Semantic Communication(SC)has emerged as a novel communication paradigm that provides a receiver with meaningful information extracted from the source to maximize information transmission throughput in wireless networ...Semantic Communication(SC)has emerged as a novel communication paradigm that provides a receiver with meaningful information extracted from the source to maximize information transmission throughput in wireless networks,beyond the theoretical capacity limit.Despite the extensive research on SC,there is a lack of comprehensive survey on technologies,solutions,applications,and challenges for SC.In this article,the development of SC is first reviewed and its characteristics,architecture,and advantages are summarized.Next,key technologies such as semantic extraction,semantic encoding,and semantic segmentation are discussed and their corresponding solutions in terms of efficiency,robustness,adaptability,and reliability are summarized.Applications of SC to UAV communication,remote image sensing and fusion,intelligent transportation,and healthcare are also presented and their strategies are summarized.Finally,some challenges and future research directions are presented to provide guidance for further research of SC.展开更多
Semantic communication,as a critical component of artificial intelligence(AI),has gained increasing attention in recent years due to its significant impact on various fields.In this paper,we focus on the applications ...Semantic communication,as a critical component of artificial intelligence(AI),has gained increasing attention in recent years due to its significant impact on various fields.In this paper,we focus on the applications of semantic feature extraction,a key step in the semantic communication,in several areas of artificial intelligence,including natural language processing,medical imaging,remote sensing,autonomous driving,and other image-related applications.Specifically,we discuss how semantic feature extraction can enhance the accuracy and efficiency of natural language processing tasks,such as text classification,sentiment analysis,and topic modeling.In the medical imaging field,we explore how semantic feature extraction can be used for disease diagnosis,drug development,and treatment planning.In addition,we investigate the applications of semantic feature extraction in remote sensing and autonomous driving,where it can facilitate object detection,scene understanding,and other tasks.By providing an overview of the applications of semantic feature extraction in various fields,this paper aims to provide insights into the potential of this technology to advance the development of artificial intelligence.展开更多
With the rapid development of the mobile communication and the Internet,the previous web anomaly detectionand identificationmodels were built relying on security experts’empirical knowledge and attack features.Althou...With the rapid development of the mobile communication and the Internet,the previous web anomaly detectionand identificationmodels were built relying on security experts’empirical knowledge and attack features.Althoughthis approach can achieve higher detection performance,it requires huge human labor and resources to maintainthe feature library.In contrast,semantic feature engineering can dynamically discover new semantic featuresand optimize feature selection by automatically analyzing the semantic information contained in the data itself,thus reducing dependence on prior knowledge.However,current semantic features still have the problem ofsemantic expression singularity,as they are extracted from a single semantic mode such as word segmentation,character segmentation,or arbitrary semantic feature extraction.This paper extracts features of web requestsfrom dual semantic granularity,and proposes a semantic feature fusion method to solve the above problems.Themethod first preprocesses web requests,and extracts word-level and character-level semantic features of URLs viaconvolutional neural network(CNN),respectively.By constructing three loss functions to reduce losses betweenfeatures,labels and categories.Experiments on the HTTP CSIC 2010,Malicious URLs and HttpParams datasetsverify the proposedmethod.Results show that compared withmachine learning,deep learningmethods and BERTmodel,the proposed method has better detection performance.And it achieved the best detection rate of 99.16%in the dataset HttpParams.展开更多
Semantic extraction is essential for semantic interoperability in multi-enterprise business collaboration environments. Although many studies on semantic extraction have been carried out, few have focused on how to pr...Semantic extraction is essential for semantic interoperability in multi-enterprise business collaboration environments. Although many studies on semantic extraction have been carried out, few have focused on how to precisely and effectively extract semantics from multiple heterogeneous data schemas. This paper presents a semi-automatic semantic extraction method based on a neutral representation format (NRF) for acquiring semantics from heterogeneous data schemas. As a unified syntax-independent model, NRF removes all the contingencies of heterogeneous data schemas from the original data environment. Conceptual extraction and keyword extraction are used to acquire the semantics from the NRF. Conceptual extraction entails constructing a conceptual model, while keyword extraction seeks to obtain the metadata. An industrial case is given to validate the approach. This method has good extensibility and flexibility. The results show that the method provides simple, accurate, and effective semantic interoperability in multi-enterprise business collaboration environments.展开更多
During the new product development process, reusing the existing CAD models could avoid designing from scratch and decrease human cost. With the advent of big data,how to rapidly and efficiently find out suitable 3D C...During the new product development process, reusing the existing CAD models could avoid designing from scratch and decrease human cost. With the advent of big data,how to rapidly and efficiently find out suitable 3D CAD models for design reuse is taken more attention. Currently the sketch-based retrieval approach makes search more convenient, but its accuracy is not high enough; on the other hand, the semantic-based retrieval approach fully utilizes high level semantic information, and makes search much closer to engineers' intent.However, effectively extracting and representing semantic information from data sets is difficult.Aiming at these problems, we proposed a sketch-based semantic retrieval approach for reusing3 D CAD models. Firstly a fine granularity semantic descriptor is designed for representing 3D CAD models; Secondly, several heuristic rules are adopted to recognize 3D features from 2D sketch, and the correspondences between 3D feature and 2D loops are built; Finally, semantic and shape similarity measurements are combined together to match the input sketch to 3D CAD models. Hence the retrieval accuracy is improved. A sketch-based prototype system is developed.Experimental results validate the feasibility and effectiveness of our proposed approach.展开更多
基金supported by the Natural Science Foundation of China under Grants 61971084,62025105,62001073,62272075the National Natural Science Foundation of Chongqing under Grants cstc2021ycjh-bgzxm0039,cstc2021jcyj-msxmX0031+1 种基金the Science and Technology Research Program for Chongqing Municipal Education Commission KJZD-M202200601the Support Program for Overseas Students to Return to China for Entrepreneurship and Innovation under Grants cx2021003,cx2021053.
