期刊文献+
共找到846篇文章
< 1 2 43 >
每页显示 20 50 100
Two Adaptive Control Algorithms in Semi-Active Suspension System
1
作者 黄鸿 侯朝桢 高新 《Journal of Beijing Institute of Technology》 EI CAS 2002年第1期5-9,共5页
To reduce the vibration in the suspension, semi active suspension system was employed. And its CARMA model was built. Two adaptive control schemes, the minimum variance self tuning control algorithm and the pole con... To reduce the vibration in the suspension, semi active suspension system was employed. And its CARMA model was built. Two adaptive control schemes, the minimum variance self tuning control algorithm and the pole configuration self tuning control algorithm, were proposed. The former can make the variance of the output minimum while the latter can make dynamic behavior satisfying. The stability of the two schemes was analyzed. Simulations of them show that the acceleration in the vertical direction has been reduced greatly. The purpose of reducing vibration is realized. The two schemes can reduce the vibration in the suspension and have some practicability. 展开更多
关键词 semi active suspension minimum variance self tuning control algorithm pole configuration self tuning control algorithm
下载PDF
Design and optimization of a semi-active suspension system for railway applications 被引量:2
2
作者 Benedetto ALLOTTA Luca PUGI +2 位作者 Valentina COLLA Fabio BARTOLINI Francesco CANGIOLI 《Journal of Modern Transportation》 2011年第4期223-232,共10页
The present work focused on the application of innovative damping technologies in order to improve railway vehicle performances in terms of dynamic stability and comfort. As a benchmark case-study, the secondary sus- ... The present work focused on the application of innovative damping technologies in order to improve railway vehicle performances in terms of dynamic stability and comfort. As a benchmark case-study, the secondary sus- pension stage was selected and different control techniques were investigated, such as skyhook, dynamic compensation, and sliding mode control. The final aim was to investigate which control schemes are suitable for optimal exploitation of the non-linear behavior of the actuators. The performance improvement achieved by adoption of the semi-active dampers on a standard high-speed train was evaluated in terms of passenger comfort. Different control strategies have been investigated by comparing a simple SISO (single input single output) regulator based on the skyhook damper ap- proach with a centralized regulator. The centralized regulator allows for the estimation of a near optimal set of control forces that minimize car-body accelerations with respect to constraints imposed by limited performance of semi-active actuators. Simulation results show that best results is obtained using a mixed approach that considers the simultaneous applications of model based and feedback compensation control terms. 展开更多
关键词 Magneto R_heological dampers gradient projection method semi active suspension systems skyhook
下载PDF
SEMI-ACTIVE CONTROL OF VEHICLE SUSPENSION WITH MAGNETO-RHEOLOGICAL DAMPERS:PART Ⅰ——CONTROLLER SYNTHESIS AND EVALUATION 被引量:8
3
作者 WANG Enrong YING Liang +2 位作者 WANG Wanjun RAKHEJASubhash SU Chunyi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第1期13-19,共7页
A modified skyhook-based semi-active controller is proposed for implementing an asymmetric control suspension design with symmetric magneto-rheological (MR) dampers. The controller is formulated in current form, whi... A modified skyhook-based semi-active controller is proposed for implementing an asymmetric control suspension design with symmetric magneto-rheological (MR) dampers. The controller is formulated in current form, which is modulated by integrating a continuous modulation and an asymmetric damping force generation algorithms, so as to effectively minimize switching and hysteretic effects from the MR-damper. The proposed controller is implemented with a quarter-vehicle MR-suspension model, and its relative response characteristics are thus evaluated in terms of defined performance measures under varying amplitude harmonic, rounded pulse and random excitations. The sensitivity of the semi-active suspension performance to variations in controller parameters is thoroughly evaluated. The results illustrate that the proposed skyhook-based asymmetric semi-active MR-suspension controller has superior robustness on the system parameter variations, and can achieve desirable multi-objective suspension performance. 展开更多
