discrete molecular lattice with harmonic and nonlinear potential. The excitons' effect on the molecular lattice does not distort it but only causes it to localize which enables it to react again through phonon coupling to trap the energy and prevent its dispersion. 展开更多
关键词 self-trapping Frenkel exciton two-dimensional discrete molecular lattice phonon
下载PDF
The effect of s-wave scattering length on self-trapping and tunneling phenomena of Fermi gases in one-dimensional accelerating optical lattices
5
作者 贾伟 豆福全 +1 位作者 孙建安 段文山 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第4期76-81,共6页
We investigate the tunneling dynamics of the Fermi gases in an optical lattice in the Bose--Einstein condensation (BEC) regime. The three critical scattering lengths and the system energies are found in different ca... We investigate the tunneling dynamics of the Fermi gases in an optical lattice in the Bose--Einstein condensation (BEC) regime. The three critical scattering lengths and the system energies are found in different cases of Josephson oscillation (JO), oscillating-phase-type self-trapping (OPTST), running-phase-type self-trapping (RPTST), and self-trapping (ST). It is found that the s-wave scattering lengths have a crucial role on the tunneling dynamics. By adjusting the scattering length in the adiabatic condition, the transition probability changes with the adiabatic periodicity and a rectangular periodic pattern emerges. The periodicity of the rectangular wave depends on the system parameters such as the periodicity of the adjustable parameter, the s-wave scattering length. 展开更多
关键词 self-trapping and tunneling phenomenon Fermi gas one-dimensional accelerating optical lattices
下载PDF
3-4 First-principles Investigation Self-trapping of Helium in Tungsten
6
作者 He Wenhao Gao Xing Wang Zhiguang 《IMP & HIRFL Annual Report》 2015年第1期93-94,共2页
The tungsten are deemed to be the most promising candidates as plasma facing material due to its high melting temperature, good thermal properties, low sputtering yields[1]. In the near surface of plasma facing materi... The tungsten are deemed to be the most promising candidates as plasma facing material due to its high melting temperature, good thermal properties, low sputtering yields[1]. In the near surface of plasma facing materials high densities of interstitials and vacancies are produced in addition to high concentrations of hydrogen and helium (He). He easily are trapped by vacancies, dislocations, grain boundaries to form He bubble nucleation. When no traps are available, He spontaneously form clusters, which result in strong lattice strain. It can be relieved by ejecting one or more matrix atoms to form one or more Frenkel Pairs, i:e:vacancies and self-interstitial atoms. He cluster will be trapped by the vacancy it created, this is a self-trapping event[2]. 展开更多
关键词 FIRST-PRINCIPLES INVESTIGATION self-trapping
下载PDF
Efficient energy transfer from self-trapped excitons to Mn^(2+) dopants in CsCdCl_(3):Mn^(2+) perovskite nanocrystals
7
作者 Anran Zhang Xinquan Zhou +1 位作者 Ranran Gu Zhiguo Xia 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1456-1461,共6页
Mn^(2+)doping has been adopted as an efficient approach to regulating the luminescence properties of halide perovskite nano-crystals(NCs).However,it is still difficult to understand the interplay of Mn^(2+)luminescenc... Mn^(2+)doping has been adopted as an efficient approach to regulating the luminescence properties of halide perovskite nano-crystals(NCs).However,it is still difficult to understand the interplay of Mn^(2+)luminescence and the matrix self-trapped exciton(STE)emission therein.In this study,Mn^(2+)-doped CsCdCl_(3) NCs are prepared by hot injection,in which CsCdCl_(3) is selected because of its unique crystal structure suitable for STE emission.The blue emission at 441 nm of undoped CsCdCl_(3) NCs originates from the defect states in the NCs.Mn^(2+)doping promotes lattice distortion of CsCdCl_(3) and generates bright orange-red light emission at 656 nm.The en-ergy transfer from the STEs of CsCdCl_(3) to the excited levels of the Mn^(2+)ion is confirmed to be a significant factor in achieving efficient luminescence in CsCdCl_(3):Mn^(2+)NCs.This work highlights the crucial role of energy transfer from STEs to Mn^(2+)dopants in Mn^(2+)-doped halide NCs and lays the groundwork for modifying the luminescence of other metal halide perovskite NCs. 展开更多
