Clustering analysis is one of the main concerns in data mining.A common approach to the clustering process is to bring together points that are close to each other and separate points that are away from each other.The...Clustering analysis is one of the main concerns in data mining.A common approach to the clustering process is to bring together points that are close to each other and separate points that are away from each other.Therefore,measuring the distance between sample points is crucial to the effectiveness of clustering.Filtering features by label information and mea-suring the distance between samples by these features is a common supervised learning method to reconstruct distance metric.However,in many application scenarios,it is very expensive to obtain a large number of labeled samples.In this paper,to solve the clustering problem in the few supervised sample and high data dimensionality scenarios,a novel semi-supervised clustering algorithm is proposed by designing an improved prototype network that attempts to reconstruct the distance metric in the sample space with a small amount of pairwise supervised information,such as Must-Link and Cannot-Link,and then cluster the data in the new metric space.The core idea is to make the similar ones closer and the dissimilar ones further away through embedding mapping.Extensive experiments on both real-world and synthetic datasets show the effectiveness of this algorithm.Average clustering metrics on various datasets improved by 8%compared to the comparison algorithm.展开更多
Faced with increasing global soil degradation,spatially explicit data on cropland soil organic matter(SOM)provides crucial data for soil carbon pool accounting,cropland quality assessment and the formulation of effect...Faced with increasing global soil degradation,spatially explicit data on cropland soil organic matter(SOM)provides crucial data for soil carbon pool accounting,cropland quality assessment and the formulation of effective management policies.As a spatial information prediction technique,digital soil mapping(DSM)has been widely used to spatially map soil information at different scales.However,the accuracy of digital SOM maps for cropland is typically lower than for other land cover types due to the inherent difficulty in precisely quantifying human disturbance.To overcome this limitation,this study systematically assessed a framework of“information extractionfeature selection-model averaging”for improving model performance in mapping cropland SOM using 462 cropland soil samples collected in Guangzhou,China in 2021.The results showed that using the framework of dynamic information extraction,feature selection and model averaging could efficiently improve the accuracy of the final predictions(R^(2):0.48 to 0.53)without having obviously negative impacts on uncertainty.Quantifying the dynamic information of the environment was an efficient way to generate covariates that are linearly and nonlinearly related to SOM,which improved the R^(2)of random forest from 0.44 to 0.48 and the R^(2)of extreme gradient boosting from 0.37to 0.43.Forward recursive feature selection(FRFS)is recommended when there are relatively few environmental covariates(<200),whereas Boruta is recommended when there are many environmental covariates(>500).The Granger-Ramanathan model averaging approach could improve the prediction accuracy and average uncertainty.When the structures of initial prediction models are similar,increasing in the number of averaging models did not have significantly positive effects on the final predictions.Given the advantages of these selected strategies over information extraction,feature selection and model averaging have a great potential for high-accuracy soil mapping at any scales,so this approach can provide more reliable references for soil conservation policy-making.展开更多
Unsupervised methods based on density representation have shown their abilities in anomaly detection,but detection performance still needs to be improved.Specifically,approaches using normalizing flows can accurately ...Unsupervised methods based on density representation have shown their abilities in anomaly detection,but detection performance still needs to be improved.Specifically,approaches using normalizing flows can accurately evaluate sample distributions,mapping normal features to the normal distribution and anomalous features outside it.Consequently,this paper proposes a Normalizing Flow-based Bidirectional Mapping Residual Network(NF-BMR).It utilizes pre-trained Convolutional Neural Networks(CNN)and normalizing flows to construct discriminative source and target domain feature spaces.Additionally,to better learn feature information in both domain spaces,we propose