关键词 Magneto-rheological damper Skyhook damping semi-active control Vehicle suspension
下载PDF
Semi-active Sliding Mode Control of Vehicle Suspension with Magneto-rheological Damper 被引量:13
4
作者 ZHANG Hailong WANG Enrong +3 位作者 ZHANG Ning MIN Fuhong SUBASH Rakheja SU Chunyi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第1期63-75,共13页
The vehicle semi-active suspension with magneto-theological damper(MRD) has been a hot topic since this decade, in which the robust control synthesis considering load variation is a challenging task. In this paper, ... The vehicle semi-active suspension with magneto-theological damper(MRD) has been a hot topic since this decade, in which the robust control synthesis considering load variation is a challenging task. In this paper, a new semi-active controller based upon the inverse model and sliding mode control (SMC) strategies is proposed for the quarter-vehicle suspension with the magneto-rheological (MR) damper, wherein an ideal skyhook suspension is employed as the control reference model and the vehicle sprung mass is considered as an uncertain parameter. According to the asymptotical stability of SMC, the dynamic errors between the plant and reference systems are used to derive the control damping force acquired by the MR quarter-vehicle suspension system. The proposed modified Bouc-wen hysteretic force-velocity (F-v) model and its inverse model of MR damper, as well as the proposed continuous modulation (CM) filtering algorithm without phase shift are employed to convert the control damping force into the direct drive current of the MR damper. Moreover, the proposed semi-active sliding mode controller (SSMC)-based MR quarter-vehicle suspension is systematically evaluated through comparing the time and frequency domain responses of the sprung and unsprung mass displacement accelerations, suspension travel and the tire dynamic force with those of the passive quarter-vehicle suspension, under three kinds of varied amplitude harmonic, rounded pulse and real-road measured random excitations. The evaluation results illustrate that the proposed SSMC can greatly suppress the vehicle suspension vibration due to uncertainty of the load, and thus improve the ride comfort and handling safety. The study establishes a solid theoretical foundation as the universal control scheme for the adaptive semi-active control of the MR full-vehicle suspension decoupled into four MR quarter-vehicle sub-suspension systems. 展开更多
关键词 magneto-rheological damper vehicle suspension multi-objective performance semi-active sliding mode control FILTERING
下载PDF
Skyhook-based Semi-active Control of Full-vehicle Suspension with Magneto-rheological Dampers 被引量:11
5
作者 ZHANG Hailong WANG Enrong +2 位作者 MIN Fuhong SUBASH Rakheja SU Chunyi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第3期498-505,共8页
The control study of vehicle semi-active suspension with magneto-rheological (MR) dampers has been attracted much attention internationally. However, a simple, real time and easy implementing semi-active controller ha... The control study of vehicle semi-active suspension with magneto-rheological (MR) dampers has been attracted much attention internationally. However, a simple, real time and easy implementing semi-active controller has not been proposed for the MR full-vehicle suspension system, and a systematic analysis method has not been established for evaluating the multi-objective suspension performances of MR full-vehicle vertical, pitch and roll motions. For this purpose, according to the 7-degree of freedom (DOF) fullvehicle dynamic system, a generalized 7-DOF MR and passive full-vehicle dynamic model is set up by employing the modified Boucwen hysteretic force-velocity (F-v) model of the MR damper. A semi-active controller is synthesized to realize independent control of the four MR quarter-vehicle sub-suspension systems in the full-vehicle, which is on the basis of the proposed modified skyhook damping scheme of MR quarter-vehicle sub-suspension system. The proposed controller can greatly simplify the controller design complexity of MR full-vehicle suspension and has merits of easy implementation in real application, wherein only absolute velocities of sprung and unsprung masses with reference to the road surface are required to measure in