关键词 perovskite nanocrystals self-trapped excitons LUMINESCENCE energy transfer
下载PDF
Self-trapping and oscillation of quadruple beams in high band gap of 2D photonic lattices 被引量:2
8
作者 夏世强 宋道红 +2 位作者 唐莉勤 楼慈波 李乙刚 《Chinese Optics Letters》 SCIE EI CAS CSCD 2013年第9期21-24,共4页
through single-site excitation. By changing the initial to the lattices, periodic oscillations of the localized quadruple state becomes a rotating doubly charged undergo charge-flipping when the rotating direction is ... through single-site excitation. By changing the initial to the lattices, periodic oscillations of the localized quadruple state becomes a rotating doubly charged undergo charge-flipping when the rotating direction is orientation of the incident quadruple beam related quadruple mode may be obtained. The localized optical vortex (DCV) during rotation and should reversed. 展开更多
关键词 self-trapping and oscillation of quadruple beams in high band gap of 2D photonic lattices HIGH
原文传递
Light-emitting diodes based on all-inorganic copper halide perovskite with self-trapped excitons 被引量:5
9
作者 Nian Liu Xue Zhao +4 位作者 Mengling Xia Guangda Niu Qingxun Guo Liang Gao Jiang Tang 《Journal of Semiconductors》 EI CAS CSCD 2020年第5期86-90,共5页
Light-emitting diodes based on lead halide perovskite have attracted great attention due to their outstanding performance.However,their application is plagued by the toxicity of Pb and the poor stability.Herein novel ... Light-emitting diodes based on lead halide perovskite have attracted great attention due to their outstanding performance.However,their application is plagued by the toxicity of Pb and the poor stability.Herein novel copper-based all inorganic perovskite CsCu2I3 with much enhanced stability has been reported with a potential photoluminescence quantum yield(PLQY)over 20%and self-trapped excitons(STE).By taking advantage of its extraordinary thermal stability,we successfully fabricate high-quality CsCu2I3 film through direct vacuum-based deposition(VBD)of CsCu2I3 powder.The resulting film shows almost the same PLQY with the synthesized powder,as well as excellent uniformity and stability.The perovskite light-emitting diodes(Pe-LED)based on the evaporated CsCu2I3 emitting layer achieve a luminescence of 10 cd/m2 and an external quantum efficiency(EQE)of 0.02%.To the best of our knowledge,this is the first CsCu2I3 Pe-LED fabricated by VBD with STE property,which offers a new avenue for lead-free Pe-LED. 展开更多
关键词 LIGHT-EMITTING DIODES copper HALIDE PEROVSKITE vacuum-based evaporation self-trapped EXCITON
下载PDF
Achieving Tunable Cold/Warm White‑Light Emission in a Single Perovskite Material with Near‑Unity Photoluminescence Quantum Yield
10
作者 Bo Zhou Aixuan Du +6 位作者 Dong Ding Zexiang Liu Ye Wang Haizhe Zhong Henan Li Hanlin Hu Yumeng Shi 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期305-316,共12页
Single materials that exhibit efficient and stable white-light emission are highly desirable for lighting applications.This paper reports a novel zero-dimensional perovskite,Rb_(4)CdCl_(6):Sn^(2+),Mn^(2+),which demons... Single materials that exhibit efficient and stable white-light emission are highly desirable for lighting applications.This paper reports a novel zero-dimensional perovskite,Rb_(4)CdCl_(6):Sn^(2+),Mn^(2+),which demonstrates exceptional white-light properties including adjustable correlated color temperature,high color rendering index of up to 85,and near-unity photoluminescence quantum yield of 99%.Using a co-doping strategy involving Sn^(2+)and Mn^(2+),cyan-orange dual-band emission with complementary spectral ranges is activated by the self-trapped excitons and d-d transitions of the Sn^(2+)and Mn^(2+)centers in the Rb_(4)CdCl_(6)host,respectively.Intriguingly,although Mn^(2+)ions doped in Rb_(4)CdCl_(6)are difficult to excite,efficient Mn^(2+)emission can be realized through an ultra-high-efficient energy transfer between Sn^(2+)and Mn^(2+)via the formation of adjacent exchange-coupled Sn–Mn pairs.Benefiting from this efficient Dexter energy transfer process,the dual emission shares the same optimal excitation wavelengths of the Sn^(2+)centers and suppresses the non-radiative vibration relaxation significantly.Moreover,the relative intensities of the dual-emission components can be modulated flexibly by adjusting the fraction of the Sn^(2+)ions to the Sn–Mn pairs.This co-doping approach involving short-range energy transfer represents a promising avenue for achieving high-quality white light within a single material. 展开更多