the Bidirectional Mapping Residual Network(BMR),which maps sample features to these two spaces for anomaly detection.The two detection spaces effectively complement each other’s deficiencies and provide a comprehensive feature evaluation from two perspectives,which leads to the improvement of detection performance.Comparative experimental results on the MVTec AD and DAGM datasets against the Bidirectional Pre-trained Feature Mapping Network(B-PFM)and other state-of-the-art methods demonstrate that the proposed approach achieves superior performance.On the MVTec AD dataset,NF-BMR achieves an average AUROC of 98.7%for all 15 categories.Especially,it achieves 100%optimal detection performance in five categories.On the DAGM dataset,the average AUROC across ten categories is 98.7%,which is very close to supervised methods.展开更多
By employing the unique phenological feature of winter wheat extracted from peak before winter (PBW) and the advantages of moderate resolution imaging spectroradiometer (MODIS) data with high temporal resolution a...By employing the unique phenological feature of winter wheat extracted from peak before winter (PBW) and the advantages of moderate resolution imaging spectroradiometer (MODIS) data with high temporal resolution and intermediate spatial resolution, a remote sensing-based model for mapping winter wheat on the North China Plain was built through integration with Landsat images and land-use data. First, a phenological window, PBW was drawn from time-series MODIS data. Next, feature extraction was performed for the PBW to reduce feature dimension and enhance its information. Finally, a regression model was built to model the relationship of the phenological feature and the sample data. The amount of information of the PBW was evaluated and compared with that of the main peak (MP). The relative precision of the mapping reached up to 92% in comparison to the Landsat sample data, and ranged between 87 and 96% in comparison to the statistical data. These results were sufficient to satisfy the accuracy requirements for winter wheat mapping at a large scale. Moreover, the proposed method has the ability to obtain the distribution information for winter wheat in an earlier period than previous studies. This study could throw light on the monitoring of winter wheat in China by using unique phenological feature of winter wheat.展开更多
A new clustering algorithm called fuzzy self-organizing feature maps is introduced. It can process not only the exact digital inputs, but also the inexact or fuzzy non-digital inputs, such as natural language inputs. ...A new clustering algorithm called fuzzy self-organizing feature maps is introduced. It can process not only the exact digital inputs, but also the inexact or fuzzy non-digital inputs, such as natural language inputs. Simulation results show that the new algorithm is superior to original Kohonen’s algorithm in clustering performance and learning rate.展开更多
Cytogenetic maps of four clusters of disease resistance genes were generated by ISH of the two RFLP markers tightly linked to and flanking each of maize resistance genes and the cloned resistance genes from other plan...Cytogenetic maps of four clusters of disease resistance genes were generated by ISH of the two RFLP markers tightly linked to and flanking each of maize resistance genes and the cloned resistance genes from other plant species onto maize chromosomes, combining with data published before. These genes include Helminthosporium turcium Pass resistance genes Ht1, Htn1 and Ht2, Helminthosporium maydis Nisik resistance genes Rhm1 and Rhm2, maize dwarf mosaic virus resistance gene Mdm1, wheat streak mosaic virus resistance gene Wsm1, Helminthosporium carbonum ULLstrup resistance gene Hml and the cloned Xanthomonas oryzae pv. Oryzae resistance gene Xa21 of rice, Cladosporium fulvum resistance genes Cf-9 and Cf-2.1 of tomato,and Pseudomonas syringae resistance gene RPS2 of Arabidopsis. Most of the tested disease resistance genes located on the four chromosomes, i.e., chromosomes1, 3, 6 and 8, and they closely distributed at the interstitial regions of these chromosomal long arms with percentage distances ranging 31.44(±3.72)-72.40(±3.25) except for genes Rhm1, Rhm2, Mdm1 and Wsm1 which mapped on the satellites of the short arms of chromosome6. It showed that the tested RFLP markers and genes were duplicated or triplicated in maize genome. Homology and conservation of disease resistance genes among species, and relationship between distribution features and functions of the genes were discussed. The results provide important scientific basis for deeply understanding structure and function of disease resistance genes and breeding in maize.展开更多
Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one...Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration.展开更多
Glacial lake mapping provides the most feasible way for investigating the water resources and monitoring the flood outburst hazards in High Mountain Region.However,various types of glacial lakes with different propert...Glacial lake mapping provides the most feasible way for investigating the water resources and monitoring the flood outburst hazards in High Mountain Region.However,various types of glacial lakes with different properties bring a constraint to the rapid and accurate glacial lake mapping over a large scale.Existing spectral features to map glacial lakes are diverse but some are generally limited to the specific glaciated regions or lake types,some have unclear applicability,which hamper their application for the large areas.To this end,this study provides a solution for evaluating the most effective spectral features in glacial lake mapping using Landsat-8 imagery.The 23 frequently-used lake mapping spectral features,including single band reflectance features,Water Index features and image transformation features were selected,then the insignificant features were filtered out based on scoring calculated from two classical feature selection methods-random forest and decision tree algorithm.The result shows that the three most prominent spectral features(SF)with high scores are NDWI1,EWI,and NDWI3(renamed as SF8,SF19 and SF12 respectively).Accuracy assessment of glacial lake mapping results in five different test sites demonstrate that the selected features performed well and robustly in classifying different types of glacial lakes without any influence from the mountain shadows.SF8 and SF19 are superior for the detection of large amount of small glacial lakes,while some lake areas extracted by SF12 are incomplete.Moreover,SF8 achieved better accuracy than the other two features in terms of both Kappa Coefficient(0.8812)and Prediction(0.9025),which further indicates that SF8 has great potential for large scale glacial lake mapping in high mountainous area.展开更多
In recent years,simultaneous localization and mapping in dynamic environments(dynamic SLAM)has attracted significant attention from both academia and industry.Some pioneering work on this technique has expanded the po...In recent years,simultaneous localization and mapping in dynamic environments(dynamic SLAM)has attracted significant attention from both academia and industry.Some pioneering work on this technique has expanded the potential of robotic applications.Compared to standard SLAM under the static world assumption,dynamic SLAM divides features into static and dynamic categories and leverages each type of feature properly.Therefore,dynamic SLAM can provide more robust localization for intelligent robots that operate in complex dynamic environments.Additionally,to meet the demands of some high-level tasks,dynamic SLAM can be integrated with multiple object tracking.This article presents a survey on dynamic SLAM from the perspective of feature choices.A discussion of the advantages and disadvantages of different visual features is provided in this article.展开更多
Gully feature mapping is an indispensable prerequisite for the motioning and control of gully erosion which is a widespread natural hazard. The increasing availability of high-resolution Digital Elevation Model(DEM) a...Gully feature mapping is an indispensable prerequisite for the motioning and control of gully erosion which is a widespread natural hazard. The increasing availability of high-resolution Digital Elevation Model(DEM) and remote sensing imagery, combined with developed object-based methods enables automatic gully feature mapping. But still few studies have specifically focused on gully feature mapping on different scales. In this study, an object-based approach to two-level gully feature mapping, including gully-affected areas and bank gullies, was developed and tested on 1-m DEM and Worldview-3 imagery of a catchment in the Chinese Loess Plateau. The methodology includes a sequence of data preparation, image segmentation, metric calculation, and random forest based classification. The results of the two-level mapping were based on a random forest model after investigating the effects of feature selection and class-imbalance problem. Results show that the segmentation strategy adopted in this paper which considers the topographic information and optimal parameter combination can improve the segmentation results. The distribution of the gully-affected area is closely related to topographic information, however, the spectral features are more dominant for bank gully mapping. The highest overall accuracy of the gully-affected area mapping was 93.06% with four topographic features. The highest overall accuracy of bank gully mapping is 78.5% when all features are adopted. The proposed approach is a creditable option for hierarchical mapping of gully feature information, which is suitable for the application in hily Loess Plateau region.展开更多
