In non-dedicated cooperative relay networks, each node is autonomous and selfish in nature, and thus spontaneous cooperation among nodes is challenged. To stimulate the selfish node to participate in cooperation, a pr...In non-dedicated cooperative relay networks, each node is autonomous and selfish in nature, and thus spontaneous cooperation among nodes is challenged. To stimulate the selfish node to participate in cooperation, a pricing-based cooperation engine using game theory was designed. Firstly, the feasible regions of the charge price and reimbursement price were deduced. Then, the non-cooperative and cooperative games were adopted to analyze the amount of bandwidth that initiating cooperation node(ICN) forwards data through participating cooperation node(PCN) and the amount of bandwidth that PCN helps ICN to relay data. Meanwhile, the Nash equilibrium solutions of cooperation bandwidth allocations(CBAs) were obtained through geometrical interpretation. Secondly, a pricing-based cooperation engine was proposed and a cooperative communication system model with cooperation engines was depicted. Finally, an algorithm based on game theory was proposed to realize the cooperation engine. The simulation results demonstrate that, compared with the system without pricing-based incentive, the proposed system can significantly improve the ICN's metric measured by bit-per-Joule and increase the PCN's revenue.展开更多
In Wireless Sensor Network(WSN),energy and packet forwarding tendencies of sensor nodes plays a potential role in ensuring a maximum degree of co-operation under data delivery.This quantified level of co-operation sig...In Wireless Sensor Network(WSN),energy and packet forwarding tendencies of sensor nodes plays a potential role in ensuring a maximum degree of co-operation under data delivery.This quantified level of co-operation signifies the performance of the network in terms of increased throughput,packet delivery rate and decreased delay depending on the data being aggregated and level of control overhead.The performance of a sensor network is highly inclined by the selfish behaving nature of sensor nodes that gets revealed when the residual energy ranges below a bearable level of activeness in packet forwarding.The selfish sensor node needs to be identified in future through reliable forecasting mechanism for improving the lifetime and packet delivery rate.Semi Markov Process Inspired Selfish aware Co-operative Scheme(SMPISCS)is propounded for making an attempt to mitigate selfish nodes for prolonging the lifetime of the network and balancing energy consumptions of the network.SMPISCS model provides a kind of sensor node’s behavior for quantifying and future forecasting the probability with which the node could turn into selfish.Simulation experiments are carried out through Network Simulator 2 and the performance are analyzed based on varying the number of selfish sensor nodes,number of sensor nodes and range of detection threshold.展开更多
In Wireless Sensor Network(WSN),energy and packet forwarding tendencies of sensor nodes plays a potential role in ensuring a maximum degree of co-operation under data delivery.This quantified level of co-operation sig...In Wireless Sensor Network(WSN),energy and packet forwarding tendencies of sensor nodes plays a potential role in ensuring a maximum degree of co-operation under data delivery.This quantified level of co-operation signifies the performance of the network in terms of increased throughput,packet delivery rate and decreased delay depending on the data being aggregated and level of control overhead.The performance of a sensor network is highly inclined by the selfish behaving nature of sensor nodes that gets revealed when the residual energy ranges below a bearable level of activeness in packet forwarding.The selfish sensor node needs to be identified in future through reliable forecasting mechanism for improving the lifetime and packet delivery rate.Semi Markov Process Inspired Selfish aware Co-operative Scheme(SMPISCS)is propounded for making an attempt to mitigate selfish nodes for prolonging the lifetime of the network and balancing energy consumptions of the network.SMPISCS model provides a kind of sensor node’s behavior for quantifying and future forecasting the probability with which the node could turn into selfish.Simulation experiments are carried out through Network Simulator 2 and the performance are analyzed based on varying the number of selfish sensor nodes,number of sensor nodes and range of detection threshold.展开更多
As an extension of wireless ad hoc and sensor networks, wireless mesh networks(WMNs) are employed as an emerging key solution for wireless broadband connectivity improvement. Due to the lack of physical security guara...As an extension of wireless ad hoc and sensor networks, wireless mesh networks(WMNs) are employed as an emerging key solution for wireless broadband connectivity improvement. Due to the lack of physical security guarantees, WMNs are susceptible to various kinds of attack. In this paper, we focus on node social selfish attack, which decreases network performance significantly. Since this type of attack is not obvious to detect, we propose a security routing scheme based on social network and reputation evaluation to solve this attack issue. First, we present a dynamic reputation model to evaluate a node's routing behavior, from which we can identify selfish attacks and selfish nodes. Furthermore, a social characteristic evaluation model is studied to evaluate the social relationship among nodes. Groups are built based on the similarity of node social status and we can get a secure routing based on these social groups of nodes. In addition, in our scheme, nodes are encouraged to enter into multiple groups and friend nodes are recommended to join into groups to reduce the possibility of isolated nodes. Simulation results demonstrate that our scheme is able to reflect node security status, and routings are chosen and adjusted according to security status timely and accurately so that the safety and reliability of routing are improved.展开更多
基金Project(61201143)supported by the National Natural Science Foundation of China
文摘In non-dedicated cooperative relay networks, each node is autonomous and selfish in nature, and thus spontaneous cooperation among nodes is challenged. To stimulate the selfish node to participate in cooperation, a pricing-based cooperation engine using game theory was designed. Firstly, the feasible regions of the charge price and reimbursement price were deduced. Then, the non-cooperative and cooperative games were adopted to analyze the amount of bandwidth that initiating cooperation node(ICN) forwards data through participating cooperation node(PCN) and the amount of bandwidth that PCN helps ICN to relay data. Meanwhile, the Nash equilibrium solutions of cooperation bandwidth allocations(CBAs) were obtained through geometrical interpretation. Secondly, a pricing-based cooperation engine was proposed and a cooperative communication system model with cooperation engines was depicted. Finally, an algorithm based on game theory was proposed to realize the cooperation engine. The simulation results demonstrate that, compared with the system without pricing-based incentive, the proposed system can significantly improve the ICN's metric measured by bit-per-Joule and increase the PCN's revenue.