关键词 0D perovskite Multi-ion doping Near-unity white light Energy transfer self-trapped excitons
下载PDF
Temperature-dependent self-trapped exciton emission in Cu(I)doped zinc-based metal halides from well-resolved excited state structures
11
作者 Yunlong Bai Shuai Zhang +2 位作者 Nengneng Luo Bingsuo Zou Ruosheng Zeng 《Nano Research》 SCIE EI CSCD 2024年第8期7768-7775,共8页
Zero-dimensional metal halides are of unique structures and tunable photoluminescence properties,showing great potential applications such as light-emitting diodes(LEDs)and sensing.Herein,we successfully synthesized C... Zero-dimensional metal halides are of unique structures and tunable photoluminescence properties,showing great potential applications such as light-emitting diodes(LEDs)and sensing.Herein,we successfully synthesized Cu^(+)doped(MA)_(2)ZnCl_(4)metal halides by a slow evaporation solvent method.The introduction of Cu^(+)results in sky-blue self-trapped exciton emission in(MA)_(2)ZnCl_(4)at 486 nm at room temperature,and a photoluminescence quantum yield is as high as 54.9%.Interestingly,at low temperatures,Cu^(+)-doped(MA)_(2)ZnCl_(4)exhibits two emission peaks located at 482 and 605 nm,respectively.This temperaturedependent dual emission indicates two excited state structures that exist on the triplet excited-state potential energy surface.In addition,the temperature sensor we fitted has good performance(Sr=1.65%·K^(−1)),which is the first attempt in Cu^(+)doped Znbased metal halides.Our work enriches the family of sky-blue metal halides and provides a promising strategy for building skyblue LEDs. 展开更多
关键词 sky-blue emission self-trapped exciton metal halides excited state structures temperature sensor
原文传递
Doping suppresses lattice distortion of vacant quadruple perovskites to activate self-trapped excitons emission
12
作者 Zhipeng Chen Fei Zhang +6 位作者 Dongwen Yang Huifang Ji Xu Chen Di Wu Xinjian Li Yu Zhang Zhifeng Shi 《Nano Research》 SCIE EI CSCD 2024年第4期3068-3078,共11页
The vacancy-ordered quadruple perovskite Cs_(4)CdBi_(2)Cl_(12),as a newly-emerging lead-free perovskite system,has attracted great research interest due to its excellent stability and direct band gap.However,the poor ... The vacancy-ordered quadruple perovskite Cs_(4)CdBi_(2)Cl_(12),as a newly-emerging lead-free perovskite system,has attracted great research interest due to its excellent stability and direct band gap.However,the poor luminescence performance limits its application in light-emitting diodes(LEDs)and other fields.Herein,for the first time,an Ag^(+)ion doping strategy was proposed to greatly improve the emission performance of Cs_(4)CdBi_(2)Cl_(12) synthesized by hydrothermal method.Density functional theory calculations combined with experimental results evidence that the weak orange emission from Cs_(4)CdBi_(2)Cl_(12) is attributed to the phonon scattering and energy level crossing due to the large lattice distortion under excited states.Fortunately,Ag^(+)ion doping breaks the intrinsic crystal field environment of Cs_(4)CdBi_(2)Cl_(12),suppresses the crossover between ground and excited states,and reduces the energy loss in the form of nonradiative recombination.At a critical doping amount of 0.8%,the emission intensity of Cs_(4)CdBi_(2)Cl_(12):Ag^(+)reaches the maximum,about eight times that of the pristine sample.Moreover,the doped Cs_(4)CdBi_(2)Cl_(12) still maintains excellent stability against heat,ultraviolet irradiation,and environmental oxygen/moisture.The above advantages make it possible for this material to be used as solid-state phosphors for white LEDs applications,and the Commission International de I’Eclairage color coordinates of(0.31,0.34)and high color rendering index of 90.6 were achieved.More importantly,the white LED demonstrates remarkable operation stability in air ambient,showing almost no emission decay after a long working time for 48 h.We believe that this study puts forward an effective ion-doping strategy for emission enhancement of vacancy-ordered quadruple perovskite Cs_(4)CdBi_(2)Cl_(12),highlighting its great potential as efficient emitter compatible for practical applications. 展开更多
