期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
A survey on semantic communications:Technologies,solutions,applications and challenges
1
作者 Yating Liu Xiaojie Wang +3 位作者 Zhaolong Ning MengChu Zhou Lei Guo Behrouz Jedari 《Digital Communications and Networks》 SCIE CSCD 2024年第3期528-545,共18页
Semantic Communication(SC)has emerged as a novel communication paradigm that provides a receiver with meaningful information extracted from the source to maximize information transmission throughput in wireless networ... Semantic Communication(SC)has emerged as a novel communication paradigm that provides a receiver with meaningful information extracted from the source to maximize information transmission throughput in wireless networks,beyond the theoretical capacity limit.Despite the extensive research on SC,there is a lack of comprehensive survey on technologies,solutions,applications,and challenges for SC.In this article,the development of SC is first reviewed and its characteristics,architecture,and advantages are summarized.Next,key technologies such as semantic extraction,semantic encoding,and semantic segmentation are discussed and their corresponding solutions in terms of efficiency,robustness,adaptability,and reliability are summarized.Applications of SC to UAV communication,remote image sensing and fusion,intelligent transportation,and healthcare are also presented and their strategies are summarized.Finally,some challenges and future research directions are presented to provide guidance for further research of SC. 展开更多
关键词 semantic communication semantic coding semantic extraction semantic communication framework semantic communication applications
下载PDF
Deep Learning-Based Semantic Feature Extraction:A Literature Review and Future Directions 被引量:1
2
作者 DENG Letian ZHAO Yanru 《ZTE Communications》 2023年第2期11-17,共7页
Semantic communication,as a critical component of artificial intelligence(AI),has gained increasing attention in recent years due to its significant impact on various fields.In this paper,we focus on the applications ... Semantic communication,as a critical component of artificial intelligence(AI),has gained increasing attention in recent years due to its significant impact on various fields.In this paper,we focus on the applications of semantic feature extraction,a key step in the semantic communication,in several areas of artificial intelligence,including natural language processing,medical imaging,remote sensing,autonomous driving,and other image-related applications.Specifically,we discuss how semantic feature extraction can enhance the accuracy and efficiency of natural language processing tasks,such as text classification,sentiment analysis,and topic modeling.In the medical imaging field,we explore how semantic feature extraction can be used for disease diagnosis,drug development,and treatment planning.In addition,we investigate the applications of semantic feature extraction in remote sensing and autonomous driving,where it can facilitate object detection,scene understanding,and other tasks.By providing an overview of the applications of semantic feature extraction in various fields,this paper aims to provide insights into the potential of this technology to advance the development of artificial intelligence. 展开更多
关键词 semantic feature extraction semantic communication deep learning
下载PDF
FusionNN:A Semantic Feature Fusion Model Based on Multimodal for Web Anomaly Detection
3
作者 Li Wang Mingshan Xia +3 位作者 Hao Hu Jianfang Li Fengyao Hou Gang Chen 《Computers, Materials & Continua》 SCIE EI 2024年第5期2991-3006,共16页
With the rapid development of the mobile communication and the Internet,the previous web anomaly detectionand identificationmodels were built relying on security experts’empirical knowledge and attack features.Althou... With the rapid development of the mobile communication and the Internet,the previous web anomaly detectionand identificationmodels were built relying on security experts’empirical knowledge and attack features.Althoughthis approach can achieve higher detection performance,it requires huge human labor and resources to maintainthe feature library.In contrast,semantic feature engineering can dynamically discover new semantic featuresand optimize feature selection by automatically analyzing the semantic information contained in the data itself,thus reducing dependence on prior knowledge.However,current semantic features still have the problem ofsemantic expression singularity,as they are extracted from a single semantic mode such as word segmentation,character segmentation,or arbitrary semantic feature extraction.This paper extracts features of web requestsfrom dual semantic granularity,and proposes a semantic feature fusion method to solve the above problems.Themethod first preprocesses web requests,and extracts word-level and character-level semantic features of URLs viaconvolutional neural network(CNN),respectively.By constructing three loss functions to reduce losses betweenfeatures,labels and categories.Experiments on the HTTP CSIC 2010,Malicious URLs and HttpParams datasetsverify the proposedmethod.Results show that compared withmachine learning,deep learningmethods and BERTmodel,the proposed method has better detection performance.And it achieved the best detection rate of 99.16%in the dataset HttpParams. 展开更多
关键词 Feature fusion web anomaly detection MULTIMODAL convolutional neural network(CNN) semantic feature extraction
下载PDF
Semantic Extraction for Multi-Enterprise Business Collaboration
4
作者 孙红俊 范玉顺 《Tsinghua Science and Technology》 SCIE EI CAS 2009年第2期196-205,共10页
Semantic extraction is essential for semantic interoperability in multi-enterprise business collaboration environments. Although many studies on semantic extraction have been carried out, few have focused on how to pr... Semantic extraction is essential for semantic interoperability in multi-enterprise business collaboration environments. Although many studies on semantic extraction have been carried out, few have focused on how to precisely and effectively extract semantics from multiple heterogeneous data schemas. This paper presents a semi-automatic semantic extraction method based on a neutral representation format (NRF) for acquiring semantics from heterogeneous data schemas. As a unified syntax-independent model, NRF removes all the contingencies of heterogeneous data schemas from the original data environment. Conceptual extraction and keyword extraction are used to acquire the semantics from the NRF. Conceptual extraction entails constructing a conceptual model, while keyword extraction seeks to obtain the metadata. An industrial case is given to validate the approach. This method has good extensibility and flexibility. The results show that the method provides simple, accurate, and effective semantic interoperability in multi-enterprise business collaboration environments. 展开更多
关键词 semantic interoperability semantic extraction neutral representation format business collaboration
原文传递
A sketch-based semantic retrieval approach for 3D CAD models 被引量:1
5
作者 QIN Fei-wei GAO Shu-ming +2 位作者 YANG Xiao-ling BAI Jing ZHAO Qu-hong 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2017年第1期27-52,共26页
During the new product development process, reusing the existing CAD models could avoid designing from scratch and decrease human cost. With the advent of big data,how to rapidly and efficiently find out suitable 3D C... During the new product development process, reusing the existing CAD models could avoid designing from scratch and decrease human cost. With the advent of big data,how to rapidly and efficiently find out suitable 3D CAD models for design reuse is taken more attention. Currently the sketch-based retrieval approach makes search more convenient, but its accuracy is not high enough; on the other hand, the semantic-based retrieval approach fully utilizes high level semantic information, and makes search much closer to engineers' intent.However, effectively extracting and representing semantic information from data sets is difficult.Aiming at these problems, we proposed a sketch-based semantic retrieval approach for reusing3 D CAD models. Firstly a fine granularity semantic descriptor is designed for representing 3D CAD models; Secondly, several heuristic rules are adopted to recognize 3D features from 2D sketch, and the correspondences between 3D feature and 2D loops are built; Finally, semantic and shape similarity measurements are combined together to match the input sketch to 3D CAD models. Hence the retrieval accuracy is improved. A sketch-based prototype system is developed.Experimental results validate the feasibility and effectiveness of our proposed approach. 展开更多
关键词 retrieval semantic sketch similarity descriptor recognize match rotation extracting circle
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部