real time when the vehicle is moving. Furthermore, a systematic analysis method is established for evaluating the vertical, pitch and roll motion properties of both MR and passive full-vehicle suspensions in a more realistic road excitation manner, in which the harmonic, rounded pulse and real road measured random signals with delay time are employed as different road excitations inserted on the front and rear two wheels, by considering the distance between front and rear wheels in full-vehicle. The above excitations with different amplitudes are further employed as the road excitations inserted on left and right two wheels for evaluating the roll motion property. The multi-objective suspension performances of ride comfort and handling safety of the proposed MR full-vehicle suspension are thus thoroughly evaluated by comparing with those of the passive full-vehicle suspension. The results show that the proposed controller can ideally improve multiobjective suspension performances of the ride comfort and handling safety. The proposed harmonic, rounded pulse and real road measured random signals with delay time and asymmetric amplitudes are suitable for accurately analyzing the vertical, pitch and roll motion properties of MR full-vehicle suspension system in a more realistic road excitation manner. This research has important theoretical significance for improving application study on the intelligent MR semi-active suspension. 展开更多
关键词 magneto-rheological damper skyhook policy semi-active control multi-objective performances full-vehicle suspension
下载PDF
SEMI-ACTIVE CONTROL OF VEHICLE SUSPENSION WITH MAGNETO-RHEOLOGICAL DAMPERS PARTⅡ——EVALUATION OF SUSPENSION PERFORMANCE 被引量:6
6
作者 WANG Enrong YING Liang +2 位作者 WANG Wanjun RAKHEJA Subhash SU Chunyi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第2期45-52,共8页
The design and analysis of an intelligent vehicle suspension with MR dampers should address hybrid semi-active control goals, such as rejection of current-switching discontinuity and MR-damper hysteresis, asymmetric d... The design and analysis of an intelligent vehicle suspension with MR dampers should address hybrid semi-active control goals, such as rejection of current-switching discontinuity and MR-damper hysteresis, asymmetric damping from the symmetric MR-damper design, robustness on the vehicle operation parameter uncertainties and consideration of essential multiple suspension goals. Following the proposed skyhook-based asymmetric semi-active controller (Part I ) for achieving the above goals, herein, a set of suspension performance measures and three kinds of varying amplitude harmonic, rounded pulse and really measured random excitations are systematically defined, and the sensitivity of quarter-vehicle MR-suspension performance to variations in operating conditions is thoroughly analyzed. The results illustrate that the proposed skyhook-based semi-active MR-suspension in the asymmetric mode yields relatively superior dynamic responses to meet the multiple suspension performances of ride, rattle space, road-holding and dynamic tire force transmitted to the pavement, and has desirable robustness on variations in operating conditions of vehicle load and speed and the road roughness. 展开更多
关键词 Magneto-rheological damper Asymmetric damping semi-active control Vehicle suspension Multi-objective performance
下载PDF
Simulation Aspects of a Full-Car ATV Model Semi-Active Suspension 被引量:1
7
作者 Kasi Kamalakkannan A. Elayaperumal Sathyaprasad Managlaramam 《Engineering(科研)》 2012年第7期384-389,共6页
This paper is concerned with the design, modeling, and simulation and testing procedure of All Terrain Vehicle (ATV) fitted with SAS, which is used in BAJA SAEINDIA standards. Using CATIA V5, the model is created, whi... This paper is concerned with the design, modeling, and simulation and testing procedure of All Terrain Vehicle (ATV) fitted with SAS, which is used in BAJA SAEINDIA standards. Using CATIA V5, the model is created, which is fulfilling the guidelines of BAJA SAEINDIA rules. ATV is having the two different pairs of quarter car models of suspensions where dampers filled with MR Fluid (SAS) in front and rear wheels. In front SLA wishbone and rear McPherson Strut are fixed. The physical representation of the ATV is converted into the mathematical modeling and it is imported in MATLAB SIMULINK software and analyzed for ATV’s performance. The ATV is analyzed for its vertical, pitch and roll motions which include total number of 7 Degrees of Freedom. The road excitation modeling also incorporated with the equations. This paper, elaborates the approaching of simulation method only. The virtual model of ATV has involving greater significance of reducing the cost involved in real time testing as well as the results are replica of experimental results. 展开更多