文摘In Wireless Sensor Network(WSN),energy and packet forwarding tendencies of sensor nodes plays a potential role in ensuring a maximum degree of co-operation under data delivery.This quantified level of co-operation signifies the performance of the network in terms of increased throughput,packet delivery rate and decreased delay depending on the data being aggregated and level of control overhead.The performance of a sensor network is highly inclined by the selfish behaving nature of sensor nodes that gets revealed when the residual energy ranges below a bearable level of activeness in packet forwarding.The selfish sensor node needs to be identified in future through reliable forecasting mechanism for improving the lifetime and packet delivery rate.Semi Markov Process Inspired Selfish aware Co-operative Scheme(SMPISCS)is propounded for making an attempt to mitigate selfish nodes for prolonging the lifetime of the network and balancing energy consumptions of the network.SMPISCS model provides a kind of sensor node’s behavior for quantifying and future forecasting the probability with which the node could turn into selfish.Simulation experiments are carried out through Network Simulator 2 and the performance are analyzed based on varying the number of selfish sensor nodes,number of sensor nodes and range of detection threshold.
文摘In Wireless Sensor Network(WSN),energy and packet forwarding tendencies of sensor nodes plays a potential role in ensuring a maximum degree of co-operation under data delivery.This quantified level of co-operation signifies the performance of the network in terms of increased throughput,packet delivery rate and decreased delay depending on the data being aggregated and level of control overhead.The performance of a sensor network is highly inclined by the selfish behaving nature of sensor nodes that gets revealed when the residual energy ranges below a bearable level of activeness in packet forwarding.The selfish sensor node needs to be identified in future through reliable forecasting mechanism for improving the lifetime and packet delivery rate.Semi Markov Process Inspired Selfish aware Co-operative Scheme(SMPISCS)is propounded for making an attempt to mitigate selfish nodes for prolonging the lifetime of the network and balancing energy consumptions of the network.SMPISCS model provides a kind of sensor node’s behavior for quantifying and future forecasting the probability with which the node could turn into selfish.Simulation experiments are carried out through Network Simulator 2 and the performance are analyzed based on varying the number of selfish sensor nodes,number of sensor nodes and range of detection threshold.
基金supported in part by National Natural Science Foundation of China(Grant Nos.61302071,61471109,61502075)Fundamental Research Funds for the Central Universities(Grant Nos.N150404015,DUT15QY06,DUT15RC(3)009)+2 种基金China Postdoctoral Science Foundation Funded Project(Grant No.2015M580224)Liaoning Province Doctor Startup Fund(Grant No.201501166)State Key Laboratory for Novel Software Technology,Nanjing University(Grant No.KFKT2015B12)
文摘As an extension of wireless ad hoc and sensor networks, wireless mesh networks(WMNs) are employed as an emerging key solution for wireless broadband connectivity improvement. Due to the lack of physical security guarantees, WMNs are susceptible to various kinds of attack. In this paper, we focus on node social selfish attack, which decreases network performance significantly. Since this type of attack is not obvious to detect, we propose a security routing scheme based on social network and reputation evaluation to solve this attack issue. First, we present a dynamic reputation model to evaluate a node's routing behavior, from which we can identify selfish attacks and selfish nodes. Furthermore, a social characteristic evaluation model is studied to evaluate the social relationship among nodes. Groups are built based on the similarity of node social status and we can get a secure routing based on these social groups of nodes. In addition, in our scheme, nodes are encouraged to enter into multiple groups and friend nodes are recommended to join into groups to reduce the possibility of isolated nodes. Simulation results demonstrate that our scheme is able to reflect node security status, and routings are chosen and adjusted according to security status timely and accurately so that the safety and reliability of routing are improved.