Background:Accurate mapping of tree species is highly desired in the management and research of plantation forests,whose ecosystem services are currently under threats.Time-series multispectral satellite images,e.g.,f...Background:Accurate mapping of tree species is highly desired in the management and research of plantation forests,whose ecosystem services are currently under threats.Time-series multispectral satellite images,e.g.,from Landsat-8(L8)and Sentinel-2(S2),have been proven useful in mapping general forest types,yet we do not know quantitatively how their spectral features(e.g.,red-edge)and temporal frequency of data acquisitions(e.g.,16-day vs.5-day)contribute to plantation forest mapping to the species level.Moreover,it is unclear to what extent the fusion of L8 and S2 will result in improvements in tree species mapping of northern plantation forests in China.Methods:We designed three sets of classification experiments(i.e.,single-date,multi-date,and spectral-temporal)to evaluate the performances of L8 and S2 data for mapping keystone timber tree species in northern China.We first used seven pairs of L8 and S2 images to evaluate the performances of L8 and S2 key spectral features for separating these tree species across key growing stages.Then we extracted the spectral-temporal features from all available images of different temporal frequency of data acquisition(i.e.,L8 time series,S2 time series,and fusion of L8 and S2)to assess the contribution of image temporal frequency on the accuracy of tree species mapping in the study area.Results:1)S2 outperformed L8 images in all classification experiments,with or without the red edge bands(0.4%–3.4%and 0.2%–4.4%higher for overall accuracy and macro-F1,respectively);2)NDTI(the ratio of SWIR1 minus SWIR2 to SWIR1 plus SWIR2)and Tasseled Cap coefficients were most important features in all the classifications,and for time-series experiments,the spectral-temporal features of red band-related vegetation indices were most useful;3)increasing the temporal frequency of data acquisition can improve overall accuracy of tree species mapping for up to 3.2%(from 90.1%using single-date imagery to 93.3%using S2 time-series),yet similar overall accuracies were achieved using S2 time-series(93.3%)and the fusion of S2 and L8(93.2%).Conclusions:This study quantifies the contributions of L8 and S2 spectral and temporal features in mapping keystone tree species of northern plantation forests in China and suggests that for mapping tree species in China's northern plantation forests,the effects of increasing the temporal frequency of data acquisition could saturate quickly after using only two images from key phenological stages.展开更多
A configurable ontology mapping approach based on different kinds of concept feature information is introduced in this paper. In this approach, ontology concept feature information is classified as five kinds, which r...A configurable ontology mapping approach based on different kinds of concept feature information is introduced in this paper. In this approach, ontology concept feature information is classified as five kinds, which respectively corresponds to five kinds of concept similarity computation methods. Many existing ontology mapping approaches have adopted the multi-feature reasoning, whereas not all feature information can be com- puted in the real ontology mapping and only fractional feature information needs to be selected in the mapping computation. Consequently a eonfigurable ontology mapping model is introduced, which is composed of CMT model, SMT model and related transformation model. Through the configurable model, users can conveniently select the most suitable features and configure the suitable weights. Simultaneously, a related 3-step ontology mapping approach is also introduced. Associated with the traditional name and instance learner-based ontology mapping approach, this approach is evaluated by an ontology mapping application example.展开更多
A blank panel design algorithm based on feature mapping methods for integral wing skin panels with supercritical airfoil surface is presented.The model of a wing panel is decomposed into features,and features of the p...A blank panel design algorithm based on feature mapping methods for integral wing skin panels with supercritical airfoil surface is presented.The model of a wing panel is decomposed into features,and features of the panel are decomposed into information of location,direction,dimension and Boolean types.Features are mapped into the plane through optimal surface development algorithm.The plane panel is modeled by rebuilding the mapped features.Blanks of shot-peen forming panels are designed to identify the effectiveness of the methods.展开更多