关键词 ATV BAJA SAEINDIA SLA WISHBONE McPherson STRUT SAS (semi active suspension) MATAB SIMULINK SIMULATION and Testing
下载PDF
Fuzzy Control of Model Travel Tracking for Vehicle Semi-Active Suspension 被引量:1
8
作者 管继富 武云鹏 +1 位作者 顾亮 黄华 《Defence Technology(防务技术)》 SCIE EI CAS 2006年第4期241-244,共4页
The control strategy of the model travel tracking for the vehicle suspension sys tem is presented based on analyzing the responses of the vehicle suspension tra vel. A fuzzy control system of vehicle suspension is des... The control strategy of the model travel tracking for the vehicle suspension sys tem is presented based on analyzing the responses of the vehicle suspension tra vel. A fuzzy control system of vehicle suspension is designed, in which the sus pension travel output of the adaptive LQG control system is taken as the tracking objective. The simulation results prove that the suspension travel and vertical acceleration can be tracked simultaneously with the simple fuzzy controller, and the tracking effect of fuzzy control is better than that of the PID controller. 展开更多
关键词 车辆 半主动悬挂系统 模糊控制 适应性控制 模型行程跟踪
下载PDF
Electrorheological Damper and Its Application for Semi-Active Suspension System 被引量:1
9
作者 赵霞 张永发 《Journal of Beijing Institute of Technology》 EI CAS 2007年第1期9-12,共4页
A semi-active control of vehicle suspension system with eleetrorheolngieal (ER) damper is presented. ER fluid characteristics are introduced based on the Bingham plasticity model first. Then ER damper working force ... A semi-active control of vehicle suspension system with eleetrorheolngieal (ER) damper is presented. ER fluid characteristics are introduced based on the Bingham plasticity model first. Then ER damper working force is given. Finally a quarter car model with ER damper is constructed. The skyhook control strategy is adopted to simulate the amplitude-frequency characteristics and the vibration of suspension system under random road excitation on the basis of ER damper characteristics. The response curves of the vertical acceleration, the suspension dynamic working space and the tyre dynamic loading are obtained. Simulation results show that the acceleration is reduced effectively and then the ride comfort is improved by the skyhook control law. 展开更多
关键词 dectrorheological(ER) fluid ER damper suspension system semi-active control skyhook control
下载PDF
Investigation of Semi-Active Hydro-Pneumatic Suspension for a Heavy Vehicle Based on Electro-Hydraulic Proportional Valve 被引量:2
10
作者 Wenchao Yue Shoucheng Li Xiaojun Zou 《World Journal of Engineering and Technology》 2017年第4期696-706,共11页
Hydro-pneumatic suspension is widely used in heavy vehicles due to its nonlinear characteristics of stiffness and damping. However, the conventional passive hydro-pneumatic suspension can’t adjust parameters accordin... Hydro-pneumatic suspension is widely used in heavy vehicles due to its nonlinear characteristics of stiffness and damping. However, the conventional passive hydro-pneumatic suspension can’t adjust parameters according to the complicated road environment of heavy vehicles to fulfill the requirements of the vehicle ride comfort. In this paper, a semi-active hydro-pneumatic suspension system based on the electro-hydraulic proportional valve control is proposed, and fuzzy control is used as the control strategy to adjust the?damping force of the semi-active hydro-pneumatic suspension. A 1/4?semi-active hydro-pneumatic suspension model is established, which is co-simulated with AMESim and MATLAB/Simulink. The co-simulation results show that the semi-active hydro-pneumatic suspension system can significantly reduce vibration of the vehicle body, and improve the suspension performance comparing with passive hydro-pneumatic suspension. 展开更多
关键词 Hydro-Pneumatic suspension semi-active Control CO-SIMULATION ELECTRO-HYDRAULIC Proportional VALVE
下载PDF
Delay-dependent H_(2)/H_(∞) Control for Vehicle Magneto-rheological Semi-active Suspension 被引量:1
11
