Unsupervised image translation(UIT)studies the mapping between two image domains.Since such mappings are under-constrained,existing research has pursued various desirable properties such as distributional matching or ...Unsupervised image translation(UIT)studies the mapping between two image domains.Since such mappings are under-constrained,existing research has pursued various desirable properties such as distributional matching or two-way consistency.In this paper,we re-examine UIT from a new perspective:distributional semantics consistency,based on the observation that data variations contain semantics,e.g.,shoes varying in colors.Further,the semantics can be multi-dimensional,e.g.,shoes also varying in style,functionality,etc.Given two image domains,matching these semantic dimensions during UIT will produce mappings with explicable correspondences,which has not been investigated previously.We propose distributional semantics mapping(DSM),the first UIT method which explicitly matches semantics between two domains.We show that distributional semantics has been rarely considered within and beyond UIT,even though it is a common problem in deep learning.We evaluate DSM on several benchmark datasets,demonstrating its general ability to capture distributional semantics.Extensive comparisons show that DSM not only produces explicable mappings,but also improves image quality in general.展开更多
Unknown words are one of the key factors that greatly affect the translation quality. Traditionally, nearly all the related researches focus on obtaining the translation of the unknown words. However, these approaches...Unknown words are one of the key factors that greatly affect the translation quality. Traditionally, nearly all the related researches focus on obtaining the translation of the unknown words. However, these approaches have two disadvantages. On the one hand, they usually rely on many additional resources such as bilingual web data; on the other hand, they cannot guarantee good reordering and lexical selection of surrounding words. This paper gives a new perspective on handling unknown words in statistical machine translation (SMT). Instead of making great efforts to find the translation of unknown words, we focus on determining the semantic function of the unknown word in the test sentence and keeping the semantic function unchanged in the translation process. In this way, unknown words can help the phrase reordering and lexical selection of their surrounding words even though they still remain untranslated. In order to determine the semantic function of an unknown word, we employ the distributional semantic model and the bidirectional language model. Extensive experiments on both phrase-based and linguistically syntax-based SMT models in Chinese-to-English translation show that our method can substantially improve the translation quality.展开更多
基金supported by National Natural Science Foundation of China(Grant No.61772462)the 100 Talents Program of Zhejiang University。
文摘Unsupervised image translation(UIT)studies the mapping between two image domains.Since such mappings are under-constrained,existing research has pursued various desirable properties such as distributional matching or two-way consistency.In this paper,we re-examine UIT from a new perspective:distributional semantics consistency,based on the observation that data variations contain semantics,e.g.,shoes varying in colors.Further,the semantics can be multi-dimensional,e.g.,shoes also varying in style,functionality,etc.Given two image domains,matching these semantic dimensions during UIT will produce mappings with explicable correspondences,which has not been investigated previously.We propose distributional semantics mapping(DSM),the first UIT method which explicitly matches semantics between two domains.We show that distributional semantics has been rarely considered within and beyond UIT,even though it is a common problem in deep learning.We evaluate DSM on several benchmark datasets,demonstrating its general ability to capture distributional semantics.Extensive comparisons show that DSM not only produces explicable mappings,but also improves image quality in general.
基金Supported by the National High Technology Research and Development 863 Program of China under Grant Nos. 2011AA01A207,2012AA011101, and 2012AA011102
文摘Unknown words are one of the key factors that greatly affect the translation quality. Traditionally, nearly all the related researches focus on obtaining the translation of the unknown words. However, these approaches have two disadvantages. On the one hand, they usually rely on many additional resources such as bilingual web data; on the other hand, they cannot guarantee good reordering and lexical selection of surrounding words. This paper gives a new perspective on handling unknown words in statistical machine translation (SMT). Instead of making great efforts to find the translation of unknown words, we focus on determining the semantic function of the unknown word in the test sentence and keeping the semantic function unchanged in the translation process. In this way, unknown words can help the phrase reordering and lexical selection of their surrounding words even though they still remain untranslated. In order to determine the semantic function of an unknown word, we employ the distributional semantic model and the bidirectional language model. Extensive experiments on both phrase-based and linguistically syntax-based SMT models in Chinese-to-English translation show that our method can substantially improve the translation quality.