The mechanism of the Concurrent Engineering(CE)and the methods of the manufacturing consultation are discussed. CE-oriented computer aided manufacture consulting methods are one of the key issues in concurrent design....The mechanism of the Concurrent Engineering(CE)and the methods of the manufacturing consultation are discussed. CE-oriented computer aided manufacture consulting methods are one of the key issues in concurrent design. The problems are settled in part function-feature mapping in concurrent design. The fuzzy set theory is applied to the function-feature mapping. A method for part function-feature mapping based on fuzzy theory is presented.展开更多
文摘Clustering analysis is one of the main concerns in data mining.A common approach to the clustering process is to bring together points that are close to each other and separate points that are away from each other.Therefore,measuring the distance between sample points is crucial to the effectiveness of clustering.Filtering features by label information and mea-suring the distance between samples by these features is a common supervised learning method to reconstruct distance metric.However,in many application scenarios,it is very expensive to obtain a large number of labeled samples.In this paper,to solve the clustering problem in the few supervised sample and high data dimensionality scenarios,a novel semi-supervised clustering algorithm is proposed by designing an improved prototype network that attempts to reconstruct the distance metric in the sample space with a small amount of pairwise supervised information,such as Must-Link and Cannot-Link,and then cluster the data in the new metric space.The core idea is to make the similar ones closer and the dissimilar ones further away through embedding mapping.Extensive experiments on both real-world and synthetic datasets show the effectiveness of this algorithm.Average clustering metrics on various datasets improved by 8%compared to the comparison algorithm.
基金the National Natural Science Foundation of China(U1901601)the National Key Research and Development Program of China(2022YFB3903503)。
文摘Faced with increasing global soil degradation,spatially explicit data on cropland soil organic matter(SOM)provides crucial data for soil carbon pool accounting,cropland quality assessment and the formulation of effective management policies.As a spatial information prediction technique,digital soil mapping(DSM)has been widely used to spatially map soil information at different scales.However,the accuracy of digital SOM maps for cropland is typically lower than for other land cover types due to the inherent difficulty in precisely quantifying human disturbance.To overcome this limitation,this study systematically assessed a framework of“information extractionfeature selection-model averaging”for improving model performance in mapping cropland SOM using 462 cropland soil samples collected in Guangzhou,China in 2021.The results showed that using the framework of dynamic information extraction,feature selection and model averaging could efficiently improve the accuracy of the final predictions(R^(2):0.48 to 0.53)without having obviously negative impacts on uncertainty.Quantifying the dynamic information of the environment was an efficient way to generate covariates that are linearly and nonlinearly related to SOM,which improved the R^(2)of random forest from 0.44 to 0.48 and the R^(2)of extreme gradient boosting from 0.37to 0.43.Forward recursive feature selection(FRFS)is recommended when there are relatively few environmental covariates(<200),whereas Boruta is recommended when there are many environmental covariates(>500).The Granger-Ramanathan model averaging approach could improve the prediction accuracy and average uncertainty.When the structures of initial prediction models are similar,increasing in the number of averaging models did not have significantly positive effects on the final predictions.Given the advantages of these selected strategies over information extraction,feature selection and model averaging have a great potential for high-accuracy soil mapping at any scales,so this approach can provide more reliable references for soil conservation policy-making.
基金This work was supported in part by the National Key R&D Program of China 2021YFE0110500in part by the National Natural Science Foundation of China under Grant 62062021in part by the Guiyang Scientific Plan Project[2023]48-11.