作者 CHEN Wuwei ZHU Maofei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第6期1028-1034,共7页
The exist researches of the magneto-rheological semi-active suspension(MSAS) control mainly focus on the design of control laws,which aim at obtaining an optimal control strategy to improve the ride comfort and handli... The exist researches of the magneto-rheological semi-active suspension(MSAS) control mainly focus on the design of control laws,which aim at obtaining an optimal control strategy to improve the ride comfort and handling stability.In the controller design,the stability of the MSAS system cannot be confirmed owing to the control input time delay considered little.In this paper,a quarter vehicle MSAS model with time-delay is built.Therefore,through formulating the sprung mass acceleration suitably as the optimization object,suspension deflection and tyre dynamic load and coulomb damping force as the constraint objects,with considering the control input time-delay,a delay-dependent state feedback H2/H∞ controller is designed.According to Lyapunov-Krasovskii functional theory,the sufficient conditions for asymptotic stability and the existence of delay-dependent H2/H∞ controller are obtained,and the controller design is transformed into the minimization problem for linear function through linear matrix inequality(LMI).Random road excitation simulations and experiments are carried out.The simulation and experiment results show that the design can preserve the closed-loop stability and achieve the performances for MSAS system in spite of the existence of the control input time-delay.The present study can provide an important basis and method for research on time-delay problem in MSAS and other chassis subsystems. 展开更多
关键词 magneto-rheological semi-active suspension(MSAS) time-delay delay-dependent H2/H∞ state feedback control linear matrix inequality(LMI)
下载PDF
Skyhook Surface Sliding Mode Control on Semi-Active Vehicle Suspension System for Ride Comfort Enhancement 被引量:1
12
作者 Yi Chen 《Engineering(科研)》 2009年第1期23-32,共10页
A skyhook surface sliding mode control method was proposed and applied to the control on the semi-active vehicle suspension system for its ride comfort enhancement. A two degree of freedom dynamic model of a vehicle s... A skyhook surface sliding mode control method was proposed and applied to the control on the semi-active vehicle suspension system for its ride comfort enhancement. A two degree of freedom dynamic model of a vehicle semi-active suspension system was given, which focused on the passenger’s ride comfort perform-ance. A simulation with the given initial conditions has been devised in MATLAB/SIMULINK. The simula-tion results were showing that there was an enhanced level of ride comfort for the vehicle semi-active sus-pension system with the skyhook surface sliding mode controller. 展开更多
关键词 SLIDING Mode CONTROL Skyhook DAMPER Fuzzy Logic CONTROL semi-active suspension System
下载PDF
The Model Reference Adaptive Fuzzy Control for the Vehicle Semi-Active Suspension
13
作者 管继富 侯朝桢 +1 位作者 顾亮 武云鹏 《Journal of Beijing Institute of Technology》 EI CAS 2003年第4期342-346,共5页
The LQG control system is employed as vehicle suspension's optimal target system, which has an adaptive ability to the road conditions and vehicle speed in a limited bandwidth. In order to keep the optimal perform... The LQG control system is employed as vehicle suspension's optimal target system, which has an adaptive ability to the road conditions and vehicle speed in a limited bandwidth. In order to keep the optimal performances when the suspension parameters change, a model reference adaptive fuzzy control (MRAFC) strategy is presented. The LQG control system serves as the reference model in the MRAFC system. The simulation results indicate that the presented MRAFC system can adapt to the parameters variation of vehicle suspension and track the optimality of the LQG control system, the presented vehicle suspension MRAFC system has the ability to adapt to road conditions and suspension parameters change. 展开更多
关键词 semi-active suspension LQG control MRAFC control adaptive control
下载PDF
Fuzzy Logic Control for Semi-Active Suspension System of Tracked Vehicle
14
作者 管继富 顾亮 +1 位作者 侯朝桢 王国丽 《Journal of Beijing Institute of Technology》 EI CAS 2004年第2期113-117,共5页