文摘Semantic Communication(SC)has emerged as a novel communication paradigm that provides a receiver with meaningful information extracted from the source to maximize information transmission throughput in wireless networks,beyond the theoretical capacity limit.Despite the extensive research on SC,there is a lack of comprehensive survey on technologies,solutions,applications,and challenges for SC.In this article,the development of SC is first reviewed and its characteristics,architecture,and advantages are summarized.Next,key technologies such as semantic extraction,semantic encoding,and semantic segmentation are discussed and their corresponding solutions in terms of efficiency,robustness,adaptability,and reliability are summarized.Applications of SC to UAV communication,remote image sensing and fusion,intelligent transportation,and healthcare are also presented and their strategies are summarized.Finally,some challenges and future research directions are presented to provide guidance for further research of SC.
文摘Semantic communication,as a critical component of artificial intelligence(AI),has gained increasing attention in recent years due to its significant impact on various fields.In this paper,we focus on the applications of semantic feature extraction,a key step in the semantic communication,in several areas of artificial intelligence,including natural language processing,medical imaging,remote sensing,autonomous driving,and other image-related applications.Specifically,we discuss how semantic feature extraction can enhance the accuracy and efficiency of natural language processing tasks,such as text classification,sentiment analysis,and topic modeling.In the medical imaging field,we explore how semantic feature extraction can be used for disease diagnosis,drug development,and treatment planning.In addition,we investigate the applications of semantic feature extraction in remote sensing and autonomous driving,where it can facilitate object detection,scene understanding,and other tasks.By providing an overview of the applications of semantic feature extraction in various fields,this paper aims to provide insights into the potential of this technology to advance the development of artificial intelligence.
基金a grant from the National Natural Science Foundation of China(Nos.11905239,12005248 and 12105303).
文摘With the rapid development of the mobile communication and the Internet,the previous web anomaly detectionand identificationmodels were built relying on security experts’empirical knowledge and attack features.Althoughthis approach can achieve higher detection performance,it requires huge human labor and resources to maintainthe feature library.In contrast,semantic feature engineering can dynamically discover new semantic featuresand optimize feature selection by automatically analyzing the semantic information contained in the data itself,thus reducing dependence on prior knowledge.However,current semantic features still have the problem ofsemantic expression singularity,as they are extracted from a single semantic mode such as word segmentation,character segmentation,or arbitrary semantic feature extraction.This paper extracts features of web requestsfrom dual semantic granularity,and proposes a semantic feature fusion method to solve the above problems.Themethod first preprocesses web requests,and extracts word-level and character-level semantic features of URLs viaconvolutional neural network(CNN),respectively.By constructing three loss functions to reduce losses betweenfeatures,labels and categories.Experiments on the HTTP CSIC 2010,Malicious URLs and HttpParams datasetsverify the proposedmethod.Results show that compared withmachine learning,deep learningmethods and BERTmodel,the proposed method has better detection performance.And it achieved the best detection rate of 99.16%in the dataset HttpParams.
基金Supported by the National Natural Science Foundation of China(No.60674080)the Europe Union Project of Software for Ambient Semantic Interoperable Services(FP6-2005-IST-5-034980)the National High-Tech Research and Development(863) Program of China(Nos.2006AA04Z166 and 2007AA04Z150)
文摘Semantic extraction is essential for semantic interoperability in multi-enterprise business collaboration environments. Although many studies on semantic extraction have been carried out, few have focused on how to precisely and effectively extract semantics from multiple heterogeneous data schemas. This paper presents a semi-automatic semantic extraction method based on a neutral representation format (NRF) for acquiring semantics from heterogeneous data schemas. As a unified syntax-independent model, NRF removes all the contingencies of heterogeneous data schemas from the original data environment. Conceptual extraction and keyword extraction are used to acquire the semantics from the NRF. Conceptual extraction entails constructing a conceptual model, while keyword extraction seeks to obtain the metadata. An industrial case is given to validate the approach. This method has good extensibility and flexibility. The results show that the method provides simple, accurate, and effective semantic interoperability in multi-enterprise business collaboration environments.
基金Supported by the National Natural Science Foundation of China(61502129,61572432,61163016)the Zhejiang Natural Science Foundation of China(LQ16F020004,LQ15F020011)the University Scientific Research Projects of Ningxia Province of China(NGY2015161)
文摘During the new product development process, reusing the existing CAD models could avoid designing from scratch and decrease human cost. With the advent of big data,how to rapidly and efficiently find out suitable 3D CAD models for design reuse is taken more attention. Currently the sketch-based retrieval approach makes search more convenient, but its accuracy is not high enough; on the other hand, the semantic-based retrieval approach fully utilizes high level semantic information, and makes search much closer to engineers' intent.However, effectively extracting and representing semantic information from data sets is difficult.Aiming at these problems, we proposed a sketch-based semantic retrieval approach for reusing3 D CAD models. Firstly a fine granularity semantic descriptor is designed for representing 3D CAD models; Secondly, several heuristic rules are adopted to recognize 3D features from 2D sketch, and the correspondences between 3D feature and 2D loops are built; Finally, semantic and shape similarity measurements are combined together to match the input sketch to 3D CAD models. Hence the retrieval accuracy is improved. A sketch-based prototype system is developed.Experimental results validate the feasibility and effectiveness of our proposed approach.