文摘Unsupervised methods based on density representation have shown their abilities in anomaly detection,but detection performance still needs to be improved.Specifically,approaches using normalizing flows can accurately evaluate sample distributions,mapping normal features to the normal distribution and anomalous features outside it.Consequently,this paper proposes a Normalizing Flow-based Bidirectional Mapping Residual Network(NF-BMR).It utilizes pre-trained Convolutional Neural Networks(CNN)and normalizing flows to construct discriminative source and target domain feature spaces.Additionally,to better learn feature information in both domain spaces,we propose the Bidirectional Mapping Residual Network(BMR),which maps sample features to these two spaces for anomaly detection.The two detection spaces effectively complement each other’s deficiencies and provide a comprehensive feature evaluation from two perspectives,which leads to the improvement of detection performance.Comparative experimental results on the MVTec AD and DAGM datasets against the Bidirectional Pre-trained Feature Mapping Network(B-PFM)and other state-of-the-art methods demonstrate that the proposed approach achieves superior performance.On the MVTec AD dataset,NF-BMR achieves an average AUROC of 98.7%for all 15 categories.Especially,it achieves 100%optimal detection performance in five categories.On the DAGM dataset,the average AUROC across ten categories is 98.7%,which is very close to supervised methods.
基金supported by the open research fund of the Key Laboratory of Agri-informatics,Ministry of Agriculture and the fund of Outstanding Agricultural Researcher,Ministry of Agriculture,China
文摘By employing the unique phenological feature of winter wheat extracted from peak before winter (PBW) and the advantages of moderate resolution imaging spectroradiometer (MODIS) data with high temporal resolution and intermediate spatial resolution, a remote sensing-based model for mapping winter wheat on the North China Plain was built through integration with Landsat images and land-use data. First, a phenological window, PBW was drawn from time-series MODIS data. Next, feature extraction was performed for the PBW to reduce feature dimension and enhance its information. Finally, a regression model was built to model the relationship of the phenological feature and the sample data. The amount of information of the PBW was evaluated and compared with that of the main peak (MP). The relative precision of the mapping reached up to 92% in comparison to the Landsat sample data, and ranged between 87 and 96% in comparison to the statistical data. These results were sufficient to satisfy the accuracy requirements for winter wheat mapping at a large scale. Moreover, the proposed method has the ability to obtain the distribution information for winter wheat in an earlier period than previous studies. This study could throw light on the monitoring of winter wheat in China by using unique phenological feature of winter wheat.
文摘A new clustering algorithm called fuzzy self-organizing feature maps is introduced. It can process not only the exact digital inputs, but also the inexact or fuzzy non-digital inputs, such as natural language inputs. Simulation results show that the new algorithm is superior to original Kohonen’s algorithm in clustering performance and learning rate.
文摘Cytogenetic maps of four clusters of disease resistance genes were generated by ISH of the two RFLP markers tightly linked to and flanking each of maize resistance genes and the cloned resistance genes from other plant species onto maize chromosomes, combining with data published before. These genes include Helminthosporium turcium Pass resistance genes Ht1, Htn1 and Ht2, Helminthosporium maydis Nisik resistance genes Rhm1 and Rhm2, maize dwarf mosaic virus resistance gene Mdm1, wheat streak mosaic virus resistance gene Wsm1, Helminthosporium carbonum ULLstrup resistance gene Hml and the cloned Xanthomonas oryzae pv. Oryzae resistance gene Xa21 of rice, Cladosporium fulvum resistance genes Cf-9 and Cf-2.1 of tomato,and Pseudomonas syringae resistance gene RPS2 of Arabidopsis. Most of the tested disease resistance genes located on the four chromosomes, i.e., chromosomes1, 3, 6 and 8, and they closely distributed at the interstitial regions of these chromosomal long arms with percentage distances ranging 31.44(±3.72)-72.40(±3.25) except for genes Rhm1, Rhm2, Mdm1 and Wsm1 which mapped on the satellites of the short arms of chromosome6. It showed that the tested RFLP markers and genes were duplicated or triplicated in maize genome. Homology and conservation of disease resistance genes among species, and relationship between distribution features and functions of the genes were discussed. The results provide important scientific basis for deeply understanding structure and function of disease resistance genes and breeding in maize.
文摘Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration.