The model of half a tracked vehicle semi-active suspension is established. The fuzzy logic controller of the semi-active suspension system is constructed. The acceleration of driver's seat and its time derivative ... The model of half a tracked vehicle semi-active suspension is established. The fuzzy logic controller of the semi-active suspension system is constructed. The acceleration of driver's seat and its time derivative are used as the inputs of the fuzzy logic controller, and the fuzzy logic controller output determines the semi-active suspension controllable damping force. The fuzzy logic controller is to minimize the mean square root of acceleration of the driver's seat. The control forces of controllable dampers behind the first road wheel are obtained by time delay, and the delay times are determined by the vehicle speed and axles distances. The simulation results show that this control method can decrease the acceleration of driver's seat and the suspension travel of the first road wheel, the ride quality is improved obviously. 展开更多
关键词 tracked vehicle semi-active suspension fuzzy logic control
下载PDF
Signal frequency based self-tuning fuzzy controller for semi-active suspension system 被引量:4
15
作者 孙涛 黄震宇 +1 位作者 陈大跃 汤磊 《Journal of Zhejiang University Science》 EI CSCD 2003年第4期426-432,共7页
A new kind of fuzzy control scheme, based on the identification of the signal' s main frequency and the behavior of the ER damper, is proposed to control the semi-active suspension system. This method ad-justs ... A new kind of fuzzy control scheme, based on the identification of the signal' s main frequency and the behavior of the ER damper, is proposed to control the semi-active suspension system. This method ad-justs the fuzzy controller to achieve the best isolation effect by analyzing the main frequency' s characters and inspecting the change of system parameters. The input of the fuzzy controller is the main frequency and the op-timal damping ratio is the output. Simulation results indicated that the proposed control method is very effec-tive in isolating the vibration. 展开更多
关键词 semi active suspension ER damper Frequency identification Fuzzy controller
下载PDF
HYBRID FUZZY CONTROL FOR ELECTRO-HYDRAULIC ACTIVE DAMPING SUSPENSION 被引量:2
16
作者 Wang Qingfeng Yang Botao Tu HuagangState Key Laboratory of Fluid Power Transmission and Control, Zhejiang University,Hangzhou 310027, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2002年第3期228-232,共5页
A new control scheme, the hybrid fuzzy control method, for active dampingsuspension system is presented. The scheme is the result of effective combination of the statisticaloptimal control method based on the statisti... A new control scheme, the hybrid fuzzy control method, for active dampingsuspension system is presented. The scheme is the result of effective combination of the statisticaloptimal control method based on the statistical property of suspension system, with the bang-bangcontrol method based on the real-time characteristics of suspension system. Computer simulations areperformed to compare the effectiveness of hybrid fuzzy control scheme with that of optimal dampingcontrol, bang-bang control, and passive suspension. It takes the effects of time-variant factorsinto full account. The superiority of the proposed hybrid fuzzy control scheme for active dampingsuspension to the passive suspension is verified in the experiment study. 展开更多
关键词 semi-active suspension Hybrid fuzzy control SIMULATION EXPERIMENT
下载PDF
STATISTIC LINEARIZATION CONTROL FOR HYDRAULIC ACTIVE DAMPING SUSPENSION 被引量:2
17
作者 Wang Qingfeng Zhao Ju Yang Botao (The State Key Lab.of Fluid Power Transmission and Control, Zhejiang University) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2000年第4期306-311,共6页
A statistic linearization analysis method of bad nolinear hydraulic active damping suspension is provided.Also the optimum control strategy of semi active suspension and graded control strategy based on it are puted ... A statistic linearization analysis method of bad nolinear hydraulic active damping suspension is provided.Also the optimum control strategy of semi active suspension and graded control strategy based on it are puted forward.Experimental researches are carried out on a 2 DOF(degree of freedom) hydraulic active damping suspension test system.The results showed that an excellent control effectiveness could be obtained by using statistic linearization optimum control which unfortunely requests continuously regulationg the damp in an accurate way and costs much in engeering application.On the contrary,the results also showed that graded control is more practicable which has a control effectiveness close to the optimum control and costs less. 展开更多