关键词 Cs_(4)CdBi_(2)Cl_(12) self-trapped excitons ion doping emission enhancement stability
原文传递
Impurity-induced localization of Bose-Einstein condensates in one-dimensional optical lattices 被引量:1
13
作者 王建军 张爱霞 薛具奎 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第8期64-70,共7页
The impurity-induced localization of two-component Bose-Einstein condensates loaded into deep one-dimensional optical lattices is studied both analytically and numerically. It is shown that, the analytical criteria fo... The impurity-induced localization of two-component Bose-Einstein condensates loaded into deep one-dimensional optical lattices is studied both analytically and numerically. It is shown that, the analytical criteria for self-trapping and moving soliton/breather of the primary-component condensate are modified significantly by an admixture of an impurity component (the second component). The realization of the self-trapped state and the moving soliton/breather states of the primary-component becomes more easy with the minor admixture of the impurity-component, even if the two components are partly overlapped. 展开更多
关键词 TWO-COMPONENT optical lattices self-trapping moving soliton/breather
下载PDF
Influence of a Magnetic Guide Field on Injection in Wakefield Acceleration 被引量:1
14
作者 Alain Bourdier Sébastien Rassou +1 位作者 Guillaume Girard Mathieu Drouin 《Journal of Modern Physics》 2012年第9期1018-1020,共3页
The influence of an external static field applied in the direction parallel to the direction of propagation of a high intensity driving laser pulse on the electron trapping in laser wakefield acceleration is explored.
关键词 Laser WAKEFIELD ACCELERATION MAGNETIC Field ELECTRON INJECTION self-trapping
下载PDF
Acoustic Polaron in Free-Standing Slabs 被引量:1
15
作者 Junhua Hou Guangming Si 《World Journal of Condensed Matter Physics》 2014年第4期235-240,共6页
The ground-state energy and its derivate of the acoustic polaron in free-standing slab are calculated by using the Huybrechts-like variational approach. The criteria for presence of the selftrapping transition of the ... The ground-state energy and its derivate of the acoustic polaron in free-standing slab are calculated by using the Huybrechts-like variational approach. The criteria for presence of the selftrapping transition of the acoustic polaron in free-standing slabs are determined qualitatively. The critical coupling constant for the discontinuous transition from a quasi-free state to a trapped state of the acoustic polaron in free-standing slabs tends to shift toward the weaker electronphonon coupling with the increasing cutoff wave-vector. Detailed numerical results confirm that the self-trapping transition of holes is expected to occur in the free-standing slabs of wide-bandgap semi-conductors. 展开更多
关键词 FREE-STANDING SLABS ACOUSTIC POLARON self-trapping
下载PDF
Atomic population oscillations between two coupled Bose-Einstein condensates with time-dependent nonlinear interaction
16
作者 李飞 舒维星 +1 位作者 罗海陆 任中洲 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第3期650-659,共10页
The atomic population oscillations between two Bose-Einstein condensates with time-dependent nonlinear interaction in a double-well potential are studied. We first analyse the stabilities of the system's steady-state... The atomic population oscillations between two Bose-Einstein condensates with time-dependent nonlinear interaction in a double-well potential are studied. We first analyse the stabilities of the system's steady-state solutions. And then in the perturbative regime, the Melnikov chaotic oscillation of atomic population imbalance is investigated and the Melnikov chaotic criterion is obtained. When the system is out of the perturbative regime, numerical calculations reveal that regulating the nonlinear parameter can lead the system to step into chaos via period doubling bifurcations. It is also numerically found that adjusting the nonlinear parameter and asymmetric trap potential can result in the running-phase macroscopic quantum self-trapping (MQST). In the presence of a weak asymmetric trap potential, there exists the parametric resonance in the system. 展开更多