基金funded by the National Key R&D Program of China(Grant No.2017YFE0100800)the International Partnership Program of the Chinese Academy of Sciences(Grant No.131551KYSB20160002/131211KYSB20170046)the National Natural Science Foundation of China(41701481)。
文摘Glacial lake mapping provides the most feasible way for investigating the water resources and monitoring the flood outburst hazards in High Mountain Region.However,various types of glacial lakes with different properties bring a constraint to the rapid and accurate glacial lake mapping over a large scale.Existing spectral features to map glacial lakes are diverse but some are generally limited to the specific glaciated regions or lake types,some have unclear applicability,which hamper their application for the large areas.To this end,this study provides a solution for evaluating the most effective spectral features in glacial lake mapping using Landsat-8 imagery.The 23 frequently-used lake mapping spectral features,including single band reflectance features,Water Index features and image transformation features were selected,then the insignificant features were filtered out based on scoring calculated from two classical feature selection methods-random forest and decision tree algorithm.The result shows that the three most prominent spectral features(SF)with high scores are NDWI1,EWI,and NDWI3(renamed as SF8,SF19 and SF12 respectively).Accuracy assessment of glacial lake mapping results in five different test sites demonstrate that the selected features performed well and robustly in classifying different types of glacial lakes without any influence from the mountain shadows.SF8 and SF19 are superior for the detection of large amount of small glacial lakes,while some lake areas extracted by SF12 are incomplete.Moreover,SF8 achieved better accuracy than the other two features in terms of both Kappa Coefficient(0.8812)and Prediction(0.9025),which further indicates that SF8 has great potential for large scale glacial lake mapping in high mountainous area.
基金This work was supported by National Natural Science Foundation of China,Nos.62002359 and 61836015the Beijing Advanced Discipline Fund,No.115200S001.
文摘In recent years,simultaneous localization and mapping in dynamic environments(dynamic SLAM)has attracted significant attention from both academia and industry.Some pioneering work on this technique has expanded the potential of robotic applications.Compared to standard SLAM under the static world assumption,dynamic SLAM divides features into static and dynamic categories and leverages each type of feature properly.Therefore,dynamic SLAM can provide more robust localization for intelligent robots that operate in complex dynamic environments.Additionally,to meet the demands of some high-level tasks,dynamic SLAM can be integrated with multiple object tracking.This article presents a survey on dynamic SLAM from the perspective of feature choices.A discussion of the advantages and disadvantages of different visual features is provided in this article.
基金Under the auspices of Priority Academic Program Development of Jiangsu Higher Education Institutions,National Natural Science Foundation of China(No.41271438,41471316,41401440,41671389)
文摘Gully feature mapping is an indispensable prerequisite for the motioning and control of gully erosion which is a widespread natural hazard. The increasing availability of high-resolution Digital Elevation Model(DEM) and remote sensing imagery, combined with developed object-based methods enables automatic gully feature mapping. But still few studies have specifically focused on gully feature mapping on different scales. In this study, an object-based approach to two-level gully feature mapping, including gully-affected areas and bank gullies, was developed and tested on 1-m DEM and Worldview-3 imagery of a catchment in the Chinese Loess Plateau. The methodology includes a sequence of data preparation, image segmentation, metric calculation, and random forest based classification. The results of the two-level mapping were based on a random forest model after investigating the effects of feature selection and class-imbalance problem. Results show that the segmentation strategy adopted in this paper which considers the topographic information and optimal parameter combination can improve the segmentation results. The distribution of the gully-affected area is closely related to topographic information, however, the spectral features are more dominant for bank gully mapping. The highest overall accuracy of the gully-affected area mapping was 93.06% with four topographic features. The highest overall accuracy of bank gully mapping is 78.5% when all features are adopted. The proposed approach is a creditable option for hierarchical mapping of gully feature information, which is suitable for the application in hily Loess Plateau region.
基金supported by National Natural Science Foundation of China(Grant No.41901382)Open Fund of State Key Laboratory of Remote Sensing Science(Grant No.OFSLRSS201917)the HZAU research startup fund(No.11041810340,No.11041810341).