关键词 semi-active suspension Hydraulic damping Statistic optimum control Graded control
下载PDF
Improved ON-OFF Semi-active Control Algorithm and Its Performance Simulation Analysis 被引量:1
18
作者 HUANG Dashan ZHANG Jinqiu LIU Yile 《Journal of Donghua University(English Edition)》 EI CAS 2018年第2期182-192,共11页
To improve the switching time of the control force in standard sky-hook ON-OFF semi-active control algorithm,a stateadjust coefficient was adopted in the improved ON-OFF( ION-OFF)algorithm. In considering of the ridin... To improve the switching time of the control force in standard sky-hook ON-OFF semi-active control algorithm,a stateadjust coefficient was adopted in the improved ON-OFF( ION-OFF)algorithm. In considering of the riding comfort and the handling stability of vehicle, a comprehensive performance assessment criterion on suspension system was established with the utilization of the corresponding passive suspension system. Several simulations and analyses were conducted on improved ON-OFF semi-active suspension system with the comparison of passive suspension system and ON-OFF semi-active suspension system. The simulation results showed that the optimal comprehensive performance of the improved ON-OFF suspension system could be achieved when the state-adjust coefficient equalled 0. 6 as the vehicle running on C level road with the speed of 10 m/s,and the comprehensive performance was better than ON-OFF suspension system. Conclusions could be drawn from the frequency domain analysis that the performance of riding comfort and handling stability were both improved in the low resonance frequency and the mid-frequency range. The fact could be known that the comprehensive performance of the suspension system was associated with the frequency of the riding road and the sprung mass( SM) with the analysis of affecting factors. 展开更多
关键词 suspension system CONTROL algorithm semi-active sky-hook CONTROL ON-OFF CONTROL
下载PDF
电控减振器悬架NSGA-Ⅱ算法天地棚混合控制策略
19
作者 何浦 魏文智 +1 位作者 孙京哲 严天一 《青岛大学学报(工程技术版)》 CAS 2024年第3期78-85,92,共9页
针对具有电控减振器(Electronic Shock Absorber, ESA)的半主动悬架系统控制策略参数设定问题,即天地棚混合控制策略阻尼及分配系数设定,提出了基于非支配排序遗传(Non-dominated Sorting Genetic Algorithms-Ⅱ, NSGA-Ⅱ)算法的天地棚... 针对具有电控减振器(Electronic Shock Absorber, ESA)的半主动悬架系统控制策略参数设定问题,即天地棚混合控制策略阻尼及分配系数设定,提出了基于非支配排序遗传(Non-dominated Sorting Genetic Algorithms-Ⅱ, NSGA-Ⅱ)算法的天地棚混合控制策略。首先构建四分之一半主动悬架系统模型,搭建ESA正、逆模型,为解决天地棚混合控制策略中参数整定问题,通过NSGA-Ⅱ算法进行优化,在MATLAB/Simulink环境下,分别开展典型随机路面与其叠加凸块路面工况下的仿真实验;针对适应度函数得到对应帕累托解集,对不同优化侧重点进行仿真实验,与无控制被动悬架进行对比分析,验证了本算法在一定程度上对汽车行驶平顺性改善。 展开更多
关键词 电控减振器 半主动悬架 NSGA- 混合控制
下载PDF
Designing and characteristics analysis of electric suspensions with symmetrically arranged two slider-rods
20
作者 WANG Guo-sheng LEI Qiang-shun +1 位作者 SONG Hui-xin JIN Hao-long 《Journal of Beijing Institute of Technology》 EI CAS 2016年第3期309-315,共7页
An innovative design of electric suspensions was developed in this study to help realize slow active suspension easily and quickly.This design was driven by screw through double slider-rod arranged symmetrically as a ... An innovative design of electric suspensions was developed in this study to help realize slow active suspension easily and quickly.This design was driven by screw through double slider-rod arranged symmetrically as a substitute for two springs.Based on a mathematical modeling,suspension parameters were introduced for a certain type of wheeled vehicles.The functions and its mechanism in regulating terrain clearance and adjusting attitudes were subsequently explained respectively,together with its semi-active control mechanism and characteristics In conclusion,our data in the study show that the new mechanical design of suspensions not only could realize adjusting terrain clearance and static vehicle pose,but also had an ideal stiffness that could realize a semi-active suspension function through adjusting suspension's stiffness.Therefore it can bequite suitable for off-road wheeled vehicles and military wheeled vehicles. 展开更多
关键词 suspension mechanism slider-link arranged symmetrically adjustable stiffness electric control semi-active suspension low active control
下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部