关键词 Bose-Einstein condensates Melnikov chaotic criterion period doubling macroscopic quantum self-trapping
下载PDF
Electron Auto-Localization Tailored by Its Thermal Energy: Dynamic Matrix Approach (DMA)
17
作者 Idriss Fomadjo Fokou Michael Nana Jipdi +1 位作者 Martin Tchoffo Lukong Cornelius Fai 《Journal of Applied Mathematics and Physics》 2021年第3期515-527,共13页
This paper investigates the thermal energy effect on electron auto-localization. The polaron characteristics (self-action potential and effective mass) are observed to be expressed via the renormalized electron-phonon... This paper investigates the thermal energy effect on electron auto-localization. The polaron characteristics (self-action potential and effective mass) are observed to be expressed via the renormalized electron-phonon coupling constant tailored by the thermal energy. Low temperatures are observed to favour auto-localization of the carrier while high temperatures favour polaron undressing and subsequent quenching of the quantum behaviour thereby rendering the system classical. The critical (transition) temperature <em>τ<sub>c</sub></em> expressed via the critical coupling constant <span style="white-space:nowrap;">&#978;</span><em><sub>C</sub></em> is found to be the separating boundary between the quantum and the classical phases. Therefore, the polaron undergoes phase transition (from self-tapped to quasi free states) when the temperature of the medium is enhanced. 展开更多
关键词 Autolocalization Quantum Phase Transition self-trapping Critical Temperature
下载PDF
Influence of a Magnetic Guide Field on Self-Injection in Wakefield Acceleration
18
作者 Alain Bourdier Guillaume Girard +2 位作者 Sébastien Rassou Xavier Davoine Mathieu Drouin 《Journal of Modern Physics》 2012年第12期1983-1990,共8页
The influence of an external static field applied in the direction of propagation of a high intensity driving laser pulse on the electron trapping in laser wakefield acceleration is explored. It is shown that, in the ... The influence of an external static field applied in the direction of propagation of a high intensity driving laser pulse on the electron trapping in laser wakefield acceleration is explored. It is shown that, in the case of self-injection, the electric charge accelerated can be enhanced in some physical situations. 展开更多
关键词 Laser WAKEFIELD ACCELERATION MAGNETIC Guide Field Electron INJECTION self-trapping
下载PDF
Simulation of He Behavior in Metals With Embedded Atom Method
19
作者 Yue, Yna Pan, Zhengying 《Chinese journal of nuclear physics》 EI 1997年第1期39-43,共5页
The embedded-atom method(EAM)is used to study the behavior of helium in meta-ls.By fitting the measured parameters such as the activation energy and the heat of solution,the EAM potentials of helium in nickel are extr... The embedded-atom method(EAM)is used to study the behavior of helium in meta-ls.By fitting the measured parameters such as the activation energy and the heat of solution,the EAM potentials of helium in nickel are extracted.Based upon the EAM potentials,thebinding energy and the self-trapping of helium in nickel are investigated with molecular dynam-ics simulation. 展开更多
关键词 Embedded-atom method HELIUM self-trapping MOLECULAR DYNAMICS SIMULATION
下载PDF
Effective Mass of Acoustic Polaron in Quantum Dots
20
作者 Hao Li Junhua Hou Xiaofeng Duan 《World Journal of Condensed Matter Physics》 2015年第1期37-42,共6页
The variational effective mass with respect to the e-p coupling constant for different values of cutoff wave vector is performed in quantum dot. The self-trapping transition of acoustic polaron in quantum dot is recon... The variational effective mass with respect to the e-p coupling constant for different values of cutoff wave vector is performed in quantum dot. The self-trapping transition of acoustic polaron in quantum dot is reconsidered by character of the effective mass curve varying with the e-p coupling. The holes are determined to be self-trapped in AlN quantum dot systems. 展开更多
关键词 Quantum DOT Effective Mass ACOUSTIC POLARON self-trapping
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部