文摘Background:Accurate mapping of tree species is highly desired in the management and research of plantation forests,whose ecosystem services are currently under threats.Time-series multispectral satellite images,e.g.,from Landsat-8(L8)and Sentinel-2(S2),have been proven useful in mapping general forest types,yet we do not know quantitatively how their spectral features(e.g.,red-edge)and temporal frequency of data acquisitions(e.g.,16-day vs.5-day)contribute to plantation forest mapping to the species level.Moreover,it is unclear to what extent the fusion of L8 and S2 will result in improvements in tree species mapping of northern plantation forests in China.Methods:We designed three sets of classification experiments(i.e.,single-date,multi-date,and spectral-temporal)to evaluate the performances of L8 and S2 data for mapping keystone timber tree species in northern China.We first used seven pairs of L8 and S2 images to evaluate the performances of L8 and S2 key spectral features for separating these tree species across key growing stages.Then we extracted the spectral-temporal features from all available images of different temporal frequency of data acquisition(i.e.,L8 time series,S2 time series,and fusion of L8 and S2)to assess the contribution of image temporal frequency on the accuracy of tree species mapping in the study area.Results:1)S2 outperformed L8 images in all classification experiments,with or without the red edge bands(0.4%–3.4%and 0.2%–4.4%higher for overall accuracy and macro-F1,respectively);2)NDTI(the ratio of SWIR1 minus SWIR2 to SWIR1 plus SWIR2)and Tasseled Cap coefficients were most important features in all the classifications,and for time-series experiments,the spectral-temporal features of red band-related vegetation indices were most useful;3)increasing the temporal frequency of data acquisition can improve overall accuracy of tree species mapping for up to 3.2%(from 90.1%using single-date imagery to 93.3%using S2 time-series),yet similar overall accuracies were achieved using S2 time-series(93.3%)and the fusion of S2 and L8(93.2%).Conclusions:This study quantifies the contributions of L8 and S2 spectral and temporal features in mapping keystone tree species of northern plantation forests in China and suggests that for mapping tree species in China's northern plantation forests,the effects of increasing the temporal frequency of data acquisition could saturate quickly after using only two images from key phenological stages.
基金Sponsored by the 973 Natural Key Basis Research and Development Plan (Grant No.973: 2003CB316905)the National Natural Science Foundationof China (Grant No.60374071)
文摘A configurable ontology mapping approach based on different kinds of concept feature information is introduced in this paper. In this approach, ontology concept feature information is classified as five kinds, which respectively corresponds to five kinds of concept similarity computation methods. Many existing ontology mapping approaches have adopted the multi-feature reasoning, whereas not all feature information can be com- puted in the real ontology mapping and only fractional feature information needs to be selected in the mapping computation. Consequently a eonfigurable ontology mapping model is introduced, which is composed of CMT model, SMT model and related transformation model. Through the configurable model, users can conveniently select the most suitable features and configure the suitable weights. Simultaneously, a related 3-step ontology mapping approach is also introduced. Associated with the traditional name and instance learner-based ontology mapping approach, this approach is evaluated by an ontology mapping application example.
文摘A blank panel design algorithm based on feature mapping methods for integral wing skin panels with supercritical airfoil surface is presented.The model of a wing panel is decomposed into features,and features of the panel are decomposed into information of location,direction,dimension and Boolean types.Features are mapped into the plane through optimal surface development algorithm.The plane panel is modeled by rebuilding the mapped features.Blanks of shot-peen forming panels are designed to identify the effectiveness of the methods.
基金This project was supported by China Postdoctoral Science Foundation
文摘The mechanism of the Concurrent Engineering(CE)and the methods of the manufacturing consultation are discussed. CE-oriented computer aided manufacture consulting methods are one of the key issues in concurrent design. The problems are settled in part function-feature mapping in concurrent design. The fuzzy set theory is applied to the function-feature mapping. A method for part function-feature mapping based on fuzzy theory is presented.